
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 6, June 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Real - Time IoT - Based Energy and Power

Monitoring and Management System for Small -

Scale Applications Using a Raspberry Pi Web

Interface

Abhinav Mishra1, Dr. Jyoti Srivastav2, Dr Manish Srivastav3

1M. Tech. Electrical Engineering (Power System), Department of Electrical Engineering, Sam Higginbottom University of Agriculture,

Technology and Sciences

2Assistant Professor, Phd Electrical Engineering, Department of Electrical Engineering, Sam Higginbottom University of Agriculture,

Technology and Sciences

3Associate Professor, Phd Electrical Engineering, Department of Electrical Engineering, Sam Higginbottom University of Agriculture,

Technology and Sciences

Abstract: This paper presents a comprehensive design of an electrical energy monitoring system utilizing the PZEM - 004T energy

sensor and Raspberry Pi 4. The system includes an automated metering device, a PZEM module, and a buzzer, sending real - time energy

consumption data to a cloud server for display on responsive web interfaces accessible via desktop and mobile devices. The system's

accuracy is validated with an average error of less than 2%. Additionally, an Energy and Power Monitoring & Management System

(EPMMS) is redesigned for seamless integration with the Internet of Things (IoT) ecosystem, targeting smart industries and commercial

buildings. The EPMMS, implemented on a Raspberry Pi, manages power flows between various sources and the grid, employing Artificial

Intelligence and Dynamic Programming to optimize energy usage and reduce costs. Results from a test bench simulating multiple

environments demonstrate the system's effectiveness, with a 2.88% uncertainty in power exchange and a potential 3.23% reduction in

electricity bills. This digitized, cost - effective, and portable energy monitoring system is poised for rapid market adoption, facilitating

energy conservation across residential, commercial, and industrial sectors.

Keywords: EMS, PI, NODEJS, Rasberry Pi, EPMS, CO2, Carbon foot print

1. Introduction

Electric energy utilization is critical across various sectors,

including industrial, commercial, and agricultural

applications. In 2012, global electricity consumption was

estimated at 20, 900 Terawatt - hours (TWh), and the demand

has been rising steadily. By 2018, global electricity demand

increased by 4%, marking the highest growth since 2010.

Despite the rise of renewable energy sources, like nuclear

power, coal and internal combustion plants still contribute

significantly to CO2 emissions.

In India, electricity generation surged from 154.7 GW to an

impressive 345.5 GW in 2018, positioning the country as the

third - largest electricity producer globally, following China

and the United States. However, India continues to face

substantial power demand challenges. The International

Energy Agency projects that India's electricity demand will

triple between 2018 and 2040. In 2018 alone, electricity

demand in India increased by 65 TWh, primarily driven by

building cooling needs.

This project aims to reduce power usage through efficient

dynamic power management using the Internet of Things

(IoT). As industrial and commercial building automation

systems evolve rapidly with advancements in electronics and

information technology, smart systems for monitoring and

controlling energy consumption are becoming increasingly

important. In Indonesia, electricity consumption has been

rising yearly due to inefficient usage and lack of consumer

awareness about energy conservation. Conventional electrical

measuring devices, often requiring physical presence at the

installation site to retrieve data, are becoming outdated and

inefficient.

Various studies have explored monitoring electric power

systems, including using wireless sensor networks and

Arduino - based systems to track energy consumption.

However, these methods have limitations, such as the need

for physical proximity to the sensors and the inefficiency of

current and voltage sensors like ACS712 compared to the

more precise PZEM - 004T sensor.

This research proposes a Raspberry Pi - based monitoring

system using the PZEM - 004T sensor for measuring voltage,

current, and power. The system aims to provide real - time

energy usage data to consumers, facilitating better energy

management in industrial and commercial buildings. The

integration of distributed renewable energy sources (RES)

into the power grid presents challenges due to their

unpredictable nature. Effective Energy Management Systems

(EPMMS) are essential for optimizing power flows and

ensuring grid stability.

EPMMSs enable consumers to actively participate in the

energy market while supporting grid operators with optimized

decision - making tools. For widespread adoption, EPMMSs

must integrate seamlessly with existing devices, require

minimal setup, and operate efficiently within the IoT

Paper ID: SR24603083200 DOI: https://dx.doi.org/10.21275/SR24603083200 284

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 6, June 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

framework. This paper focuses on redesigning an EPMMS to

reduce computational complexity, implement it on a

Raspberry Pi, and align it with IoT standards. The re -

implemented EPMMS uses Dynamic Programming (DP)

instead of Mixed Integer Linear Programming (MILP) for

optimization, enhancing feasibility and effectiveness.

Experimental validation involved a network of wireless

sensors in a simulated grid of four smart buildings,

demonstrating the system's computational efficiency and

potential for reducing electricity bills and power exchange

uncertainty.

This study contributes to the ongoing efforts in developing

cost - effective, real - time energy monitoring systems. By

leveraging IoT and advanced algorithms, the proposed

EPMMS offers a practical solution for efficient energy

management in industrial, commercial, and residential

settings, paving the way for broader adoption of smart energy

systems. Real - time data analysis significantly enhances the

effectiveness of energy management systems through several

key mechanisms:

Immediate Insights and Adjustments: Real - time data

allows for instantaneous insights into energy consumption

patterns, enabling prompt adjustments to optimize energy

usage and reduce wastage.

Enhanced Predictive Maintenance: Continuous monitoring

and analysis of real - time data help in predicting equipment

failures and scheduling maintenance proactively. This

prevents unexpected breakdowns and ensures equipment

operates efficiently.

Dynamic Load Management: Real - time analysis enables

dynamic management of electrical loads, adjusting energy

distribution based on current demand and supply conditions.

This ensures optimal use of available energy resources.

Improved Decision - Making: Access to up - to - the -

minute data supports better decision - making by providing

accurate and timely information about energy usage. This

helps in formulating effective energy policies and strategies.

Increased Responsiveness: Real - time data analysis enhances

the system's ability to respond to changing conditions quickly.

This includes adjusting to fluctuations in energy supply from

renewable sources and adapting to varying demand patterns.

