International Journal of Science and Research (IJSR) ISSN: 2319-7064 SJIF (2022): 7.942

Quest of Some Advanced Results among Jacobsthal and Jacobsthal-Lucas Numbers

V. Pandichelvi¹, B. Umamaheswari²

¹Assistant Professor, PG & Research Department of Mathematics, Urumu Dhanalakshmi College, Trichy (Affiliated to Bharathidasan University) Email: mvpmahesh2017[at]gmail.com

²Assistant Professor, Department of Mathematics, Meenakshi College of Engineering, Chennai Email: *bumavijay[at]gmail.com*

Abstract: In this paper, the properties of Jacobsthal and Jacobsthal - Lucas sequences associated with an aspect of congruence and divisibility are analyzed using several relations that hook up these two sequences.

Keywords: Jacobsthal sequences, Jacobsthal - Lucas sequences, Divisibility

1. Introduction

There is a wide literature about the Jacobsthal and Jacobsthal-Lucas sequences as well as others, including the Fibonacci sequence, Pell sequence, and Pell-Lucas sequence, where numerous features are researched. The Fibonacci Q-matrix and the Jacobsthal Lucas E- and R-matrices were defined by the authors in [2]. Moreover, the Jacobsthal-Lucas E-matrix and R-matrix are used to find certain equalities and a Binetlike formula for the Jacobsthal and Jacobsthal-Lucas numbers. Ahmet Daşdemir [3] investigated a novel complex sum formula and the identities between the Jacobsthal numbers and matrices. Authors [7] compared the precise and divisibility aspects of the Pell and Associated Pell numbers. Congruences and Divisibility properties of Pell and Pell-Lucas numbers deliberated by Pandichelvi. V and Sandhya. P in [8]. For more information about Jacobsthal and Jacobsthal - Lucas sequences, one may refer [3 - 6].

In this work, the characteristics of the Jacobsthal and Jacobsthal - Lucas sequences related to congruence and divisibility are examined using several relations that connect these two sequences.

2. Properties of Jacobsthal and Jacobsthal -Lucas numbers holding summation

The Jacobsthal sequence is characterized by $\{\mathcal{J}_n\}$ and labelled by the following recurrence relation $\mathcal{J}_n = \mathcal{J}_{n-1} + 2\mathcal{J}_{n-2}$ for $n \ge 2$ with initial condition $\mathcal{J}_0 = 0$ and $\mathcal{J}_1 = 1$. The Jacobsthal-Lucas sequence is regarded as $\{\mathcal{L}_m\}$ and categorized by the same recurrence relation $\mathcal{L}_m = \mathcal{L}_{m-1} + 2\mathcal{L}_{m-2}$ for $n \ge 2$ with initial condition $\mathcal{L}_0 = 2$ and $\mathcal{L}_1 = 1$.

The Binet's formula for the Jacobsthal and Jacobsthal – Lucas numbers are $\frac{1}{3}(2^n - (-1)^n)$ and $[2^n + (-1)^n]$ respectively.

Theorem 2.1

If *R* is a square matrix with $R^2 = R + 2I$, then $R^n = \mathcal{J}_n R + 2\mathcal{J}_{n-1}I$ for every integer *n*.

Proof

Let $Z[i] = \{pi + 2qI; p, q \in Z\}$ and $Z[R] = \{pR + 2qI; p, q \in Z\}$

Define a function $\varphi: Z[i] \to Z[R]$ by $\varphi(pi + qI) = pR + qI$. Then, φ is a ring isomorphism. Moreover, it is clear that $\varphi(i) = R$ and $\varphi(\mathcal{L}_m) = 2\mathcal{L}_mI$. Therefore, $R^n = (\varphi(i))^n = \varphi(i^n) = \varphi(\mathcal{J}_n i + 2\mathcal{J}_{n-1}) = \mathcal{J}_n R + 2\mathcal{J}_{n-1}I$

Corollary 2.1.1
Let
$$B = \begin{pmatrix} \frac{1}{2} & \frac{9}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$
 and then $B^n = \begin{pmatrix} \frac{\mathcal{L}_n}{2} & \frac{9\mathcal{L}_n}{2} \\ \frac{\mathcal{J}_n}{2} & \frac{\mathcal{L}_n}{2} \end{pmatrix}$ for every $n \in Z$

Proof

It is determined from Theorem 2.1 that $R^2 = R + 2I$. and it is well recognized that $\varphi : Z[i] \to Z[R]$ by $\varphi(pi + qI) = pR + qI$ is a ring isomorphism.

