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Abstract: Assessment and management of credit risk at banks is a critical factor that ensures the stability and profitability of these 

institutions. Existing traditional statistical approaches that worked in the past are already proving to be incapable of coping with this new 

environment and the complexities intertwined within modern financial markets. Modern methodologies like probabilistic graphical models 

(PGMs) provide sophisticated methods for modeling these complex relationships, which integrate graph theory with probability theory. In 

this paper, we will explore Credit Risk and its main components, the mathematical foundation behind credit risk assessment, and the 

modeling techniques of these components. It compares traditional statistical models (eg, logistic regression and Monte Carlo simulations) 

with advanced Probabilistic Graphical models (PGMs). The paper highlights selecting the latter based on its capacity for more accurate 

representation of complex dependencies and uncertainties. PGMs that are covered here include Bayesian and Markov Networks, 

specifically for their structural representation of joint probability distributions, conditional independence as well as efficient inference. 

PGMs stand out for an improved model of non-linear interactions, and they allow the incorporation of uncertainty in a natural way, 

dynamic updating and systematic risk segmentation. This includes using Expectation-Maximization and Gradient-Based Optimization — 

bringing machine learning and modern computational methods to PGMs. It exemplifies the practical use of PGMs in credit risk 

management with examples ranging from default probability prediction to portfolio risk assessment and real-time risk monitoring. In 

conclusion, this paper points to the future promise of PGMs in credit risk management through continuing advancements in computation 

facilitated by embedding within an ML/AI framework. Reimagining This transformation will revolutionize how financial institutions 

measure and predict risks. 
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1. Introduction 
 

For banks and financial institutions, credit risk management 

is a critical function (it supports stability and profitability). 

The primary purpose of this function is to assess, make 

provision and control risks connected with borrower default 

on the loan obligations. This function has traditionally relied 

on traditional statistical methods. As financial markets and 

instruments continue to evolve, these methods increasingly 

fall short of being able to capture interconnected and complex 

variables [1], [8]. 

 

Modern modeling techniques such as the Probabilistic 

Graphical Models (PGMs) have changed how we perceive 

and manage financial risks. PGMs combine concepts from 

graph theory and probability theory to model highly 

interconnected systems, where relationships between 

variables are not just linear in nature. PGMs are able to 

represent, manage and execute complex inter-connected 

variables in financial systems [1], [2]. 

 

2. Understanding Credit Risk 
 

Credit risk is a type of risk where the borrower defaults on its 

contractual obligations, such as repaying a loan. This risk is 

inherent in all lending processes, regardless of the type of 

borrower (individuals, corporations, or governments) [9]. 

 

2.1 Credit Risk - Types:  

 

There are three basic risk component types to the credit risk 

assessment. 

 

2.1.1 Default Risk:  

The risk of the borrower not being able to pay what it owes. 

 

2.1.2 Exposure Risk:  

The maximum amount of money the lender may lose if the 

borrower defaults. 

 

2.1.3 Recovery Risk:  

This is when a lender may fail to recover its funds in the case 

of not being able to recollect the borrowed amount from your 

account due to bad debt. 

 

2.2 Credit Risk – Mathematical Background:  

 

Credit risk estimation involves the computation of various 

inputs to model credit risk as given below: 

 

2.2.1 Probability of Default (PD) 

PD is the probability a borrower will default over some stated 

period. It is usually determined from historical data and 

current economic conditions. PD is frequently predicted by 

way of credit scoring models using logistic regression 

techniques [12], [13]. 

 

2.2.2 Loss Given Default (LGD) 

An LGD represents the size of loss a lender would face upon 

default. As a percentage of total default exposure This speaks 
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to the complexities that can come from collateralization and 

the priorities–or seniority of debt. It is also common to exhibit 

the recovery rate (RR). 

RR = 1 – LGD         (1) 

2.2.3 Exposure at Default (EAD) 

The 'EAD' is the total amount, in contract terms, that is likely 

to be outstanding when a default occurs taking into account 

any future draws on commitments (where the borrower can 

borrow more money) [9]. [13].  

 

Given the fact that EAD calculations frequently take off-

balance sheet items and risk mitigations collateral or 

guarantees into account, it makes even more sense to calculate 

a standardized approach than an internal model approach 

[17]. 

