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Abstract: General Relativity and Quantum Mechanics might seem to be far reaching philosophies of time and space yet we are 

enlightened by them in every reach of the conscience. Hawking Radiation is no such exception to our worlds. Black Holes might seem 

far away yet they are nearer than we think. Quan-tum Phenomenon encapsulates every reach of our existence and bounds us to a 

simultaneous world of richness. Hawking Radiation is no exception to the rule no matter how bizarre it might seem to the naked eye. 
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1. Introduction 
 

This text aims to unify General Relativity, Quantum 

Mechanics, and Hawking Radiation using the ds4 equation 

and other variants of similar form. It will begin with an 

Abstract, further on to a Main Content which will cover both 

text and calculations, depict Graphs, display Code, and 

provide Conclusivity to our exploration, unification, and 

depiction of such phenomenon into one comprehensive 

theory. 

 

2. Main Content 
 

2.1 Gott Time Equation 

 

Given the Gott Time Equation, 

 

Accepting the possibility of imaginary values for T . Here’s 

the calculation for each pair of R and µ:  

 

Given values: 

 

R: [100.3844, 174.844] 

 

G: 6.674 × 10-11m3kg-1s-2 

 
µ: [0.3769942894460652, -0.151111504310964, 

0.09479860644227443, -0.0015150532909259436, 

0.0015149218565185572, -0.007575548754339321, -

0.009725139642140273, -0.02467122830727323, -

0.009759643375978265, -0.11074352593242188] 
 

Now, let’s calculate T for each pair of R and µ: 

 

Here are the calculated values for T for each pair of R and µ: 

 

1. For R = 100.3844 and µ = 0.3769942894460652: 

 
 

2. For R = 100.3844 and µ = -0.151111504310964: 

 
 

 

3. For R = 100.3844 and µ = 0.09479860644227443: 

 
 

4. For R = 100.3844 and µ = −0.0015150532909259436 

 
 

5. For R = 100.3844 and µ = 0.0015149218565185572: 

 
 

6. For R = 100.3844 and µ = −0.007575548754339321 
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7. For R = 100.3844 and µ = −0.009725139642140273: 

 
 

8. For R = 100.3844 and µ = −0.02467122830727323 

 
 

9. For R = 100.3844 and µ = −0.009759643375978265: 

 
 

10. For R = 100.3844 and µ = −0.11074352593242188 

 
 

11. For R = 174.844 and µ = 0.3769942894460652 

 
 

12. For R = 174.844 and µ = −0.151111504310964 

 
 

13. For R = 174.844 and µ = 0.09479860644227443 

 
 

14. For R = 174.844 and µ = −0.0015150532909259436 

 
 

15. For R = 174.844 and µ = 0.0015149218565185572 

 
 

16. For R = 174.844 and µ = −0.007575548754339321: 

 
 

17. For R = 174.844 and µ = −0.009725139642140273: 

 
 

18. For R = 174.844 and µ = −0.02467122830727323: 

 
 

19. For R = 174.844 and µ = −0.009759643375978265 
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20. For R = 174.844 and µ = −0.11074352593242188: 

 
 

These are the calculated values for T for each pair of R and 

µ. As expected, some of the values are imaginary due to the 

presence of negative values for µ, that is negative mass. 

 

2.2 Action S 

 

The expression for the action S given as: 

 
 

is a foundational concept in theoretical physics, particularly 

in the context of general relativity and field theory. Let’s 

break down the components and under-stand how they 

contribute to the dynamics of a system, such as the 

hypothetical Romulan Quantum Singularity Propulsion 

System. 

 

Components of the Action 

1) Spacetime Volume Element (d4x): - This represents the 

infinitesimal volume element in four-dimensional 

spacetime. It ensures that the integral covers the entire 

spacetime manifold 

2) Determinant of the Metric Tensor (√−𝑔): - The metric 

tensor gµν describes the geometry of spacetime. The 

determinant g (where g = det(gµν)) encapsulates the 

curvature effects. The negative sign indicates that the 

met-ric has a Lorentzian signature, which is typical in 

general relativity (one time dimension and three spatial 

dimensions). 