Cost Savings: By optimizing energy consumption in real -

time, businesses can reduce their energy costs significantly.

This is achieved through better load management, reduced

peak demand charges, and improved operational efficiency.

Regulatory Compliance: Real - time monitoring and

analysis help in ensuring compliance with energy regulations

and standards. It provides the necessary data to demonstrate

adherence to regulatory requirements and supports

sustainability initiatives.

User Engagement and Awareness: Real - time data

visualization tools enhance user engagement by making

energy consumption data easily accessible and

understandable. This promotes energy - saving behaviors and

increases awareness about energy efficiency.

Overall, real - time data analysis is a critical component in

modern energy management systems, driving efficiency,

reliability, and sustainability in energy usage.

2. Literature Review on Energy Management

Systems

Energy management systems (EMS) have become a crucial

component in addressing the global energy crisis, promoting

sustainability, and improving efficiency across various

sectors. This literature review synthesizes key findings from

a collection of studies on EMS, highlighting advancements,

methodologies, and diverse applications of these systems The

paper "Implementing Energy Management System to

Increase Energy Efficiency in Manufacturing Companies"

(2015) emphasizes the importance of energy efficiency in

manufacturing due to rising costs of non - renewable energy.

It presents a methodology for systematically implementing

energy management systems, highlighting the Plan - Do -

Check - Act (PDCA) cycle. This approach is essential for

continuous improvement and sustainable production in

manufacturing companies. “According to Design and

Development of Real - Time Small - Scale IoT - Based

Energy Monitoring System" (2021) discusses the

development of an IoT - based EMS for real - time energy

monitoring. The system aims to promote energy conservation

by providing users with continuous feedback on their energy

usage, which is crucial for fostering energy - efficient

behavior. Design of Raspberry Pi Web - Based Energy

Monitoring System for Residential Electricity Consumption"

(2022) presents a web - based EMS using Raspberry Pi and

IoT technology. The system tracks real - time energy usage

and provides users with detailed insights into their

consumption patterns, helping them to identify opportunities

for energy savings. Several studies highlight the significant

role of IoT and data analytics in enhancing the capabilities of

EMS. The integration of IoT allows for real - time data

collection and monitoring, which is crucial for accurate

energy management. For instance, a study demonstrated the

use of smart metering techniques to provide accurate readings

and un - tampered data for monitoring energy consumption of

each appliance. This approach helps consumers visualize,

monitor, and optimize their energy usage based on data

analytics [1].

Another study showed the effectiveness of integrating IoT

with EMS to create a more reliable system compared to

conventional methods. Data collection is automated via Wi -

Fi, which updates in short intervals, eliminating the need for

manual data collection [2]. An Arduino esp8266

microcontroller was programmed to perform energy

management tasks, sending details to the consumer's mobile

through IoT and GSM modules, and displaying information

on an LCD screen [3].

A proposed energy monitoring system provided accurate

energy consumption values and identified damaged loads

quickly, allowing users to control their loads efficiently [4].

An IoT - enabled smart energy meter was developed with real

- time load control capabilities and a mobile application for

visualizing energy usage and generating tariffs, enabling

remote control of appliances [5].

Paper ID: SR24603083200 DOI: https://dx.doi.org/10.21275/SR24603083200 285

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 6, June 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

The integration of IoT and blockchain technologies was

proposed for monitoring household energy consumption and

controlling unnecessary energy loss. A smart meter monitored

energy consumption, and an Android application allowed

users to set limits and receive alerts when nearing thresholds.

Data from the application and smart meter were stored in a

blockchain for comparison, and devices were turned off or

switched to power - saving mode if limits were exceeded [9].

3. Proposed System

This research proposes an IoT - based Energy Power

Monitoring and Management System (EPMMS) utilizing the

Raspberry Pi and PZEM - 004T energy sensor. The system is

designed to monitor and manage energy consumption in real

- time, providing a comprehensive and cost - effective

solution for small - scale industries. IoT enhances energy

management by enabling real - time monitoring, predictive

maintenance, automation, and data - driven insights. It

facilitates efficient energy use, reduces downtime, and

integrates renewable energy sources. Dynamic Programming

(DP) optimizes energy management by solving complex

problems efficiently, adapting to real - time data, and

enhancing decision - making. DP improves scalability,

reliability, and cost - effectiveness in energy systems.

Predictive maintenance uses data analysis to predict

equipment failures, optimizing maintenance schedules and

reducing downtime. This ensures machines operate

efficiently, conserving energy. IoT and machine learning

synergize to enhance energy efficiency in smart buildings

through several key mechanisms:

Figure 1: Illustrates the flowchart of the Energy Power

Monitoring & Management System (EPMMS).

Real - Time Monitoring and Data Collection: IoT sensors

gather real - time data on various parameters such as

temperature, humidity, occupancy, and energy usage. This

data is continuously collected and transmitted to a central

system for analysis.

Predictive Analytics: Machine learning algorithms analyze

the collected data to identify patterns and predict future

energy usage. These predictions enable proactive adjustments

to heating, ventilation, and air conditioning (HVAC) systems,

lighting, and other energy - consuming processes.

Optimization of Energy Usage: Machine learning models

optimize energy consumption by dynamically adjusting

systems based on real - time data and predictions. For

instance, adjusting HVAC settings based on occupancy

patterns or natural light levels can significantly reduce energy

consumption.

Fault Detection and Predictive Maintenance: IoT sensors

can detect anomalies in equipment performance. Machine

learning algorithms can predict potential failures, allowing for

timely maintenance before issues escalate, ensuring

equipment runs efficiently and reducing energy waste.

Automated Control Systems: IoT devices can automate

energy management tasks. For example, smart thermostats

and lighting systems can adjust settings automatically based

on occupancy data, time of day, and weather forecasts.

User Behavior Insights: Machine learning can analyze user

behavior and preferences, providing insights into how energy

is used and suggesting more efficient habits. Personalized

recommendations can help users make informed decisions

about their energy consumption.

Integration with Renewable Energy Sources: IoT and

machine learning can optimize the use of renewable energy

sources. By predicting energy production and consumption

patterns, the system can efficiently manage the balance

between renewable and non - renewable energy sources,

maximizing the use of clean energy.