Further, the identities from these conditions are discovered by $i^{2x} - \mathcal{L}_x i^x + (-2)^x = 0$ (1)

$$i^{2x} - 3\mathcal{J}_x i^x - (-2)^x = 0 \tag{2}$$

Application of the function φ in (1) and (2) respectively provides that

$$B^{2x} - \mathcal{L}_x B^x + (-2)^x = 0$$
(3)
$$B^{2x} - T \mathcal{J}_x B^x - (-2)^x = 0$$
(4)

where

$$T = \varphi(3) = \varphi(2B - 1) = 2B - I = \begin{pmatrix} 0 & 9 \\ 1 & 0 \end{pmatrix}$$

Theorem 2.3

If $y \in N$ and $x, u \in Z$, then

$$\begin{aligned} \mathcal{L}_{2xy+u} &= (-1)^{(x+1)y} 2^{xy} \sum_{t=0}^{y} {\binom{y}{t}} (-1)^{(x+1)t} \ 2^{-xt} \ \mathcal{L}_{x}^{t} \ \mathcal{L}_{xt+u} \\ \mathcal{J}_{2xy+u} &= (-1)^{(x+1)y} \ 2^{xy} \sum_{t=0}^{y} {\binom{y}{t}} (-1)^{(x+1)t} \ 2^{-xt} \ \mathcal{L}_{x}^{t} \ \mathcal{J}_{xt+u} \end{aligned}$$

Volume 13 Issue 6, June 2024 Fully Refereed | Open Access | Double Blind Peer Reviewed Journal www.ijsr.net

Proof

From (3) in Theorem 2.2, it is noted by $B^{2x} = \mathcal{L}_x B^x - (-2)^x I$ (5)

Levitation of y^{th} power and multiplying B^u on both sides of (5) yields that

$$B^{2xy+u} = (-1)^{(x+1)y} 2^{xy} \sum_{t=0}^{y} {y \choose t} (-1)^{(x+1)t} 2^{-xt} \mathcal{L}_{x}^{t} B^{xt+u}$$

Thus, it follows that

rus, it ionows u

$$\mathcal{L}_{2xy+u} = (-1)^{(x+1)y} 2^{xy} \sum_{t=0}^{y} {\binom{y}{t}} (-1)^{(x+1)t} 2^{-xt} \mathcal{L}_{x}^{t} \mathcal{L}_{xt+u}$$
$$\mathcal{J}_{2xy+u} = (-1)^{(x+1)y} 2^{xy} \sum_{t=0}^{y} {\binom{y}{t}} (-1)^{(x+1)t} 2^{-xt} \mathcal{L}_{x}^{t} \mathcal{J}_{xt+u}$$

Corollary 2.3.1

For all
$$y \in N$$
 and $x, u \in Z$,
 $L_{2xy+u} \equiv (-1)^{(x+1)y} 2^{xy} \mathcal{L}_u \pmod{\mathcal{L}_x}$
(6)

$$\mathcal{J}_{2xy+u} \equiv (-1)^{(x+1)y} 2^{xy} \mathcal{J}_u \pmod{\mathcal{L}_x}$$
(7)

Remarks:

1) Since $T = 2M - I = M + 2M^{-1}$, $M^{x}T = MT^{x}$ for all $x \in Z$ 2) $T^{2} = \begin{pmatrix} 9 & 0 \\ 0 & 9 \end{pmatrix} = 9I$ and $\begin{pmatrix} 0 & 9 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} i & j \\ k & l \end{pmatrix} = \begin{pmatrix} 9k & 9l \\ i & i \end{pmatrix}$

Theorem 2.5

If $y \in N$ and $x, u \in Z$, then

$$\mathcal{L}_{2xy+u} = (-2)^{xy} \begin{cases} \left| \frac{y}{2} \right| \\ \sum_{t=0}^{y} \left(\frac{y}{2t} \right) 9^{t} \mathcal{J}_{x}^{2t} \mathcal{L}_{2xt+u} + \left| \sum_{t=0}^{y} \left(\frac{y}{2t+1} \right) (-1)^{xt} 9^{t} \mathcal{J}_{x}^{2t+1} \mathcal{J}_{2xt+x+u} \right) \\ \mathcal{J}_{2xy+u} = (-2)^{xy} \begin{cases} \left| \frac{y}{2t} \right| \\ \sum_{t=0}^{y} \left(\frac{y}{2t} \right) 9^{t} \mathcal{J}_{x}^{2t} \mathcal{J}_{2xt+u} + \left| \sum_{t=0}^{y} \left(\frac{y}{2t+1} \right) (-1)^{xt} 9^{t} \mathcal{J}_{x}^{2t+1} \mathcal{L}_{2xt+x+u} \right) \end{cases}$$