3) Lagrangian Density (L(Φ, ∂µΦ, gµν)): The Lagrangian 

density L is a function that depends on the matter fields 

Φ, their derivatives ∂µΦ, and the metric tensor gµν . It 

encapsulates the dynamics of the fields, including their 

interactions and coupling with the gravitational field. 

 

Structure of the Lagrangian Density 

The specific form of the Lagrangian density L can be quite 

complex, es-pecially in advanced theoretical models like 

those involving exotic propulsion systems. However, a 

typical Lagrangian density for a scalar field coupled to 

gravity might include the following terms: 

 

1) Kinetic Term for the Scalar Field: 

 
 

This term describes the kinetic energy of the scalar field Φ. 

 

2) Potential Term for the Scalar Field: 

 
 

This term describes the potential energy of the scalar field, 

where V (Φ) is a function of Φ. 

 

3) Gravitational Coupling: The interaction between the 

scalar field and the gravitational field can be more 

intricate, involving non-minimal couplings 

 

Such as: 

 
where R is the Ricci scalar representing curvature, and ξ is a 

coupling constant. 

 

Example of a Lagrangian Density 

 

Putting these elements together, a possible Lagrangian 

density for a scalar field Φ with a potential V (Φ) and 

minimal coupling to gravity could look like: 

 

 
 

where: -
1

2
𝜕𝜇𝛿𝜕𝜇𝜙  is the kinetic term, - V (Φ) is the potential 

term, -
1

2
𝜉𝑅𝜙2 represents the interaction between the scalar field 

and the gravitational field. 
 

Implications for a Romulan Quantum Singularity 

Propulsion System 

In the context of a Romulan Quantum Singularity Propulsion 

System, which hypothetically uses a quantum singularity for 

propulsion, the Lagrangian density would likely need to 

include terms accounting for: 

• The exotic matter fields involved in stabilizing and 

utilizing the singularity. 

• Non-trivial gravitational effects due to the intense 

curvature near the singu-larity. - Quantum mechanical 

effects that could play a significant role in such extreme 

conditions. 

 

The exact form of L would be determined by the specific 

theoretical model describing the propulsion system, 

potentially involving advanced concepts from quantum field 

theory in curved spacetime, general relativity, and perhaps 

even elements of string theory or other beyond-standard-

model physics. 

 

Here’s the updated plot with funnels added to each chimney. 

Each chim-ney now includes a gray cylinder and a brown 

funnel, representing the copies of ds2(L), with labels 

indicating their positions in the sequence. The funnels extend 

from the bottom to the center of the chimneys. 

 

Sure, let’s make 5 separate copies of the equation for ds2(L). 

Each copy will be denoted with a subscript for clarity. 

 

Given the equation: 
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We will create 5 copies, labelled 𝑑𝑠1

2(𝐿), 𝑑𝑠2
2(𝐿), 𝑑𝑠3

2(𝐿), 𝑑𝑠4
2(𝐿), 𝑎𝑛𝑑 𝑑𝑠5

2(𝐿)  

 

1. First copy 

 
2. Second copy: 

 
3. Third copy: 

 
4. Fourth copy: 

 
5. Fifth copy: 

 
 

Each of these copies represents the same equation, just 

labeled differently to indicate they are separate instances of 

ds2(L). 

 

The image provided appears to be a plot showing the 

convergence of the Newton-Raphson method for finding the 

roots of two functions: 1 – ρ2 and ρ2 −1. The plot includes 

markers indicating the roots of these equations. Here’s a 

breakdown of what the plot represents: 

1) Functions Plotted: The blue curve represents the 

function 1- ρ2. The orange curve represents the function 

ρ2 − 1. 

2) Roots of the Functions: The red dots indicate the roots 

of the equation 1 − ρ2 = 0, which occur at ρ = ±1. - The 

blue dots indicate the roots of the equation ρ2 - 1 = 0, 

which also occur at ρ = ±1. 

3) Newton-Raphson Iterations: The plot shows iterations 

of the Newton-Raphson method converging to these 

roots, with markers indicating the steps taken in the 

iterative process. 