Cost Benefits of Implementing Predictive Maintenance in

Manufacturing Implementing predictive maintenance in

manufacturing offers several cost benefits:

Reduced Downtime: Predictive maintenance minimizes

unplanned downtime by addressing issues before they lead to

equipment failures. This ensures continuous production and

reduces the costs associated with unexpected stoppages.

Extended Equipment Lifespan: Regular and timely

maintenance prevents excessive wear and tear on machinery,

extending the lifespan of equipment. This reduces the

frequency of expensive replacements and capital

expenditures.

Lower Maintenance Costs: Predictive maintenance

optimizes maintenance schedules, ensuring that maintenance

is performed only when necessary. This reduces the costs

associated with unnecessary maintenance activities and labor.

Energy Efficiency: Well - maintained equipment operates

more efficiently, consuming less energy. This reduces energy

costs and contributes to overall cost savings.

Inventory Management: Predictive maintenance allows for

better planning and management of spare parts inventory.

Knowing in advance when parts will need replacement helps

in maintaining optimal inventory levels, reducing storage

costs and avoiding stockouts.

Improved Product Quality: Consistently performing

equipment ensures that products are manufactured to the

desired quality standards, reducing the costs associated with

defects and rework.

Paper ID: SR24603083200 DOI: https://dx.doi.org/10.21275/SR24603083200 286

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 6, June 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Enhanced Safety: Predictive maintenance identifies

potential issues that could lead to unsafe operating conditions.

Addressing these issues proactively reduces the risk of

accidents and associated costs.

Increased Production Efficiency: By preventing equipment

failures and optimizing maintenance activities, predictive

maintenance ensures that manufacturing processes run

smoothly, improving overall

4. Key Components of an Web Interface for

EPMMS IoT - Based Energy Monitoring

System

The system's web interface is divided into two parts:

Raspberry Pi offers cost - effectiveness, flexibility, compact

size, robust connectivity, and extensive community support,

making it an ideal choice for energy monitoring systems.

Minimized User Cash Flow Effectively manages power

consumption and generation to optimize financial outcomes.

Reduced GPP Uncertainty Online Replanning minimizes

deviations between actual and planned GPP, enhancing

predictability. Optimized Power Generation and

DistributionFacilitates accurate and reliable power

management, aiding public utilities in economic policy

planning. Fundamentals of the Chosen Energy Power

Monitoring and Management System (EPMMS) enhances

efficiency and reliability in power management through

several key stages and optimization processes:

Forecasting:

Predicts 24 - hour profiles of load demand and environmental

variables using a Nonlinear Autoregressive network with

exogenous inputs (NARX). Utilizes historical data for

accurate predictions.

Planning: Plans to meet forecasted load demand while

optimizing user benefits and grid management. Divided into

Planning and Online Replanning tasks.

Calculation of Grid - Exchanged Power Profile (GPP):

Optimizes the user’s cash flow over a 24 - hour period,

producing power reference values for system components.

Computes the optimal GPP for the next day, indicating when

the grid supplies power to the smart house and when

renewable energy is fed back into the grid.

Communication to Grid Manager: Transmits the planned

GPP to the grid manager via the Internet, serving as a user

commitment.

Real - Time Measurements: Collects real - time data on

power consumption and generation.

Historical Data Storage: Stores collected data to improve

future forecasting accuracy.

Online Replanning: Minimizes deviations between actual

and forecasted GPP by realigning performance with planned

GPP.

Local Command: Issues commands to system components

based on re - planning results.

Real- Time Data Display: Provides graphical

representations of daily, weekly, or monthly data for each

node (sensor and microcontroller set). Monitors multiple

appliances with nodes for each.

Energy Consumption and Cost Estimation: Displays real -

time total energy consumption and estimated electricity costs

for each node.

5. Development of Energy Power Monitoring

and Management System (EPMMS)

Industries Energy Monitoring Using

Raspberry Pi IoT

In this proposed system, loads are monitored using a PZEM -

004T module. The core microcontroller is the Raspberry Pi,

featuring Wi - Fi capabilities. Key components include, The

web interface, built using Python, Adobe Dreamweaver,

HTML, and PHP, with MySQL for database interactions,

ensures data protection through a secure login page.

Figure 2: Schematic of Raspberry Pi 4

 The process begins with the detection of electrostatic fields

on appliances using a sensor. Sensor Detection and Signal

Amplification The sensor detects electrostatic fields present

on the appliances. The detected small current is amplified by

a cascade amplifier circuit. Analog to Digital ConversionThe

amplified signal is sent to the NodeMCU/Node. js’s analog

input.

This analog input is then converted into a decimal value

ranging from 0 to 1024 by the Analog - to - Digital Converter

(ADC) in the NodeMCU/ Node. js. and then Data Sampling

The system is programmed to delay for 1 minute between

readings. This process repeats until five samples are collected.

Average Data Calculation and Transmission Once five

samples are collected, the system calculates the average value

of the data. The averaged data is sent to the ESP8266 Wi - Fi

module. Data Transmission to Server: The ESP8266 Wi - Fi

module transmits the data to the database server. The data

along with the timestamp is stored in the database. Sampling

Interval The microcontroller is programmed to read sensor

values and send data to the database every 5 minutes. This

interval balances data capture efficiency and database storage

requirements.

6. Material Used

System Overview

• Raspberry Pi 4

• PZEM - 004T Sensor

Paper ID: SR24603083200 DOI: https://dx.doi.org/10.21275/SR24603083200 287

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 6, June 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

• Modbus TCP NodeMCU ESP8266 12 - E Master Slave

Communication

• Buzzer

• AWS Software

Figure 3: Illustrates the schematic of the Raspberry Pi 4 web

- based Energy Power Monitoring & Management System

Figure 4: Illustrates the schematic of the Raspberry Pi 4

web - based Energy Power Monitoring & Management

System

Hardware Requirements for IoT EPMMS

Display – Support: The Raspberry Pi 4 can be connected to

external LCDs via a two - lane MIPI DSI port, bypassing the

need for using the GPIO header for display connectivity.