 

2.2.4 Expected Loss (EL) 

EL is computed as given below: 

EL = PD × LGD × EAD        (2) 

 

This captures both the probability of default and the loss given 

default. It should be understood as an estimate of the mean 

expected loss, which plays a role in financial analysis as well 

as capital regulatory requirements [12], [13]. 

 

2.2.5 Credit Value Adjustment (CVA) 

CVA is a kind of risk premium or discount incorporated in the 

valuation of derivative instruments to express the likelihood 

that one party will default on its obligations. This reflects the 

market's pricing of counterpart credit risk [7], [10]. 

 

3. Modelling Techniques for Credit Risk 

components 
 

3.1 Statistical Models 

 

Credit Risk components are quantified using several 

statistical methods and models: 

 

3.1.1 Logistic Regression: 

Logistic regression is used to predict PD, and it helps in 

understanding how different borrower characteristics affect 

the probability of default [15]. 

 

3.1.2 Monte Carlo Simulations:  

Used for estimating the distribution of future potential 

exposure levels under alternate scenarios [20]. 

 

3.1.3 Survival Analysis:  

Survival analysis is a method to model time-to-event data, 

useful in estimating the probability of default over time [15]. 

 

3.2 Examples of some traditional models: 

 

3.2.1 Credit Scoring Models 

a) Intended use:  

Mainly used in personal and small business lending. 

 

b) Method:  

These models score each borrower based on a range of 

financial indicators and personal information. The higher the 

score, the lesser the risk. 

 

c) Example:  

Credit ratings are based on information like payment history 

and credit to debt ratio like FICO scores.  

 

3.2.2 Rating-Based Models 

a) Intended use:  

For corporate borrowers, or large loans. 

b) Method:  

Each borrower is classified, and a credit rating score 

(similar to the one used by credit rating agencies) is 

assigned. Ratings are based on quantitative and 

subjective evaluations. 

c) Example:  

Standard & Poor's, Moody`s, and Fitch ratings vary from 

AAA (highest) to D (in default).  

 

3.2.3 Gap Analysis 

a) Intended use:  

Quantifies the duration of assets versus liabilities through 

time across a set of scenarios. 

 

b) Method:  

Concentrates on cash inflows and outflows timing 

discrepancies representing problems of liquidity that can 

eventually result in the credit difficulties. 

 

3.2.4 Simple Financial Ratios 

a) Intended use:  

Banks use as quick assessment tool by financial analysts. 

 

b) Method:  

Ratios like debt-to-equity, cover ratios and quick ratio can 

provide quick insights into the financial health of a borrower 

[13]. [17]. 

 

3.3 Advanced Models - Probabilistic Graphical Models 

(PGMs) 

 

Probabilistic Graphical Models are an advanced series of 

statistical models that streamline the solving of intricate 

probability functions by representing these functions as 

graphical structure.  

 

At their core, PGMs utilize: 

• Nodes: These represent random variables which could be 

latent variables, observed data, or any unknown 

parameters. 

• Edges: Probabilistic relationships between these 

variables (this defines whether graph is directed or not) 

 

3.3.1 Type of Graphical Models: 

Commonly, two main types of graphical models are used: 

a) Bayesian Networks:  

Directed acyclic graphs where each edge from one node to 

another represents a direct probabilistic influence from the 

parent node to the child node. It can be used to model causal 

relationships and conduct inferential tasks [2]. 
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b) Markov Networks:  

It uses undirected edges and is more appropriate to deal with 

non-causal, symmetrical relationships due to its use to model 

joint distribution directly [3]. 

 

 

 

 

 

4. Mathematics Of Probabilistic Graphical 

Models (PGMs) 
 

4.1 Structural representation of joint probability 

distribution  

 

The strength of PGM lies it its ability to provide a structural 

representation of joint probability distribution, enabling: 

 

4.1.1 Conditional Independence:  

This independence is again a crucial tool that PGMs use to 

decompose the joint distribution order by order and into a 

product of simpler conditional distributions, nothing but 

representing as some factorized form helping in simplifying 

computations [3],[4]. 