4) Plot Features: The x-axis represents the variable ρ. - 

The y-axis represents the function values. - The title 

“Convergence of Newton-Raphson Method with 

Tachyonic Antitelephone” 

 

Taking a more time-oriented approach to the nature of 

motion involves shift-ing focus from the spatial dimensions 

of motion (position, distance, velocity) to the temporal 

aspects (time elapsed, acceleration, rate of change). Here are 

some ways to do that: 
1) Velocity-Time Graphs: Instead of relying solely on 

position-time graphs to understand motion, you can use 

velocity-time graphs. These graphs plot velocity against 

time, offering insights into how speed changes over time, 

which can be crucial for understanding acceleration and 

deceleration. 

2) Acceleration: Emphasize the concept of acceleration, 

which measures the rate of change of velocity over time. 

By analyzing how acceleration varies with time, you 

gain a deeper understanding of how objects speed up or 

slow down. 

3) Kinematic Equations: Use kinematic equations that 

involve time as a variable. These equations relate 

displacement, initial velocity, final velocity, 

acceleration, and time, providing a time-centric 

perspective on motion problem-solving. 

4) Motion in Different Reference Frames: Consider 

motion from the perspective of different reference 

frames moving relative to each other over time. This 

approach can be especially useful in understanding 

concepts like relative velocity and inertial frames of 

reference. 

5) Dynamic Systems Analysis: Analyze dynamic systems 

by considering how they evolve over time. This 

approach involves studying how various factors, such as 

forces and initial conditions, influence the motion of 

objects as time progresses. 

6) Time-dependent Forces: Explore how forces acting on 

objects change over time. For example, in oscillatory 

motion, such as a simple harmonic oscil-lator, forces 

like spring force or gravitational force vary with time, 

leading to periodic motion. 

7) Event-Based Analysis: Focus on specific events or 

milestones in the motion of an object and analyze how 

these events unfold over time. This ap-proach can help 

in understanding complex motions by breaking them 

down into smaller, time-bound segments. 

 

By adopting a more time-oriented approach to motion, you 

can deepen your understanding of dynamic systems and 

phenomena, which is crucial in various fields such as 

physics, engineering, and even biology. This perspective 

enables a more nuanced analysis of motion beyond 

traditional spatial considerations. 
 
The Gott Time Machine Equation is a theoretical concept 

proposed by physi-cist J. Richard Gott, which explores the 

possibility of time travel using cosmic strings. The equation 

relates the parameters of a cosmic string to the potential for 

closed timelike curves (CTCs) and hence the possibility of time 

travel. 

 

One version of the Gott Time Machine Equation is given as: 
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Where: -T is the time duration required for a cosmic string to 

make a closed timelike curve. -R is the radius of the circle 

around the cosmic string where the time machine is formed. 

-G is the gravitational constant. - µ is the linear mass density 

of the cosmic string. 

 

Another version of the equation involves the velocity v of 

the cosmic string: 

 

 
Where: - v is the velocity of the cosmic string. - c is the 

speed of light.  

 

These equations provide insight into the relationship 

between the parameters of a cosmic string and the potential 

for time travel. By manipulating these equations, one can 

explore various scenarios related to time travel using cosmic 

strings. 

 

Warp Drive 

 

The Gott Time Machine Equation, proposed by physicist J. 

Richard Gott, is a theoretical equation derived from the 

theory of general relativity. This equation provides a 

mathematical framework for the potential construction of a 

time machine using cosmic strings. 

 

Another form of the Gott Time Equation is: 

 
 

Where: - T represents the time travel duration. -R is the 

radius of the cosmic string loop. -v is the velocity of the 

observer relative to the cosmic string loop. - c is the speed of 

light in a vacuum. 

 

This equation suggests that if an observer travels around a 

closed loop of cosmic string at a certain velocity, they could 

potentially experience time travel. However, it’s worth 

noting that the feasibility and practicality of constructing 

such a time machine remain highly speculative and are 

subject to many unre-solved theoretical and practical 

challenges. 

 

The concept of a warp drive, popularized by science fiction 

and explored in theoretical physics, involves the 

manipulation of spacetime to achieve faster-than-light travel. 

One of the proposed theoretical frameworks for a warp drive 

is the Alcubierre drive, named after physicist Miguel 

Alcubierre, who proposed it in 1994. The Alcubierre metric 

describes how spacetime can be “warped” to achieve 

apparent faster-than-light travel without violating the laws of 

relativity. 