USB Ports: Four USB ports, two of which are USB 2.0 and

two USB 3.0, allowing for fast data transfer.

PoE Header: Supports Power over Ethernet (PoE), enabling

power to be delivered through an Ethernet cable with an

external PoE HAT. The Raspberry Pi 4 includes a PoE header,

facilitating its use in IoT and other smart projects. With the

addition of an external PoE HAT, the device can be powered

through an Ethernet cable, simplifying installation and

reducing cable clutter.

Camera Support: Two - lne MIPI CSI camera port for direct

camera connectivity.

Display Support: Two - lane MIPI DSI port for external

LCD connection.

Audio: Separate 4 - pole audio port for audio communication.

The device supports audio transmission through HDMI.

Additionally, it features a separate 4 - pole audio port for

sending and receiving audio signals, which can be used by

internal programs or other devices via the GPIO header.

SD Card: The operating system is stored on an SD card

inserted into the Raspberry Pi 4's SD card slot.

Sensors and Measurement Devices: Capture real - time data

on energy consumption.

Microcontroller/Microcomputer: Process data, e. g.,

Raspberry Pi

Communication Modules: Enable data transmission, e. g.,

Wi - Fi, Bluetooth.

Power Supply: Ensure reliable power to devices.

PZEM - 004T Module: The PZEM - 004T module is a multi

- functional AC power monitor capable of measuring voltage,

current, power, and energy. The Peacefair PZEM - 004T is a

versatile AC power monitor widely used for electrical

consumption measurement projects. It measures voltage,

current, power, and energy in systems. It is ideal for single -

phase AC measurement projects and communicates using

TTL serial communication, making it compatible with

various microcontrollers such as Arduino, ESP8266, STM32,

WeMos, NodeMCU/ Node. js, and Raspberry Pi 4. Power the

PZEM - 004T board with a suitable power supply or the AC

source being measured. Connect the circular sensor to the

board and run the wire through the sensor to begin

measurements. The module includes a TTL to USB connector

for easy connection to a PC or microcontroller.

ESP8266 Wi - Fi Module: The ESP8266 is a low - cost Wi -

Fi module embedded within the NodeMCU, operating on the

802.11b/g/n protocol. It is utilized to transmit data from the

NodeMCU to a web server database. In this project, the

NodeMCU reads data from a sensor every 5 minutes and

sends this data to the database via the ESP8266 Wi - Fi

module. Before communication can occur, the Wi - Fi module

must be initialized with the local Wi - Fi SSID and password.

• Reset Energy Knob: Present on V2.0; V3.0 resets energy

via software.

• Measurement Accuracy: V3.0 has improved accuracy and

faster reading time compared to V2.0.

• Communication Protocol: Varies between V2.0 and V3.0.

Software Requirements for IoT EPMMS

Raspbian OS: An easy - to - use operating system installation

manager for Raspberry Pi.

Advanced IP Scanner: A tool for scanning and managing

devices on the local network.

VNC Viewer: A remote desktop application to access the

Raspberry Pi GUI.

Python 3 IDLE: The integrated development environment

for Python programming.

NODE. JS: Node. js uses an event - driven, non - blocking

I/O model, which makes it suitable for applications that

require high performance and scalability, such as real - time

Paper ID: SR24603083200 DOI: https://dx.doi.org/10.21275/SR24603083200 288

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 6, June 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

applications, APIs, and micro - services. This model allows

Node. js to handle many connections simultaneously,

optimizing the use of system resources

Adobe Dreamweaver: A web development tool for

designing and coding web pages.

Software and Analytics Tools: Analyze data and provide

insights.

User Interface: Web/mobile applications for data access.

Security Measures: Protect data and communications.

AWS cloud software: AWS cloud services, we can use AWS

IoT Core to manage the connection and data transmission

Factory data monitoring and management (FDM) Store and

analyze data

Implementation experimental setup & working of

Hardware and Communication

Step 1: Algorithm PHP Script: Connects to a MySQL

database. Receives the sensor data sent by the NodeMCU.

Inserts the data into the sensor_data table. Calculates the total

energy consumed based on the sensor values and a predefined

threshold. Outputs the total energy consumed in kWh.

<?php

$servername = "your_server";

$username = "your_username";

$password = "your_password";

$dbname = "your_database";

// Create connection

$conn = new mysqli ($servername, $username, $password,

$dbname);

// Check connection

if ($conn - >connect_error) {

 die ("Connection failed: ". $conn - >connect_error);

}

// Use prepared statements to prevent SQL injection

$stmt = $conn - >prepare ("INSERT INTO sensor_data

(value, timestamp) VALUES (?, NOW ()) ");

$stmt - >bind_param ("i", $sensorValue);

// Get the sensor value from the URL

$sensorValue = $_GET ['value'];

// Execute the statement

if ($stmt - >execute ()) {

 echo "New record created successfully";

} else {

 echo "Error: ". $stmt - >error;

}

$stmt - >close ();

$conn - >close ();

?>

Step 2: Hardware Setup Components Needed: Raspberry

Pi (any model with GPIO pins), ESP8266 Wi - Fi module (e.

g., NodeMCU), USB cable for the NodeMCU, Jumper wires,

Breadboard (optional), Power supply for Raspberry Pi

Connections: Connect the NodeMCU to the laptop using the

USB cable. Connect the Raspberry Pi to its power supply and

boot it up. Optionally, you can use a breadboard and jumper

wires to connect the GPIO pins of the Raspberry Pi to the

ESP8266 if needed for specific configurations (e. g., serial

communication).

Step 3: Software Setup Install Python on Raspberry Pi:

Ensure Python is installed on the Raspberry Pi. Most

distributions come with Python pre - installed. You can check

this by running:

python3 –version

sudo apt - get update

sudo apt - get install python3

Install Required Python Libraries: Install libraries such as

pyserial for serial communication:

 pip3 install pyserial

Install NodeMCU Firmware: You will need the NodeMCU

firmware on the ESP8266. You can use the Arduino IDE or

other firmware flashing tools.

