
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 6, June 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Unlocking Agile Software Deployment: The Power

of Canary Deployments

Mansi Puthran1, Flavia Gonsalves2

1Student, Institute of Computer Science, Mumbai Educational Trust - MET ICS, Mumbai, India

2Professor, Institute of Computer Science, Mumbai Educational Trust - MET ICS, Mumbai, India

Abstract: Canary deployments offer a strategic approach to software deployment, enabling organizations to gradually roll out updates

and monitor their impact. This research paper provides a comprehensive analysis of canary deployments, covering their working

mechanisms, adoption trends, and implications in modern software development. Through insights into frequency, adoption rates, tool

analysis, efficiency evaluations, and case studies, organizations can gain valuable guidance for implementing canary deployments

effectively and confidently navigating software updates.

Keywords: Canary Deployments, Rolling deployment, Blue and Green, Feature Toggle, DevOps

1. Introduction

There used to be two separate departments during the

inception of software development; the development

team; in charge of making plans, designs & structures

aimed at creating software while operations team will

take care of testing and implementation. The operations

team would inform the developers of errors and required

modifications that caused most times the slowing down of

the whole process. While the operations team was still

testing the previous work, this waiting period would be a

time when the development team would either do nothing

or begin new projects; such could prolong project

implementation period by weeks or even months. Now

what if these departments merged? How could the “Wall

of Confusion” dividing them be taken down? That’s

where DevOps comes in. DevOps is a move from a

separated approach to a more consolidated one, a

continuous flow indicated by the infinity sign showing

that it is a cycle that never stops through development,

feedback, and improvement. Helping businesses adjust

faster hence achieving rapid deployments that are more

reliable, DevOps brings together those responsible for

creating a software program and those responsible for

running their system operations. In spite of possible

communication problems, DevOps promotes more

effective software development through better teamwork.

DevOps comprises a number of stages that are in turn

backed by different tools and practices. We will thus

delve into these stages in order to fathom how DevOps

brings about clearer and more efficient workflows.

2. Phases of DevOPS

DevOps is made up of multiple steps that are backed up

by different systems and behaviors. We shall delve into

these stages in order to discover how DevOps enables

smoother and better workflows.

A) Planning Phase:

This is where everything begins. The development team

creates a plan outlining the objectives of the application and

the features to be delivered to the customer. It's crucial to set

clear goals at this stage, as it lays the foundation for the

entire project.

B) Coding Phase:

Once the plan is set, the coding begins. Developers write the

code, often collaborating on the same project. To manage

different versions of the code and avoid conflicts, they use

version control tools like Git. This approach allows multiple

team members to work on the same codebase while keeping

track of changes. If necessary, they merge different versions

of the code to create a cohesive final product.

C) Build Phase:

After the coding is done, it's time to build the software. This

involves transforming the source code into an executable

form. Tools like Maven and Gradle help automate this

process, ensuring that the code is ready for testing and

deployment.

D) Testing Phase:

With the software built, it's now put through a series of tests

to check for bugs or errors. Automation plays a significant

role here, with tools like Selenium performing repetitive

tests quickly and efficiently. This phase ensures the software

is stable and meets quality standards before it's deployed in a

seamless cycle.

These phases form the core of the DevOps lifecycle,

allowing teams to work collaboratively, deliver software

more quickly, and maintain a consistent quality throughout

the process.

Paper ID: SR24609142108 DOI: https://dx.doi.org/10.21275/SR24609142108 669

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 6, June 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

E) Deployment Phase:

If the code passes all the tests, it's ready for deployment. The

operations team takes over, deploying the software to the

production environment. This phase can be automated with

tools like Ansible, Docker, and Kubernetes, which simplify

the deployment process and ensure consistency across

environments.

F) Monitoring and Integration Phase:

Once deployed, the product is continuously monitored for

performance and issues. Tools like Nagios help automate

this monitoring, providing real-time insights into the

software's behavior. Any feedback from this phase is sent

back to the planning phase, creating a continuous loop of

improvement.

Jenkins plays a key role in this phase, automating the

process of continuous integration and ensuring the code is

built, tested, and deployed in a seamless cycle.

These phases form the core of the DevOps lifecycle,

allowing teams to work collaboratively, deliver software

more quickly, and maintain a consistent quality throughout

the process.

3. Other Deployment Techniques

In DevOps, deployment is all about keeping the process

smooth and reliable. It’s part of an ongoing cycle where

automation plays a big role, ensuring that software gets

updated and released without a hitch.