 

The key equation associated with the Alcubierre warp drive 

is the Alcubierre metric itself: 

 
Where: -ds represents an infinitesimal interval of spacetime. 

-dt is the infinitesimal time interval. -dx, dy, dz are the 

infinitesimal spatial intervals in the x, y, and z directions 

respectively. -v is the velocity of the “warp bubble” relative 

to the stationary observers. -c is the speed of light in a 

vacuum. 

 

In this equation, the term 1 −
𝜐2

𝐶2dt2 effectively describes the 

warping of spacetime, allowing for the apparent compression 

of space in front of the spaceship and expansion behind it. 

This warping creates a “bubble” of distorted spacetime, 

within which the spaceship can travel at velocities greater 

than the speed of light relative to distant observers. 

 

It’s important to note that while the Alcubierre metric 

provides a mathemat-ical solution consistent with general 

relativity, there are significant theoretical and practical 

challenges associated with the actual construction and 

operation of a warp drive, including the requirement for 

exotic matter with negative en-ergy density, which has yet to 

be observed. Therefore, the Alcubierre drive remains purely 

speculative at this point. 

 

While both the Gott time machine equation and the 

Alcubierre metric are related to the manipulation of 

spacetime, they represent different concepts and 

mathematical formulations. Equating them directly wouldn’t 

make physical sense, as they describe different phenomena. 

However, I can provide a compar-ison between the two: 

 

1) Gott Time Machine Equation: 

 
This equation describes the time experienced by an observer 

traveling around a closed loop of cosmic string at a certain 

velocity. It’s related to the concept of closed timelike curves 

and potential time travel scenarios. 

 

2) Alcubierre Metric: 

 
 

This metric describes the distortion of spacetime around a 

spaceship, al-lowing for apparent faster-than-light travel by 

contracting space in front of the spaceship and expanding it 

behind. 

 

While both involve the manipulation of spacetime, they have 

different im-plications and applications. The Gott time 

machine equation deals with the theoretical possibility of 

time travel using cosmic strings, while the Alcubierre metric 

explores the theoretical framework for a warp drive that 

could enable faster-than-light travel without violating the 

laws of physics. 

 

Gott Time Machine Equation: 
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Alcubierre Metric 

 
 

To equate them, we would need to find some way to relate 

the variables in the two equations. One possible approach 

could be to equate the integrand of the Gott Time Machine 

Equation to the time component of the Alcubierre Metric, 

although this is purely speculative and may not yield any 

meaningful result. Let’s try: 

 
This equation, however, doesn’t appear to offer any 

straightforward solution and doesn’t seem to have a direct 

physical interpretation. It’s important to note that just because 

we can equate mathematical expressions doesn’t mean they 

correspond to physical reality. In this case, attempting to equate 

these two equations doesn’t seem to lead to any meaningful 

insights due to their fundamental differences in describing 

different physical phenomena. 

 

To solve for c, we would first need to isolate it within the 

equation result-ing from the equating of the Gott Time 

Machine Equation and the Alcubierre Metric. However, 

given the complexity and lack of direct relationship between 

the two equations, it’s unlikely that we’ll find a 

straightforward solution for c. 

 

Let’s attempt to isolate c in the equation we formed earlier: 

 
 

Rearranging terms and isolating c: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

This manipulation didn’t lead to a direct solution for c. It’s 

possible that the original equation formed by equating the 

two expressions may not be solvable for c in a 

straightforward manner, or that there may be an error in the 

manipulation. 

 

We can substitute c2 from the obtained equation into E = 

mc2. 

 

From the equation: 

 

 

 

 

 
 

Let’s solve this equation for c2: 

 
 

 

 
 

Now, we can replace c2 in E = mc2 with this expression: 

 
 

However, this expression for energy is not directly 

equivalent to E = mc2 anymore. It shows that the energy 

depends on the velocity v and other factors introduced by the 

equation derived from the equating process, indicating a 

more complex relationship between energy, mass, velocity, 

and time in this hypothetical scenario. 

 

Let’s multiply m with the expression inside the brackets: 
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Now the expression represents the energy E in terms of mass 

m, velocity v, and the factors introduced by the equation 

derived from the equating process. 