Install Arduino IDE: Download and install the Arduino IDE

from Arduino's official website. Add ESP8266 to the Arduino

IDE: Open the Arduino IDE. Go to File > Preferences. In the

Additional Board Manager URLs field, add the following

URL: http: //arduino. esp8266.

com/stable/package_esp8266com_index. jsonGo to Tools >

Board > Board Manager, search for ESP8266, and install it.

Step 4: Programming the NodeMCU ESP8266 Code:

Connects to the specified WiFi network. Reads data from a

sensor connected to the analog pin (A0). Sends the sensor

value to the server every 5 minutes.

#include <ESP8266WiFi. h>

#include <ESP8266HTTPClient. h>

#include <WiFiClientSecureBearSSL. h>

const char* ssid = "your_SSID";

const char* password = "your_PASSWORD";

const char* server Name = "https:

//your_server_address/submit_data. php"; // HTTPS URL

const unsigned long interval = 300000; // 5 minutes

unsigned long previousMillis = 0;

void setup () {

 Serial. begin (115200);

 WiFi. begin (ssid, password);

 while (WiFi. status () != WL_CONNECTED) {

 delay (1000);

 Serial. println ("Connecting to WiFi. . . ");

 }

 Serial. println ("Connected to WiFi");

}

void loop () {

 unsigned long currentMillis = millis ();

 if (currentMillis - previousMillis >= interval) {

 previousMillis = currentMillis;

 int sensorValue = analogRead (A0); // Replace with your

sensor reading code

 Serial. println (sensorValue);

 if (WiFi. status () == WL_CONNECTED) {

 std:: unique_ptr<BearSSL:: WiFiClientSecure> client (new

BearSSL:: WiFiClientSecure);

Paper ID: SR24603083200 DOI: https://dx.doi.org/10.21275/SR24603083200 289

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 6, June 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

 client - >setInsecure (); // Disable SSL certificate validation

 HTTPClient http;

 String serverPath = serverName + "?value=" + String

(sensorValue);

 http.begin (*client, serverPath);

 int httpResponseCode = http.GET ();

 if (httpResponseCode > 0) {

 String payload = http.getString ();

 Serial. println ("HTTP Response code: " + String

(httpResponseCode));

 Serial. println ("Response: " + payload);

 } else {

 Serial. println ("Error in HTTP request");

 }

 http.end ();

 } else {

 Serial. println ("WiFi Disconnected");

 }

 }

}

Upload Code to NodeMCU: Connect the NodeMCU to your

laptop via USB. Select the appropriate board and port in the

Arduino IDE: Tools > Board > NodeMCU 1.0 (ESP - 12E

Module) Tools > Port > Select the appropriate port Upload

the code to the NodeMCU.

Step 5: Interfacing with Raspberry Pi Python Script on

Raspberry Pi: Create a Python script to communicate with

the NodeMCU over Wi - Fi. Example script to send a request

to the NodeMCU server:

import requests.

url = "http: //<NodeMCU_IP>"

response = requests. get (url)

print (response. text)

Step 6: Run the Python Script: Execute the Python script to

communicate with the NodeMCU.

python3 your_script. py

By following these steps, you can integrate the ESP8266 Wi

- Fi module with Python and NodeMCU code, along with a

Raspberry Pi, to create a comprehensive IoT solution. This

setup allows for seamless communication between the

Raspberry Pi and the NodeMCU, enabling you to perform

various tasks such as data acquisition, remote monitoring, and

control.

Step 7: Algorithm Node. Js Script: we need to interface the

ESP8266 with an RS485 Modbus sensor and send the data to

a cloud server using Node. js and Modbus TCP NodeMCU

ESP8266 12 - E Master Slave Communication on a Raspberry

Pi. This setup involves the following steps:

Set up the ESP8266 to read data from the RS485 Modbus

sensor.

Send the data from the ESP8266 to the Raspberry Pi.

Use the Raspberry Pi to send the received data to the cloud.

Step 8: ESP8266 Code to Read Modbus Data: First, let's

write the code for the ESP8266 to read data from the Modbus

sensor. This example uses the ModbusMaster library to

communicate with the sensor.

#include <ESP8266WiFi. h>

#include <ModbusMaster. h>

const char* ssid = "your_SSID";

const char* password = "your_PASSWORD";

const int modbusBaudRate = 9600;

const int modbusID = 1; // Replace with your Modbus device

ID

ModbusMaster node;

void setup () {

 Serial. begin (115200);

 WiFi. begin (ssid, password);

 while (WiFi. status () != WL_CONNECTED) {

 delay (1000);

 Serial. println ("Connecting to WiFi. . . ");

 }

 Serial. println ("Connected to WiFi");

 Serial1. begin (modbusBaudRate); // RS485 serial

connection

 node. begin (modbusID, Serial1);

}

void loop () {

 static uint32_t timer = millis ();

 uint8_t result;

 uint16_t data [6];

 if (millis () - timer > 5000) {

 timer = millis ();

 result = node. readInputRegisters (0x0000, 6); // Replace

with your register address and number

 if (result == node. ku8MBSuccess) {

 for (int i = 0; i < 6; i++) {

 data [i] = node. getResponseBuffer (i);

 }

 String dataString = "";

 for (int i = 0; i < 6; i++) {

 dataString += String (data [i]) + " ";

 }

 Serial. println (dataString); // Send data to Raspberry Pi via

Serial

 } else {

 Serial. println ("Failed to read Modbus data");

 }

 }

}

Step 9: Raspberry Pi Code to Receive and Send Data: the

code for the Raspberry Pi to receive the data from the

ESP8266 and send it to the cloud. This example uses the

serialport library to read data from the serial port and node -

fetch to send data to the cloud. Install the necessary libraries

npm install serialport node - fetch

Create a script to read the data from the serial port and send it

to the cloud

const SerialPort = require ('serialport');

const Readline = require ('[at]serialport/parser - readline');

const fetch = require ('node - fetch');

const port = new SerialPort ('/dev/ttyUSB0', { baudRate:

115200 });

const parser = port. pipe (new Readline ({ delimiter: '\n' }));

const serverName = 'https:

//your_server_address/submit_data. php'; // Replace with

your server address

parser. on ('data', async (data) => {

Paper ID: SR24603083200 DOI: https://dx.doi.org/10.21275/SR24603083200 290

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 6, June 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

 console. log ('Received data from ESP8266: ', data);

 // Send the data to the cloud server

 try {

 const response = await fetch (serverName, {

 method: 'POST',

 headers: { 'Content - Type': 'application/x - www - form -

urlencoded' },

 body: new URLSearchParams ({ value: data. trim () })

 });

 const result = await response. text ();

 console. log ('Server response: ', result);

 } catch (error) {

 console. error ('Error sending data to server: ', error);

 }

});

Data Transmission and Calibration

The data transmitted from the NodeMCU to the server

represents the strength of the electrostatic field detected by

the sensor on various appliances. This data, in the form of

decimal values ranging from 0 to 1024, indicates the ON or

OFF state of the appliances. These values can differ between

appliances and are affected by the distance between the

antenna and the appliance's power supply unit. Hence, a

calibration procedure is required for each new appliance

installation. the calibration process is conducted via a website

interface where high and low threshold values are set. The

high threshold value is the minimum value indicating that the

appliance is ON, while the low threshold value is the

maximum value indicating that the appliance is OFF. To

integrate your ESP8266 with an RS485 Modbus sensor and

send the data to AWS cloud services, we can use AWS IoT

Core to manage the connection and data transmission. Here's

a step - by - step guide on how to achieve this:

Step 10: Set up AWS IoT Core: Create an AWS Account:

If you don't already have one, create an AWS account. Create

an IoT Thing: Navigate to the AWS IoT Core console. Create

a new IoT thing. Download the security credentials

(certificates and keys). Configure AWS IoT Policies Attach a

policy to your IoT thing that allows it to publish and subscribe

to topics.

Step 11: ESP8266 Code to Send Data to AWS IoT: First,

let's set up the ESP8266 to read data from the RS485 Modbus

sensor and send it to AWS IoT. This example uses the

ESP8266WiFi library for WiFi connectivity and the

PubSubClient library for MQTT communication with AWS

IoT.

ESP8266 Code:

#include <ESP8266WiFi. h>

#include <PubSubClient. h>

#include <ModbusMaster. h>

#include <WiFiClientSecureBearSSL. h>

const char* ssid = "your_SSID";

const char* password = "your_PASSWORD";

// AWS IoT Core credentials

const char* awsEndpoint = "your_aws_iot_endpoint"; //

Example: "your - aws - endpoint. iot. us - east - 1. amazonaws.

com"

const int awsPort = 8883;

const char* awsCert = " - - - - - BEGIN CERTIFICATE - - -

- - \n. . . \n - - - - - END CERTIFICATE - - - - - ";

const char* awsPrivateKey = " - - - - - BEGIN PRIVATE

KEY - - - - - \n. . . \n - - - - - END PRIVATE KEY - - - - - ";

const char* awsCA = " - - - - - BEGIN CERTIFICATE - - - -

- \n. . . \n - - - - - END CERTIFICATE - - - - - ";

const char* awsTopic = "your/topic";

WiFiClientSecure wifiClient;

PubSubClient client (wifiClient);

ModbusMaster node;

void setup () {

 Serial. begin (115200);

 WiFi. begin (ssid, password);

 while (WiFi. status () != WL_CONNECTED) {

 delay (1000);

 Serial. println ("Connecting to WiFi. . . ");

 }

 Serial. println ("Connected to WiFi");

 wifiClient. setCACert (awsCA);

 wifiClient. setCertificate (awsCert);

 wifiClient. setPrivateKey (awsPrivateKey);

 client. setServer (awsEndpoint, awsPort);

 Serial1. begin (9600); // RS485 serial connection

 node. begin (1, Serial1); // Modbus ID 1

}

void loop () {

 if (!client. connected ()) {

 Serial. println ("Connecting to AWS IoT. . . ");

 if (client. connect ("ESP8266Client")) {

 Serial. println ("Connected to AWS IoT");

 } else {

 Serial. print ("Failed to connect, rc=");

 Serial. print (client. state ());

 delay (5000);

 return;

 }

 }

 uint8_t result = node. readInputRegisters (0x0000, 6); //

Replace with your register address and number

 if (result == node. ku8MBSuccess) {

 String payload = "{";

 for (int i = 0; i < 6; i++) {

 payload += "\"data" + String (i) + "\": " + String (node.

getResponseBuffer (i));

 if (i < 5) payload += ", ";

 }

 payload += "}";

 Serial. println (payload);

 if (client. publish (awsTopic, payload. c_str ())) {

 Serial. println ("Publish succeeded");

 } else {

 Serial. println ("Publish failed");

 }

 } else {

 Serial. println ("Failed to read Modbus data");

 }

 delay (5000); // Adjust the interval as needed

}

Step 11: Run Script ESP8266 Code and Step 3: Setting Up

Lambda Function and API Gateway Create a Lambda

Function Go to the AWS Lambda console and create a new

function.

Paper ID: SR24603083200 DOI: https://dx.doi.org/10.21275/SR24603083200 291

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 6, June 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Write the Lambda function to process the incoming data.

Create an API Gateway Create a new API and configure a

POST endpoint. Link the endpoint to the Lambda function

created earlier.

Step 12: Raspberry Pi Code to Send Data to AWS

Lambda: Install the necessary libraries on your Raspberry Pi:

npm install serialport node - fetch

Raspberry Pi Node. js Script:

const SerialPort = require ('serialport');

const Readline = require ('[at]serialport/parser - readline');

const fetch = require ('node - fetch');

const port = new SerialPort ('/dev/ttyUSB0', { baudRate:

115200 });

const parser = port. pipe (new Readline ({ delimiter: '\n' }));

const lambdaEndpoint = 'https: //your_api_gateway_url'; //

Replace with your API Gateway URL

parser. on ('data', async (data) => {

 console. log ('Received data from ESP8266: ', data);

 try {

 const response = await fetch (lambdaEndpoint, {

 method: 'POST',

 headers: { 'Content - Type': 'application/json' },

 body: JSON. stringify ({ value: data. trim () })

 });

 const result = await response. text ();

 console. log ('Server response: ', result);

 } catch (error) {

 console. error ('Error sending data to server: ', error);

 }

});

console. log ('Listening for data from ESP8266. . . ');

Energy Calculation

Based on the data stored in the database, the duration that each

appliance remains ON is calculated. Each data point

represents a 5 - minute duration, which is converted to hours

for energy calculation on the website using HTML and PHP.