 

4.1.2 Efficient Inference:  

Calculation of probabilities over a subset of variables, or 

maximum likelihood set if variable states even in very large-

scale models [5], [6]. 

 

4.2 PGMs for credit risk management applications:  

Its capability to gain an understanding of dependencies and 

influences among potentially hundreds of risk factors make 

PGMs ideally suited for credit risk management applications. 

  

4.2.1 Bayesian Networks:  

Make use of conditional probabilities and the concept of 

Bayesian inference, represent not only dependencies but also 

an efficient way for their computation [2]. 

 

• Conditional Probabilities:  

Probability that an event A occurs given another 

variable/event B happening. For example, loan default itself 

may be directly modeled as a function of the change in 

employment status [2],[5]. 

 

• Mathematical Formulation: 

𝑃(𝑋1,𝑋2 … , 𝑋𝑛) =  ∏ 𝑃(𝑋𝑖 | 𝑃𝑎(𝑋𝑖)
𝑛
𝑖=1      (3) 

 

where:  

𝑃(𝑋𝑖 | 𝑃𝑎(𝑋𝑖) denotes the set of parent nodes for Xi, 

emphasizing that these variables will have an immediate 

impact on Xi. 

 

4.2.2 Markov Networks:  

They model joint distributions through potential functions 

useful to modeling symmetric relationships among variables 

[3]. 

 

• Joint Distribution: 

Unlike Bayesian Networks, Markov Networks represent the 

joint distribution of all variables by a set of potential functions 

over cliques in the graph [3]. 

 

• Mathematical Formulation: 

𝑃(𝑋) =  
1

𝑍
 ∏ ∅𝑪(𝑋𝑪)𝑪 ∈ ∁′            (4) 

where: 

𝑋 = {𝑋𝟏, 𝑋2, … . 𝑋𝒏} represent the set of variables. 

∁′ denotes the set of cliques in the graph. 

𝑋𝑪 represents the set of variables in the clique. 

∅𝑪(𝑋𝑪) are the potential functions that define the interactions 

among the variables in each clique 𝑪 

 

Z is the normalizing constant, also known as the partition 

function, which ensures that the probabilities sum to 1. It is 

given by: 

 

𝑍 =  ∑  ∏ ∅𝑪(𝑋𝑪)𝑪 ∈ ∁′  𝑋          (5) 

 

This formulation emphasizes that the joint probability 

distribution 𝑃(𝑋) is determined by the product of potential 

functions over all cliques in the graph, normalized by the 

partition function Z. The potential functions ∅𝑪 capture the 

interactions within each clique, and the partition function.  

𝑍 ensures that the distribution is properly normalized. 

 

4.3 Comprehensive Risk Assessment and Prediction 

Accuracy 

 

The dynamic updating and interconnectedness properties 

allow PGMs to develop an effective risk assessment, as it 

could present a more accurate forecasting. 

 

• Dynamic Updating: 

Bayesian Networks can update their probabilities as new data 

becomes available. This is particularly useful in credit risk 

management, where real-time data integration can lead to 

more accurate and timely decisions. 

 

• Complex Interdependencies:  

Both types of networks allow for the modeling of complex 

dependencies between risk factors, such as how 

macroeconomic changes influence individual borrower risk 

[3],[4]. 

 

Example:  

In a Bayesian Network model of credit risk, the nodes might 

be borrower income, employment status, credit history, 

current economic conditions and the probability of default. 

The default risk is modifiable when new employment data or 

economic indicators are released, leading to predictions that 

respond dynamically to the changing economic current [2]. 

 

5. Traditional vs Advance Methods 
 

5.1 Model Assumptions:  

 

Traditional credit risk management tools operate under 

assumptions that may oversimplify the relationships between 

variables. For example, logistic regression assumes variables 

are independent. This is seldom true in complex financial 
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networks where many factors are interconnected. This 

limitation can lead to lower accuracy risk assessments and 

predictions [14]. 

PGMs on the other, capture complex dependencies that are 

common in financial datasets, but are often too difficult to 

model using traditional techniques [4]. 