 

To relate the expression for energy we obtained to the 

Alcubierre Metric, we need to consider the physical 

interpretation of each term in the equation. 

 

The Alcubierre Metric describes the spacetime geometry 

around a hypothet-ical warp bubble, which allows for 

apparent faster-than-light travel. The energy required for 

such a warp drive is a complex topic and depends on various 

factors, including the properties of the exotic matter that 

would be needed to create and maintain the warp bubble. 

 

In our derived expression for energy: 

 
The mass m represents the mass of the object or spacecraft. 

The term v represents the velocity of the spacecraft, and dt 

represents the time interval. 

 

In the context of the Alcubierre Metric, the energy required 

for the warp drive would likely involve factors related to the 

energy density of the exotic matter needed to warp 

spacetime. The equation we derived doesn’t directly 

correspond to the energy requirements of the Alcubierre 

Metric, as it doesn’t include terms related to the energy 

density of the warp bubble’s “engine” or the curvature of 

spacetime induced by it. 

 

Therefore, while we can manipulate equations 

mathematically, directly relat-ing our derived expression to 

the energy requirements of the Alcubierre Metric might not 

be straightforward or physically meaningful without 

additional con-siderations and assumptions about the nature 

of the warp drive technology. 

 

Integrating the expression for energy could provide insight 

into the total energy required over a given period, but it’s 

important to note that without a specific model for the 

energy density of the warp bubble’s “engine” or the 

curvature of spacetime induced by it, the integration may not 

yield physically meaningful results. However, we can still 

perform the integration as an exercise: 

 
 

Integrating this expression with respect to time t over a given 

period ∆t: 

 
 

This integral would depend on the limits of integration and 

the specific func-tion for v(t), which would describe how the 

velocity of the spacecraft changes over time. However, 

integrating over a variable t within the denominator intro-

duces complexities, especially with the presence of v(t) and 

dt terms. 

 

Without a specific model for v(t) or additional information 

about the cur-vature of spacetime induced by the warp 

bubble, it’s challenging to provide a meaningful analytical 

solution. In practice, determining the energy require-ments 

for an Alcubierre warp drive would likely involve more 

sophisticated the-oretical and computational approaches, 

potentially requiring advanced concepts from theoretical 

physics and numerical simulations. 

 

To continue, let’s make a simplifying assumption that the 

velocity v is con-stant over the period of integration ∆t. With 

this assumption, we can take v outside the integral: 

 
 

where u = v3dt2 

 

Now, we can integrate the expression 
1

1− 𝑢2 with respect to u 

 
 

Plugging this back into the previous expression: 

 

 
Now, substituting back u = v3dt2 

 
 

This result represents the indefinite integral of the expression 

for energy over the time interval ∆t. However, to find the 

total energy over the interval, we need to specify the limits 

of integration and then evaluate the integral accordingly. 

 

Additionally, to make this analysis more physically 

meaningful, we would need to incorporate a model for how 

the velocity v changes over time, as well as considerations 

for the energy density of the warp bubble’s “engine” and the 

curvature of spacetime induced by it. 

 

Let’s continue by assuming a constant velocity v over the 

integration interval ∆t. We’ll integrate the expression from t0 

to t1: 
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To solve this integral, we need to find the antiderivative of ln 

|
1+ 𝜐3𝑑𝑡2

1− 𝜐3𝑑𝑡2 . | We will denote u= 
1++ 𝜐3𝑑𝑡2

1− 𝜐3𝑑𝑡2  and use the fact that  

𝑑𝑢

𝑑𝑡
=  

6𝜈3

(1− 𝜐3𝑑𝑡2)2 . Then: 

 
 

Now, we can plug u back in terms of t: 

 
 

Now, we can evaluate the definite integral from t0 to t1 

 

 
 

This expression represents the total energy required over the 

time interval [t0, t1] for a spacecraft with a constant velocity 

v. To evaluate it further, we need specific values for t0, t1, v, 

and potentially other parameters. 

 

To make progress, we need to introduce some values or 

assumptions for the energy density of the warp bubble’s 

“engine” and the curvature of spacetime induced by it. 