The energy consumption is calculated using the following

formula:

Energy = P \ t

Where:

(P) is the appliance's power rating (kW)

(t) is the appliance's usage duration (hours)

The estimated electricity bill is then calculated based on the

tariff rates provided by electricity board

Sensor Detection and Signal Amplification: The sensor

detects electrostatic fields present on the appliances. The

detected small current is amplified by a cascade amplifier

circuit.

Figure 4: Illustrates the graph of the Raspberry Pi 4 web -

based Energy Power Monitoring & Management System

Analog to Digital Conversion: The amplified signal is sent

to the NodeMCU’s analog input. This analog input is then

converted into a decimal value ranging from 0 to 1024 by the

Analog - to - Digital Converter (ADC) in the NodeMCU.

Figure 5: Illustrates the analog to digital conversion with

the Raspberry Pi 4 web - based Energy Power Monitoring &

Management System

Data Sampling: The system is programmed to delay for 1

minute between readings. This process repeats until five

samples are collected.

Figure 5: Illustrates the meter data collection with the

Raspberry Pi 4 web - based Energy Power Monitoring &

Management System

Average Data Calculation and Transmission: Once five

samples are collected, the system calculates the average value

of the data. The averaged data is sent to the ESP8266 Wi - Fi

module.

Paper ID: SR24603083200 DOI: https://dx.doi.org/10.21275/SR24603083200 292

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 6, June 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Figure 6: Illustrates the Calculation with the Raspberry Pi 4

web - based Energy Power Monitoring & Management

System

Data Transmission to Server:

The ESP8266 Wi - Fi module transmits the data to the

database server. The data, along with the timestamp, is stored

in the database.

Figure 7: Illustrates the Report with the Raspberry Pi 4 web

- based Energy Power Monitoring & Management System

Sampling Interval: The microcontroller is programmed to

read sensor values and send data to the database every 5

minutes. This interval balances data capture efficiency and

database storage requirements.

Figure 8: Illustrates the Report with efficiency with the

Raspberry Pi 4 web - based Energy Power Monitoring &

Management System

7. Conclusion

An attempt has been made to make a practical model of “Real

- Time IoT - Based Energy and Power Monitoring and

Management System for Small - Scale Applications Using a

Raspberry Pi Web Interface”. The energy power monitoring

and management system leveraging Raspberry Pi 4, Arduino

Uno, and PZEM - 004T and smart meters with modbus

converter in master slave configuration offers a

comprehensive solution for reducing carbon footprints

through efficient energy usage monitoring and management.

By providing real - time energy readings at one's fingertips,

this system can significantly enhance energy conservation

efforts.

The propagated model is used to calculate the energy

consumption of the Load, and even make the energy reading

to be handy. Hence it reduces the wastage of energy with a

6.88% reduction in electricity and bring awareness among all.

Even it will deduct the manual intervention. This project

proposes a secure, ubiquitously accessible controlled solution

for Industrial and commercial building EPMMS automation.

Looking at the current scenario we have chosen web based

platform so that most of the people can get the benefit.

Performance Evaluation: The system has demonstrated a

good level of accuracy in measuring electrical parameters,

with average deviations for small loads (65KW, 90KW,

75KW) at 0.11%, 1.94%, and 1.32%, respectively, and for

large loads (200KW, 300KW,) at 1.22%, 1.03%, and 3.08%.

& reduce carbon footprint by 6.67% These results indicate

that the system performs reliably across different load levels.

Reducing Carbon Footprint & Real - Time Monitoring:

The system allows users to monitor electrical parameters such

as voltage, current, power, and energy consumption

accurately. By understanding their energy usage patterns,

users can take proactive steps to reduce unnecessary

consumption, thus lowering their carbon footprint by 6.67%

Base line Energy consumption = 300KWH

Post - EMS Energy Consumption - =280KWH

Emission Factor=0.5 kg CO2/kWh

Energy Consumption Reduction (ECR) = ((300 - 280) /300)

*100=6.67%

Baseline Carbon Emissions (CE) =300KWH*0.5=150KG

CO2

Post - EMS Carbon Emissions (PCE) =280

KWH*0.5=140KG CO2.

Carbon Emission Reduction (CER) = ((150 - 140) /150)

*100) = 6.67%

Energy Usage Awareness: The availability of detailed

energy consumption data promotes awareness among users

about their energy habits. This awareness can drive

behavioral changes that contribute to energy savings and

reduced environmental impact.

Automated Alerts and Actions: With the ability to set up

alerts for unusual energy consumption patterns or potential

energy meter tampering, users can address issues promptly,

preventing energy wastage.

Predictive Analytics: we are able to integrated into the

system to analyze historical energy usage data and predict

future consumption trends. This predictive capability can help

users plan and optimize their energy usage, further reducing

their carbon footprint.

Smart Alerts: we are able to enhance the system by

generating intelligent alerts based on usage patterns, such as

reminding users to turn off appliances during peak energy

hours or when a device is consuming more power than usual.

Automated Control: we are able to enable automated control

of household devices, shutting down appliances when not in

use or adjusting settings based on real - time data to optimize

energy efficiency.

Paper ID: SR24603083200 DOI: https://dx.doi.org/10.21275/SR24603083200 293

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 6, June 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Unified Platform: we are able to designed to provide a

unified platform for viewing energy usage, receiving alerts,

and paying bills online, supporting the digital India initiative

and making energy management more convenient for users.

Enhanced User Interface: we are able to provide user

interface improved to provide more intuitive and accessible

features for both desktop and mobile users, ensuring a

seamless experience across devices.

8. Future Scope

Improved Sensor Capabilities: With AI, a single sensor can

be developed to measure, alert, and notify users about their

energy consumption, streamlining the hardware requirements

and improving system efficiency.