 

5.2 Mathematical Constraints: 

 

• Independence Assumptions: Logistic regression and 

similar methods often assume that the predictor variables 

are independent of each other, but this is only seldom true 

in risk factors. 

• Static Nature: These models are static, they cannot adapt 

to new data [15]. 

 

On the other side Advanced Methods like Probabilistic 

Graphical Models (PGMs), specifically Bayesian Networks 

and Markov networks, are formulated to model these 

complexities better [2], [3]. 

 

5.3 Credit Assessment Complexity: 

Credit assessment also includes an evaluation of other 

uncertain, interdependent factors such as the borrower's 

income stability, credit history, current debts and economic 

conditions. In such credit scoring, the traditional logistic 

regression or decision trees used in credit scoring are often 

not able to fully consider these complicated 

interdependencies and uncertainties [13]. [15]. 

6. Probabilistic Graphical Model (PGM) 

Advantages 
 

Probabilistic Graphical Models use complex systems that 

can model joint distributions over large sums of random 

variables. Accordingly, they are especially suitable for credit 

risk management. 

1) Better Model for Non-Linear and Complex Interactions: 

They provide a more accurate framework to model the 

relationships between risk factors, as well as their 

conditional dependencies in a non-linear and complex 

manner [4],[5]. 

2) Include Uncertainty: They include uncertainty and 

probabilistic reasoning, leading to a richer risk analysis 

compared to traditional deterministic models [5], [6]. 

3) Dynamic Updating: PGMs can update the probabilities 

of future credit events as fresh data become available 

which helps to be more accurate in prediction over time 

[16] . 

4) After the development stage, these models are robust and 

can be tailored to diverse kinds of lending scenarios 

because they scale when new data is added [5]. 

5) Risk Segmentation and Prediction: PGMs can be used to 

gain insights across different risk segments, accurately 

predict the likelihood of a default – leading to better 

stratification of loan portfolios and determining 

appropriate interest rates/ credit limits for potential 

customers [4]. [5]. 

 

7. Advanced methods and computational 

advancements 
 

The incorporation of advanced methods and computational 

improvements into the framework has greatly increased their 

utilization for real world applications, such as credit risk 

management. Not only do these enhance an analytical model, 

but they also make the models potentially workable at a scale 

and with modern financial data features [6]. 

 

7.1 Automated Structure Learning using Machine 

Learning Integration 

 

One of the big innovations in PGMs has been the introduction 

of machine learning and methods that can automatically learn 

complex model structures from large data. This is where this 

combination benefits from machine learning to recognize 

patterns and a structured approach as PGMs model 

probabilities [6]. 

 

7.1.1 Expectation-Maximization (EM):  

A powerful algorithm for finding maximum likelihood 

estimates in models with latent variables [5]. 

 

• Mathematical Model  

The Expectation-Maximization is used for parameter 

estimation in models with hidden variables, it iterates over 

missing data imputation (E-step) and updating model 

parameters (M-step). This is useful in making more refined 

Bayesian Networks where some data points are not directly 

observable [6]. 

 

A) E-step (Expectation step): 

Compute the expected value of the log-likelihood function 

with respect to the current estimate of the distribution over the 

hidden variables: 

𝑄(𝜃|𝜃𝑜𝑙𝑑) =  ∑ 𝑃(𝑍 = 𝑧|𝑋, 𝜃𝑜𝑙𝑑) 𝑙𝑜𝑔 𝑃(𝑋, 𝑍 = 𝑧|𝜃)𝑧   (6) 

 

B) M-step (Maximization step): 

Find the parameters that maximize this expected log-

likelihood: 

 

𝜃𝑛𝑒𝑤 = arg 𝑚𝑎𝑥𝜃  𝑄(𝜃|𝜃𝑜𝑙𝑑)         (7) 

 

The algorithm is widely used to find maximum likelihood 

estimates in models with latent variables [5]. [6]. 

 

7.1.2 Gradient-Based Optimization:  

Essential in neural networks and other machine learning 

frameworks that integrate with PGMs [6]. 