However, it’s important to note that these values are highly 

speculative and theoretical, as the concept of an Alcubierre 

warp drive is purely hypothetical and not supported by 

current scientific understanding. 

 

For the energy density of the warp bubble’s “engine,” we 

could use a theo-retical value based on speculative physics 

concepts. Let’s denote this as ρ. 

 

For the curvature of spacetime induced by the warp bubble, 

we could use a theoretical value for the spacetime metric gµν, 

which would describe the curva-ture of spacetime within the 

bubble. Let’s denote this as gµν. 

 

However, without concrete theoretical models or 

experimental evidence, it’s challenging to assign specific 

values to these parameters. Theoretical studies on the 

Alcubierre warp drive have proposed various values and 

assumptions, but they remain highly speculative and subject 

to significant uncertainties. 

 

If you have specific values or assumptions in mind, or if 

you’d like to explore hypothetical scenarios further, please 

let me know, and I can incorporate them into the analysis. 

 

Let’s continue by incorporating the energy density ρ of the 

warp bubble’s “engine” and the curvature of spacetime gµν 

into our analysis. 

 

First, we’ll represent the energy density ρ as the energy per 

unit volume within the warp bubble. This energy density 

would contribute to the total energy required for the warp 

drive operation. 

 

Next, the curvature of spacetime induced by the warp bubble 

can be de-scribed by the Alcubierre Metric. This metric, 

which we denoted as ds2, de-scribes the spacetime geometry 

around the warp bubble. The specific values or functions of 

gµν would depend on the details of the warp bubble’s 

geometry and the distribution of energy within it. 

 

We could express the total energy E required for the warp 

drive operation as the sum of the energy associated with the 

spacecraft’s motion and the en-ergy associated with the 

curvature of spacetime induced by the warp bubble’s 

“engine.” 

 

Etotal = Ekinetic + Ecurvature 

 

Etotal = 
1

2
mv2 + ρ · Volume 

 

Here, Ekinetic represents the kinetic energy of the spacecraft, 

ρ. Volume represents the energy associated with the 

curvature of spacetime induced by the warp bubble’s 

“engine”, where Volume is the volume of the warp bubble. 

 

The energy density ρ and the curvature of spacetime gµν 

would determine the energy required for the warp drive 

operation. However, without specific values or models for 

these parameters, we cannot provide numerical calculations 

or further analysis. 

 

To isolate and solve for v in the equation provided, we need 

to rearrange terms and apply appropriate mathematical 

operations. Let’s start by rewriting the equation: 

 

Etotal = 
1

2
mv2 + ρ · Volume 

 

Subtracting ρ. Volume from both sides: 

 
1

2
mv2 = Etotal - ρ · Volume 

 

To isolate v2, we multiply both sides by  
2

𝑚
: 

 

𝜐2 =  
2

𝑚
 (𝐸𝑡𝑜𝑡𝑎𝑙 −  𝜌. 𝑉𝑜𝑙𝑢𝑚𝑒) 

 

Finally, to solve for 𝜐, we take the square root of both sides: 

𝜐 =  √
2

𝑚
 (𝐸𝑡𝑜𝑡𝑎𝑙 −  𝜌. 𝑉𝑜𝑙𝑢𝑚𝑒)) 

 

This equation gives the velocity v of the spacecraft required 

for the warp drive operation, given the total energy Etotal, the 

mass m of the spacecraft, and the energy density ρ of the 

warp bubble’s “engine”. The volume term represents the 

volume of the warp bubble. 
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It’s important to note that obtaining actual numerical values 

for 𝜐 would require specific values for Etotal, m, ρ, and the 

volume of the warp bubble. Additionally, this equation 

assumes a simplified model and may not capture all the 

complexities involved in warp drive technology. 

 

Isolating ds4 

 

The super equation derived earlier encompasses 

gravitational, quantum mechan-ical, and Hawking radiation 

effects: 

 
where: ρ : Generalized parameter. 

𝜃: Angular parameter. 

b(L): Function related to a specific length scale L. 

d(L): Another length-dependent function. 

Ds2(L): Differential element squared. 

r(ϕ(L)): Radial function dependent on angle ϕ. 
𝜕Ψ
𝜕𝑡

 (L): Time derivative of the wave function Ψ. 