Practical Application: By implementing this IoT - based

power management system, users can effectively monitor and

control their household energy consumption, reducing energy

wastage and contributing to environmental sustainability. The

use of an Android platform ensures widespread accessibility,

making it a practical solution for modern Industrial and

commercial building EPMMS automation.

Energy Meter Tampering Detection: The system can be

extended to detect energy meter tampering, ensuring accurate

billing and preventing energy theft.

In conclusion, the integration of AI and IoT technologies in

energy power monitoring and management systems presents

a promising approach to achieving significant reductions in

carbon footprints while enhancing user convenience and

system efficiency.

Acknowledgement

It gives us great pleasure in presenting the paper on “Real -

Time IoT - Based Energy and Power Monitoring and

Management System for Small - Scale Applications Using a

Raspberry Pi Web Interface”. We would like to take this

opportunity to thank our internal guide of the Electrical

Engineering Department, Prof. Dr. Jyoti Srivastav, for giving

us all the help and guidance we needed. We are also thankful

to Mr. Dr. Manish Kr Srivastav, Head of the Electrical

Engineering Department, for guiding us through the project

selection process. We are grateful to them for their kind

support. Their valuable suggestions were very helpful.

We extend our thanks to the project coordinators, Mr.

Anupam Mashi, Assistant Professor, and Assistant Professor

Mr. Sudhanshu Tripathi, of Electrical Department, for their

indispensable support and suggestions. I would also like to

gratefully acknowledge the assistance of Vishal Razdan from

Schneider Electric India for mentoring us and Mr. Ashish

Kumar, MD of M/s Caiman Solution Lucknow, for the

financial support. Their collective guidance and support were

instrumental in the successful completion of this project, and

we are sincerely thankful for their contributions.

References

[1] S. Wasoontarajaroen, K. Pawasan, and V.

Chamnanphrai 2017 Development of an IoT device for

monitoring electrical energy consumption 2017 9th Int.

Conf. Inf. Technol. Electr. Eng. ICITEE 2017 pp.1–4

2017 doi: 10.1109/ICITEED.2017.8250475.

[2] F. Benzi, N. Anglani, E. Bassi, and L. Frosini 2011

Electricity smart meters interfacing the households

IEEE Trans. Ind. Electron. vol.58 no.10 pp.4487–4494

2011 doi: 10.1109/TIE.2011.2107713.

[3] R. Rashed Mohassel, A. Fung, F. Mohammadi, and K.

Raahemifar 2014 A survey on Advanced Metering

Infrastructure Int. J. Electr. Power Energy Syst. vol.63

pp.473–484 2014 doi: 10.1016/j. ijepes.2014.06.025.

[4] A. Zaballos, A. Vallejo, M. Majoral, and J. M. Selga

2009 Survey and performance comparison of AMR over

PLC standards IEEE Trans. Power Deliv. vol.24 no.2

pp.604–613 2009 doi: 10.1109/TPWRD.2008.2002845.

[5] F. D. Garcia, F. P. Marafao, W. A. De Souza, and L. C.

P. Da Silva 2017 Power Metering: History and Future

Trends in IEEE Green Technologies Conference 2017

pp.26–33 doi: 10.1109/GreenTech.2017.10

[6] National_Energy_Council, “Indonesia EnergyOutlook

building energy monitoring and management system

based on wireless sensor networks, ” Proc. - 2015 10th

Int. Conf. Comput. Eng. Syst. ICCES 2015, pp.230–

233, 2016.

[7] Nouby M. Ghazaly, M. M. A. . (2022). A Review on

Engine Fault Diagnosis through Vibration Analysis.

International Journal on Recent Technologies in

Mechanical and Electrical Engineering, 9 (2), 01–06.

https: //doi. org/10.17762/ijrmee. v9i2.364

[8] Pawan Kumar Tiwari, Mukesh Kumar Yadav, R. K. G.

A. (2022). Design Simulation and Review of Solar PV

Power Forecasting Using Computing Techniques.

International Journal on Recent Technologies in

Mechanical and Electrical Engineering, 9 (5), 18–27.

https: //doi. org/10.17762/ijrmee. v9i5.370

[9] Ghazaly, N. M. . (2022). Data Catalogue Approaches,

Implementation and Adoption: A Study of Purpose of

Data Catalogue. International Journal on Future

Revolution in Computer Science &Amp;

Communication Engineering, 8 (1), 01–04. https: //doi.

org/10.17762/ijfrcsce. v8i1.2063

[10] Chaudhary, D. S. . (2022). Analysis of Concept of Big

Data Process, Strategies, Adoption and Implementation.

International Journal on Future Revolution in Computer

Science &Amp; Communication Engineering, 8 (1),

05–08. https: //doi. org/10.17762/ijfrcsce. v8i1.2065

[11] Malla, S., M. J. Meena, O. . Reddy. R, V. .

Mahalakshmi, and A. . Balobaid. “A Study on Fish

Classification Techniques Using Convolutional Neural

Networks on Highly Challenged Underwater Images”.

International Journal on Recent and Innovation Trends

in Computing and Communication, vol.10, no.4,

Apr.2022, pp.01 - 09, doi: 10.17762/ijritcc. v10i4.5524.

[12] A. Chawla, “Phishing website analysis and detection

using Machine Learning”, Int J Intell Syst Appl Eng,

vol.10, no.1, pp.10–16, Mar.2022.

[13] M. Dursun and N. Goker, “Evaluation of Project

Management Methodologies Success Factors Using

Fuzzy Cognitive Map Method: Waterfall, Agile, And

Lean Six Sigma Cases”, Int J Intell Syst Appl Eng,

vol.10, no.1, pp.35–43, Mar.2022.

Paper ID: SR24603083200 DOI: https://dx.doi.org/10.21275/SR24603083200 294

https://www.ijsr.net/
https://doi.org/10.17762/ijrmee.v9i2.364
https://doi.org/10.17762/ijrmee.v9i5.370
https://doi.org/10.17762/ijfrcsce.v8i1.2063
https://doi.org/10.17762/ijfrcsce.v8i1.2063
https://doi.org/10.17762/ijfrcsce.v8i1.2065