There are various deployment techniques, and this research

paper focuses on canary deployment. But before diving into

the specifics of canary deployment, let’s take a look at some

other common deployment techniques that are practiced in

the industry. This way, we can understand how canary

deployment stands out and why it’s an important part of the

DevOps toolkit.

a) Big Bang Deployment

One of the earliest methods for deploying changes to

production is the Big Bang Deployment. It's a bit like

ripping off a band-aid—all at once, in one go. With Big

Bang, all the changes are pushed simultaneously, which

usually involves a brief period of downtime. This downtime

occurs because you have to shut down the old system before

you can switch on the new one.

Figure 2: Big Bang Deployment Workflow

While the downtime is typically short, it can cause

significant problems if things don't go as planned. That's

why preparation and thorough testing are critical with this

approach. If there's an issue, the usual solution is to roll back

to the previous version. But here's the catch: rollback isn't

always straightforward. It can still disrupt users, and there's

always the risk of data loss or other complications. This is

why it's essential to have a solid rollback plan in place.

Despite its risks, sometimes Big Bang Deployment is the

only option—like when you're upgrading a complex

database and you can't make incremental changes. It requires

careful planning, but it's an approach that's been around for a

long time and is still used in specific scenarios.

b) Rolling Deployment

Rolling deployment is a bit like updating your system one

step at a time. Instead of pushing changes all at once, you

roll them out gradually, updating one server at a time. For

example, if you have 10 servers, you start with the first one,

update it, and bring it back online. If everything's okay, you

move on to the next server, and so on, until you've updated

them all.

Figure 3: Rolling Deployment Workflow

This approach has a few advantages. It usually avoids

downtime because while one server is being updated, the

others are still working. It also lets you catch problems early

since you're updating incrementally.

However, rolling deployment can be slower and doesn't

completely eliminate risk. If an issue slips through, it could

still spread as you update more servers. Additionally, you

can't control who gets the new version first—all users

gradually see it as servers are updated. Despite these

drawbacks, rolling deployment is popular because it

balances risk with user impact. It allows you to make

updates in a careful, methodical way, reducing the chance of

major disruptions.

c) Blue-Green Deployment

Blue-green deployment involves maintaining two identical

production environments—one active and one idle, often

called "blue" and "green." At any given time, one serves

users while the other is used for testing.

Here's how it works: you deploy new changes to the idle

environment (green), while the active environment (blue)

continues to run the current version. This way, users

experience no downtime during the transition. Once the new

Paper ID: SR24609142108 DOI: https://dx.doi.org/10.21275/SR24609142108 670

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 6, June 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

version is tested and ready, you switch the load balancer to

direct traffic from blue to green. If any issues arise, you can

quickly switch back, providing a simple rollback option.

Figure 4: Blue-Green Deployment Workflow

The downside of this approach is that it requires more

resources, as you essentially maintain two identical systems.

It can also be complex to ensure data synchronization

between the two environments. Despite these challenges,

blue-green deployment remains popular because it offers

smooth transitions and easy rollback options without

disrupting users.

4. Canary Deployment

Now that we've covered the other deployment techniques,

let's talk about canary deployments, which is the focus of

this research paper. Unlike traditional methods, canary

deployments offer a gradual and controlled way to roll out

software updates. This approach reduces risk and provides

useful feedback during the deployment process. Let's

explore how canary deployments work and why they've

become a favorite for teams looking to innovate without

sacrificing stability.

Canary deployment is named after the old mining practice of

using canaries to detect toxic gases. Miners used canaries

because these birds were more sensitive to dangerous fumes.

If the canary showed signs of distress, it was a warning

signal to get out quickly. In software deployment, canary

deployments work similarly, offering an early warning

system for potential issues before a full roll out.

Figure 5: Canary Deployment Workflow

Here's the idea. Instead of releasing a new software version

to all servers or users at once, we start with a small subset,

our canaries. It could be a small percentage of servers or a

specific group of users, chosen based on various criteria.

Figure 6: Small subset of users and servers

For instance, we might begin by deploying to a single server,

a small cluster, or even a specific geographic region. This

lets us see how the new version behaves in a real-world

setting, but on a smaller scale.

Figure 7: Successful Scenario

If things go well and the new version behaves as expected,

we can start extending the deployment to more servers or

users. But if there's a problem, we have a safety net. We can

pause the deployment, fix the issues, and avoid impacting

the majority of users. This incremental approach provides

both safety and control.

Paper ID: SR24609142108 DOI: https://dx.doi.org/10.21275/SR24609142108 671

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 6, June 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Figure 8: Failed Scenario

Canary deployment also allows for targeted roll out, which

is particularly useful for directing deployments to specific

groups, like a certain region or device type.