∇2Ψ(L): Laplacian of the wave function. 

V (x, y): Potential function. 

|Ψ (x, y)|2 : Probability density. 

 

To isolate ds2(L) in the given super equation, we need to 

move all other terms to the other side of the equation: 

 
 

Achieving ds4 

 
To achieve ds4(L) from the isolated equation for ds2(L), we directly square both sides: 

 
2 

Thus, the equation for ds4(L) is: 

 
 

Graphs 
 

This section presents a selected set of graphs to depict the 

correlations between ds4, gravity, qm, and hr. 

 
Figure 1: Convergence of Newton-Raphson Method at 1-rho 

 
Figure 2: Antitachyonic Gene Expression 

 
Figure 3: QM, GR Transmission Lines 
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Figure 4: Q-Thrust Magnitudal 

 
Figure 5: Gravity Microprocessor 

 
Figure 6: Gott Time 

 
Figure 7: Enter Caption 

 
Figure 8: Direction of Time 

 
Figure 9: Presence of Closed Timelike Curves 

 
Figure 10: Perturbed Closed Timelike Curves 

 

 
Figure 11: DS2 
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Figure 12: Closed Timelike Curve Qubit Encapsulation 

 

Code 
 

This section presents code snippets encoding DS4. 

 
import numpy as np 
import matplotlib.pyplot as plt 
 
# Define the functional forms coefficients 
a1, a2, a3, a4, a5, a6, a7, a8 = 1, 2, 3, 4, 5, 6, 7, 8 # Example  

           coefficients 
 
# Define the bounds for L 
L_min = 0 
L_max = 10 
 
#Define the equation for ds^4(L)  

def ds4_equation(L): 

 

# Functional forms 
b_L = a1 * L**2 + a2 * L + a3 
d_L = a4 * np.sin(L) + a5 * np.cos(L) 
phi_L = np.pi / 2 # Example value for simplicity 
r_phi_L = a6 * phi_L**2 + a7 * phi_L + a8 

 
# Compute ds^4(L) 

ds4_L = (np.abs(b_L)**2 + np.abs(d_L)**2 + np.abs(r_phi_L)**2) 
return ds4_L 

 
# Generate L values over the interval [L_min, L_max]  

L_values = np.linspace(L_min, L_max, 100)  

ds4_values = ds4_equation(L_values) 

 

# Plot the function ds^4(L) 

plt.figure(figsize=(10, 6)) 
plt.plot(L_values, ds4_values, label=r’$ds^4(L)$’, color=’blue’) 
plt.xlabel(’L’) 
plt.ylabel(r’$ds^4(L)$’) 
plt.title(’Function $ds^4(L)$ over the interval [$L_{\mathrm{min}}$,  

             $L_{\mathrm{max}}$]’) 
plt.axhline(0, color=’black’, linewidth=0.5, linestyle=’--’) 
plt.grid(True) 
plt.legend() 
plt.show() 
 

 

 
import numpy as np 
import matplotlib.pyplot as plt 
from matplotlib.animation import FuncAnimation 
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# Function to compute ds^4(L) 
 
def compute_ds4(rho_values, F_rho, theta, b_L, d_L, r_phi_L, d_Psi_dt_L, nabla2_Psi_L, V_x_y, Psi_x_y): 
 
ds4 = (np.abs(F_rho / rho_values)**2 + 

np.abs(theta / rho_values)**2 + 
np.abs(b_L / rho_values)**2 + 
np.abs(d_L / rho_values)**2 + 
np.abs(r_phi_L / rho_values)**2 + 
np.abs(d_Psi_dt_L / rho_values)**2 + 
np.abs(nabla2_Psi_L / rho_values)**2 + 
np.abs(V_x_y / rho_values)**2 + 
np.abs(np.abs(Psi_x_y)**2 / rho_values)**2) 

 
return ds4 
 
# Function to compute X(L) 

def compute_X(rho_values, F_rho, theta, b_L, d_L, r_phi_L, d_Psi_dt_L, nabla2_Psi_L, V_x_y, Psi_x_y): 