 

• Mathematical Model: 

This is used for learning the structure and parameters of 

PGMs, particularly in conjunction with neural network 

structures such as those found in Variational Autoencoders 

(VAEs) that leverage PGM frameworks to generate and 

decode complex data distributions. 
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This is Essential in neural networks and other machine 

learning frameworks that integrate with PGMs (Goodfellow, 

Bengio, & Courville, 2016) 

 

7.2 Integration of Unstructured Data and Hybrid Models 

 

It also provides the power to include unstructured data, like 

news articles or financial reports and social media which adds 

a lot to the predictive strength in PGMs. Bayesian Network, 

Markov Networks or their hybrids with other ML models 

form a viable approach in processing this diverse input. 

 

7.2.1 Mathematical Integration: 

 

a) Natural Language Processing (NLP) Techniques: These 

are used to prepare text in a structured format for PGMs 

such as sentiment analysis or topic modeling, which is 

crucial for understanding market sentiment or political 

risk affecting credit risk. 

𝑃 (topic∣document)= 𝑃 (word∣topic) 𝑃(topic)𝑃(word) 

P(topic∣document)= P(word)P(word∣topic)P(topic) Text 

analysis is carried out using NLP techniques and loaded to 

PGMs [7]. 

b) Hybrid Models: Incorporating, for example, neural 

networks into PGM-based systems to examine 

complicated data patterns such as non-linear relationships 

which standard PGMs may not handle [6]. 

 

7.3 Real-Time Inference and Performance 

Improvements 

 

It has been observed that the viability of PGMs in massive 

applications is limited due to the computational demands of 

PGMs that currently require thousands of particles and 

therefore they are unsuitable for real-time inference. In turn, 

technologies such as parallel processing and GPU 

acceleration helped empower these capabilities. 

 

These functions are supported by the following mathematical 

algorithms: 

 

7.3.1 Parallel Processing:  

With this feature we can process multiple pieces of the model 

at one go (for example in Markov Random Fields, where 

cliques can be computed independently) [6]. 

 

7.3.2 GPU Acceleration:  

Used to speed up the performance of compute-heavy tasks 

(e.g., simulation or large-scale inference) and make real-time 

risk assessments possible [6]. 

 

The immense improvement of the computational capabilities 

of PGM frameworks comes from two main principles related 

to GPUs – GPU Acceleration and Parallel Processing. 

These computational approaches make sure that the PGMs 

provide improved and quicker predictions than only slow in 

management with modern, enormous financial data systems. 

 

7.4 Directions for the Future and Innovations 

 

Moving forward, a future where deep learning is fused with 

PGMs may yield even more powerful analytical capabilities; 

particularly so in the realms of high-dimensional data and 

temporal sequences. Dynamic graphical models, modeling 

risks as they change over time and making predictions other 

than static model. 

 

• Mathematical Frameworks: 

The basics of some of types informally have been covered in 

this paper earlier but a typical static PGM does not usually 

incorporate hidden variables at different levels and require 

initialization as they are not deep (stacked) by design itself. 

The joint probability distribution for such a model can be 

expressed as: 

 
𝑃(𝑋, 𝐻1, 𝐻2, … , 𝐻𝐿) =

𝑃( 𝑋 ∣∣ 𝐻1 )𝑃( 𝐻1 ∣∣ 𝐻2 ) ⋯ 𝑃( 𝐻𝐿−1 ∣∣ 𝐻𝐿 )𝑃(𝐻𝐿)    (8) 

 

This equation shows that the probability of observing 𝑋 and 

the hidden variables 𝐻1, 𝐻2, … , 𝐻𝐿 can be decomposed into a 

product of conditional probabilities. Each hidden variable 𝐻𝑖  

is conditionally dependent on the next hidden variable 𝐻𝑖+1, 

forming a hierarchical structure. 

 

• Causal Inference and Scalability:  

Mathematical advancements in causal inference hold 

significant promise, resulting in a finer approach to infer 

cause-effect relationships involved within Credit risk use-

cases. 

As we incorporate these advanced techniques and move 

towards more dynamic and ethically aware models, the role 

of PGMs in credit risk management is set to become even 

more central and impactful. The continuous evolution of these 

models will likely redefine the strategies employed by 

financial institutions to manage risk and make decisions 

[6],[12]. 