Figure 9: Targeted roll out

However, it has its own set of challenges. You need careful

monitoring and automated testing to keep track of the

canaries. The infrastructure has to be ready to ramp up or

halt the deployment if needed. Implementing canary

deployment can get complex, especially if there are database

changes or compatibility issues with existing systems.

Figure 10: Canary Deployment Challenges

It's worth noting that canary deployment is rarely a

standalone strategy. It’s often combined with rolling

deployment or other approaches, bringing together the best

aspects of multiple deployment strategies. Despite the

complexity, many organizations find canary deployment

valuable for reducing risk and improving the reliability of

software updates.

A. How to pick servers and users for roll out?

When doing canary deployments, picking up which

servers and users get the new updates first is very

important. It affects how smoothly the deployment goes

and how quickly you can spot and fix any problems. So

let’s talk about some of the approaches we can use to

make this decision.

1) Geographical Location: One option is to base your

roll out on geographical location. This method works

well when a feature is intended for a particular

region. For example, when WhatsApp launched UPI

payments, they only released it to users in India,

where the system is used, rather than to their global

user base. This type of geographical segmentation is

a form of canary deployment because it lets you test

changes in a specific context.

2) User Cohorts: Another approach is to target user

cohorts. This involves rolling out features to a

defined group based on specific criteria. For example,

you might choose to release a new feature to users

aged 25 to 30 who work in the tech industry. This

targeted deployment allows for focused testing and

feedback from a specific segment of users.

3) Random Selection: Random selection is a simpler

method. Instead of focusing on a particular group or

location, you randomly select a percentage of users or

servers to receive the new update. This can be done

by directing a random 5% or 10% of traffic to a

particular server, without knowing which users will

be affected. This randomness helps avoid bias and

can be an effective way to gather diverse feedback.

Beta users are another type of cohort often used for

early testing. Companies like Google Play ask users

if they want to sign up for beta programs, giving

them access to early releases of apps. When a new

version is ready, it is rolled out to these beta users,

allowing them to test and provide feedback before a

wider release. This is similar to canary deployment,

but it's more about A/B testing—testing one version

against another to compare results.

4) Sticky + Random Selection: Sticky plus random

selection combines the benefits of random selection

with consistency. You select a few people at random,

and then consistently send new updates to those same

people. This approach allows you to track how

changes impact a steady group over time.

5) Internal Employees: Finally, internal employee

rollouts are used by companies like Facebook. They

have two versions of their app: the "yellow" version,

used by internal employees, and the "blue" version,

which is released to the public. When a new feature

is developed, it's first released to internal employees

for testing and feedback. Once they're satisfied, it's

rolled out to external users. This method ensures that

any major issues are caught and fixed internally

before the public rollout.

The selection criteria for a rollout depend on specific use

cases and goals. There's no strict rule that works for

everyone, so we have to choose the approach that best

suits our needs.

B. How can we combine Canary Deployment with out

deployment techniques for better efficiency?

1) Canary Deployment with Rolling update-

Combining rolling updates with canary deployment is

like having the best of both worlds in the software update

game. Let's break it down with a simple example.

Imagine you're a big online retailer, and you've just

Paper ID: SR24609142108 DOI: https://dx.doi.org/10.21275/SR24609142108 672

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 6, June 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

developed a shiny new feature for your website. Now,

you want to roll it out to your users, but you don't want to

risk disrupting everyone's shopping experience if

something goes wrong.

Here's where the magic of rolling updates and canary

deployment comes in. Instead of pushing the new feature

to all your servers at once, you start with just a few.

These servers act as your canaries, testing the waters

before diving in completely. You monitor how the new

feature performs on these servers, checking for any bugs

or performance issues.

Meanwhile, the rest of your servers continue serving the

old version of your website, keeping things running

smoothly for the majority of your users. As you gain

confidence in the new feature's stability, you gradually

roll it out to more servers.

Figure 11: Canary with Rolling update

By combining rolling updates with canary deployment,

companies can ensure a smooth and efficient rollout of

new features while minimizing the risk of disruptions. It

ensures that your users always have a great experience,

no matter what updates you're making behind the scenes.

2) Canary Deployment with Feature Toggle-

Before talking about how these two will work together let

us first understand what is Feature toggle. Feature toggle

stands a bit apart from the other strategies we discussed.

It's not about deploying a new version of the entire

application, but rather about managing specific new

features within the application. With Feature Toggle, we

introduce a toggle or a switch in the code for new

features. This allows us to turn the feature on or off for

certain users or circumstances. Think of it as a gate that

we can open or close. It controls who gets to see the new

feature.