 
X = ((np.abs(F_rho / rho_values)**2) * (1 - rho_values)**2 + (np.abs(theta / rho_values)**2) * (1 - rho_values)**2 + (np.abs(b_L / 

rho_values)**2) * (1 - rho_values)**2 + (np.abs(d_L / rho_values)**2) * (1 - rho_values)**2 + (np.abs(r_phi_L / rho_values)**2) * (1 - 

rho_values)**2 + (np.abs(d_Psi_dt_L / rho_values)**2) * (1 - rho_values)**2 + (np.abs(nabla2_Psi_L / rho_values)**2) * (1 - 

rho_values)**2 + (np.abs(V_x_y / rho_values)**2) * (1 - rho_values)**2 + (np.abs(np.abs(Psi_x_y)**2 / rho_values)**2) * (1-

rho_values)**2) 

 
return X 
 
# Define parameters for the equations 
F_rho = np.random.rand() # Random value for demonstration 
theta = np.random.rand() # Random value for demonstration 
b_L = np.random.rand() # Random value for demonstration 
d_L = np.random.rand() # Random value for demonstration 
r_phi_L = np.random.rand() # Random value for demonstration 
d_Psi_dt_L = np.random.rand() # Random value for demonstration  

nabla2_Psi_L = np.random.rand() # Random value for demonstration  

V_x_y = np.random.rand() # Random value for demonstration 
Psi_x_y = np.random.rand() + 1j*np.random.rand() # Random value for demonstration 
 
# Create figure and axes 
fig = plt.figure(figsize=(10, 6)) 
ax = fig.add_subplot(111, projection=’3d’) 
 
# Set up lines 
line_ds4, = ax.plot([], [], [], lw=2, label=’ds^4(L)’) 
line_X, = ax.plot([], [], [], lw=2, label=’X(L)’) 
 
# Set up labels and titles  

ax.set_xlabel (’Time’)  

ax.set_ylabel(’ds^4(L)’) . 

ax.set_zlabel(’X(L)’) 

ax.set_title(’Animation of ds^4(L) and X(L) with Newton-Raphson method’) 

 

# Set up legend 

ax.legend() 
 
# Initialization function: plot the background of each frame def init(): 

 

line_ds4.set_data([], [])  

line_ds4.set_3d_properties([])  

line_X.set_data([], [])  

line_X.set_3d_properties([])  

return line_ds4, line_X 

 
time = np.linspace(0, 1, 100) # Define time 
 
# Animation function: this is called sequentially def animate(i): 

 

rho = np.sin(2 * np.pi * time[i]) / 2 + 0.5 # Vary rho sinusoidally from 0 to 1 

rho_values = np.full_like(time, rho) 
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ds4 = compute_ds4(rho_values, F_rho, theta, b_L, d_L, r_phi_L, d_Psi_dt_L, nabla2_Psi_L, V_x_y, Psi_x_y) 

X = compute_X(rho_values, F_rho, theta, b_L, d_L, r_phi_L, d_Psi_dt_L, nabla2_Psi_L, V_x_y, Psi_x_y) 

line_ds4.set_data(time[:i], ds4[:i])  

line_ds4.set_3d_properties(X[:i])  

line_X.set_data(time[:i], X[:i])  

line_X.set_3d_properties(ds4[:i]) 

 

# Dynamically adjust z-axis limits 
buffer = 0.1 # Buffer to ensure lines remain visible 
 
# Check if arrays are not empty before computing min and max  

if ds4[:i].size > 0 and X[:i].size > 0: 

min_value = min(np.min(ds4[:i]), np.min(X[:i])) 

max_value = max(np.max(ds4[:i]), np.max(X[:i])) 
 
else: 

min_value, max_value = 0, 1 # Set default values if arrays are empty 
 

ax.set_zlim(min_value - buffer, max_value + buffer) 
 

return line_ds4, line_X 
 
# Call the animator 
 
anim = FuncAnimation(fig, animate, init_func=init, frames=len(time),  

interval=50, blit=True) 
plt.show() 
 

 

Conclusivity 
 

This document thoroughly combines General Relativity, 

Quantum Mechanics, and Hawking Radiation to produce the 

super equation - DS4. The expert ma-nipulation of this 

equation can lead to several innovations in a new era. 
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