 

8. Use Cases in Credit Risk Management  
 

Probabilistic Graphical Models (PGMs) have become an 

indispensable resource in credit risk management —from 

assessing individual borrower scorecards to highly complex 

analysis of portfolio dynamics. Below are some specific 

instances where PGMs can be used in practice to solve credit 

risk problems. 

 
8.1 Predicting Default Probabilities with Bayesian 

Networks 

 

One of the most direct applications of PGMs in credit risk 

management is using Bayesian Networks to predict the 

probability of a borrower defaulting on a loan. 

 

• Mathematical Example: 

Structure — A Bayesian Network might be represented by a 

series of nodes including borrowers income, borrower 

employed state, borrowers credit history, loan amount and 

potential default. 

 

Conditional Probabilities: Each node is conditioned on its 

parental nodes. For example, probability of default may 

depend on employment status and credit history. 

 
𝑃(𝐷𝑒𝑓𝑎𝑢𝑙𝑡|𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡, 𝐶𝑟𝑒𝑑𝑖𝑡 𝐻𝑖𝑠𝑡𝑜𝑟𝑦) =

 
𝑃(𝐷𝑒𝑓𝑎𝑢𝑙𝑡,𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡,𝐶𝑟𝑒𝑑𝑖𝑡 𝐻𝑖𝑠𝑡𝑜𝑟𝑦)

𝑃(𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡,𝐶𝑟𝑒𝑑𝑖𝑡 𝐻𝑖𝑠𝑡𝑜𝑟𝑦)
          (9) 
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Lenders get a real-time risk assessment since this network 

adjusts the probability of default as new data is processed. 

 

8.2 Markov Networks for Portfolio Risk Management 

 

These are well suited to assessing risks involving the 

interdependencies between different loans or assets within a 

portfolio (so called correlation risk) as Markov Networks can 

capture correlations at all levels of granularity [19]. 

 

• Mathematical Example: 

Joint Distribution: The joint probability of defaults across a 

portfolio could be developed with Markov Network in which 

nodes represent independent loans and edges represent the 

correlations between them. The joint probability distribution 

is given by: 

 

𝑃(𝐷𝑒𝑓𝑎𝑢𝑙𝑡1, 𝐷𝑒𝑓𝑎𝑢𝑙𝑡2, … , 𝐷𝑒𝑓𝑎𝑢𝑙𝑡𝑛) =
1

𝑍
𝑒𝑥𝑝 (− ∑ 𝜃𝑖𝑗 ⋅ 𝐷𝑒𝑓𝑎𝑢𝑙𝑡𝑖 ⋅ 𝐷𝑒𝑓𝑎𝑢𝑙𝑡𝑗)(𝑖,𝑗)∈𝐸      (10) 

 

8.3 Continuous Risk Monitoring with Dynamic 

Graphical Models 

 

As Extension of PGMs, Dynamic graphical models can be a 

powerful tool for modelling and forecasting risks that change 

over time, such as changes in credit risk due to economic 

conditions or changes in policies. 

 

Mathematical Example: 

Temporal Dynamics: By including time in PGMs we can 

model how a borrower's risk profile changes over time. A 

Dynamic Bayesian Network, for instance, could describe the 

evolution of an employment status or credit risk as a function 

of time [18]. 

 
𝑃(𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑡+1|𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑡) = 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 

 𝑃(𝐷𝑒𝑓𝑎𝑢𝑙𝑡(𝑡)|𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡(𝑡), 𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠(𝑡)) 

                     (11) 

 

9. Conclusion 
 

Credit risk management with the help of Probabilistic 

Graphical Models is an advancement when compared to 

legacy methods. Through the mathematical foundations of 

probability and graph theory, PGMs provide a sophisticated 

and efficient manner to comprehend, and ultimately control 

risks. This ability to predict not only helps them respond 

better to conditions as they change, but also aids in forecasting 

future risks so financial institutions can adjust their strategies 

accordingly [11]. 

 

As we move toward the next generation, PGMs are expected 

to be used more and more due to further progress in 

computation constraints and integration with state of art 

technologies like Machine Learning (ML) and Artificial 

Intelligence (AI). They fundamentally change the way credit 

risk is managed; an era of financial industry in this age can 

now be driven by data. 
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