Figure 12: Canary with Feature Toggle

Now we can combine feature toggle and canary

deployment in such a way- We can turn on the Feature

Toggle for just the canary users, letting them test out the

new feature while the rest of the user base carries on with

the current version. Feature Toggle offers excellent

control over new features and a lot of targeted user

testing. It's great for A/B testing or gradually rolling out a

feature to see how it performs.

Figure 13: Canary with Feature Toggle (A/B Testing)

However, Feature Toggle has its downsides. If not

managed properly, toggles can add complexity to the

code base and make testing more difficult. All obsolete

toggles need to be cleaned up to prevent toggle debt,

which can make the system increasingly hard to maintain.

5. Survey Analysis

Paper ID: SR24609142108 DOI: https://dx.doi.org/10.21275/SR24609142108 673

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 6, June 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Figure 14: Pie Chart of Canary Deployment Distribution

From the above statistics it was found that 60% of the

organizations/companies combine canary deployment with

other deployment techniques and 40% of companies use it as

standalone.

By combining canary deployment with other techniques,

organization can increase the strengths of each approach to

achieve more robustness and flexibility in deployment.

Figure 15: Bar Graph of Success Rate Comparison

From the above statistics it was found that the success rate

when organizations use combined techniques and standalone

canary technique differs. Success rate for combined (canary

deployment with other techniques) is 93% and for

standalone (canary deployment) is 80%. This may be

because combined techniques offer additional layers of

redundancy and error mitigation, leading to higher success

rates compared to standalone canary deployments.

Figure 16: Bar Graph of Deployment Frequency over time

From the above statistics it was found that startups tend to

deploy updates more frequently , while MNCs typically opt

for less frequent deployments such as weekly or monthly. It

may be because startups prioritize agility and rapid iteration

and deploy updates frequently to stay competitive and

responsive to market demands. In contrast to this, MNCs

prioritize stability and risk mitigation, opting for less

frequent deployments to minimize disruptions.

Figure 17: Scatter Plot for Response Time vs Error Rate

The above scatter plot illustrates relationship between

response time and error rate for each company that took part

in this survey. It’s evident that response time have an inverse

correlation with error rate. Companies with lower response

times generally exhibit lower error rates, indicating a more

efficient and stable system.

6. Findings

1) Most companies prefer blending canary deployment

with other techniques, showing a growing tendency

towards mixed deployment strategies.

2) When combined with other methods, canary

deployment shows a higher success rate compared to its

standalone counterpart, indicating better effectiveness

through integration.

3) Looking at response time versus error rate, we can see a

interesting relationship highlighting the need to

streamline response times to minimize deployment

errors.

Paper ID: SR24609142108 DOI: https://dx.doi.org/10.21275/SR24609142108 674

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 6, June 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

4) Deployment frequency varies across different

companies. Startups tend to deploy changes daily, while

larger corporations opt for weekly or monthly cycles.

This reflects diverse deployment habits influenced by

company size and culture.

7. Conclusion

In conclusion, this study shows how canaries are used in

different ways in the software industry. By looking at

different deploying techniques, how canary deployment

from others, how well this deployment work- what are the

success rate, response time and error rate, and how often

they are used that is the frequency of deploying the code

or applications.

We’ve learned a lot about how companies handle this

process. The findings highlights the importance of

tailored deployment strategies, combining canary

deployment with other techniques for effectiveness. As

technology keeps evolving, its super important to know

how to use it right and make sure everything works

smoothly when we release new software.

References

[1] Netflix Tech Blog. (2018). Canary Analysis Service:

Empowering continuous delivery at Netflix scale.

Netflix Tech Blog.

[2] Kubernetes Documentation. (n.d.). Canary deployment.

Retrieved May 14, 2024, from:

https://kubernetes.io/docs/concepts/cluster-

administration/manage-deployment/

[3] SoundCloud Engineering. (2016). Deployment: From

Canary to 500-Node Swarm. SoundCloud Engineering

Blog. Retrieved from

https://developers.soundcloud.com/blog/deployment-

from-canary-to-500-node-swarm

[4] Google Cloud Blog. (2018). How Google does canary

releases. Google Cloud Blog. Retrieved from

https://cloud.google.com/blog/products/management-

tools/how google-does-canary-releases

[5] DevOps Institute. (n.d.). Retrieved May 14, 2024, from

https://devopsinstitute.com/

[6] Kim, G., Humble, J., Debois, P., & Willis, J. (2016).

The DevOps handbook: How to create world-class

agility, reliability, & security in technology

organizations. IT Revolution Press.

Paper ID: SR24609142108 DOI: https://dx.doi.org/10.21275/SR24609142108 675

https://www.ijsr.net/