Proof

From (4), it tracks that

$$B^{2x} = T\mathcal{J}_x B^x + (-2)^x D^x$$

Therefore,
$$\begin{split} B^{2xy+u} &= (T\mathcal{J}_{x}B^{x} + (-2)^{x}I)^{y}B^{u} \\ &= \left\{ \sum_{t=o}^{y} {y \choose t} \left[(-1)^{x} 2^{x} I \right]^{y-t} [T\mathcal{J}_{x}B^{x}]^{t} \right\} B^{u} \\ &= (-2)^{xy} \sum_{t=o}^{y} {y \choose t} (-1)^{xt} 2^{-xt} T^{t} \mathcal{J}_{x}^{t} B^{xt+u} \\ &= (-2)^{xy} \left\{ \sum_{t=o}^{\left\lfloor \frac{y}{2} \right\rfloor} 2^{-2xt} T^{2t} \mathcal{J}_{x}^{2t} B^{2xt+u} + \sum_{t=1}^{y} {y \choose 2t+1} (-1)^{x(2t+1)} 2^{-x(2t+1)} T^{(2t+1)} \mathcal{J}_{x}^{(2t+1)} B^{x(2t+1)+u} \right\} \\ &= (-2)^{xy} \left\{ \sum_{t=o}^{\left\lfloor \frac{y}{2} \right\rfloor} 2^{-2xt} T^{2t} \mathcal{J}_{x}^{2t} B^{2xt+u} + \sum_{t=1}^{y} {y \choose 2t+1} (-1)^{x(2t+1)} 2^{-x(2t+1)} T^{(2t+1)} \mathcal{J}_{x}^{(2t+1)} B^{x(2t+1)+u} \right\} \\ &= (-2)^{xy} \left\{ \sum_{t=o}^{\left\lfloor \frac{y}{2} \right\rfloor} 4^{-xt} 9^{t} \mathcal{J}_{x}^{2t} B^{2xt+u} + \sum_{t=1}^{y} {y \choose 2t+1} (-1)^{x} 2^{-x(2t+1)} 9^{t} T \mathcal{J}_{x}^{(2t+1)} B^{x(2t+1)+u} \right\} \end{split}$$

Since,
$$B^{2xt+u} = \begin{pmatrix} \frac{\mathcal{L}_{2xt+u}}{2} & \frac{9\mathcal{J}_{2xt+u}}{2}\\ \frac{\mathcal{J}_{2xt+u}}{2} & \frac{\mathcal{L}_{2xt+u}}{2} \end{pmatrix}$$

Hence the proof.

Corollary 2.5.1

For every
$$y \in N \cup \{0\}$$
 and $x, u \in Z$

$$\mathcal{L}_{2xy+u} \equiv (-1)^{xy} (2)^{xy} \mathcal{L}_u (\text{mod } \mathcal{J}_x) \qquad (8)$$

$$\mathcal{J}_{2xy+u} \equiv (-1)^{xy} (2)^{xy} \mathcal{J}_u (\text{mod } \mathcal{J}_x) \qquad (9)$$

3. Properties of Jacobsthal and Jacobsthal Lucas numbers using divisibility

Theorem 3.1

Let $x, y \in N$ and $x \ge 2$. Then $\mathcal{L}_x \mid \mathcal{L}_y$ if and only if $x \mid y$ and $\frac{y}{x}$ is an odd integer.

Proof

Let us assume that $\mathcal{L}_x \mid \mathcal{L}_y$ and $x \nmid y$ By Division algorithm y = xq + r where $0 \le r < x$

Volume 13 Issue 6, June 2024 Fully Refereed | Open Access | Double Blind Peer Reviewed Journal www.ijsr.net

Paper ID: SR24612143018

If q is an even integer, then q = 2a for some $a \in Z$ From (6), it is pointed out by

$$\mathcal{L}_y = \mathcal{L}_{2xy+r} \equiv (-1)^{(x+1)y} 2^{xa} \mathcal{L}_r \pmod{\mathcal{L}_x}$$

The conditions $\mathcal{L}_x \mid \mathcal{L}_y$ and g.c.d $(\mathcal{L}_x, 2^{mx}) = 1$ together gives $\mathcal{L}_x \mid \mathcal{L}_r$

This is a contradiction to the fact that $\mathcal{L}_r \mid \mathcal{L}_x$ as r < x

Hence, our assumption that q is an even integer is wrong.

Therefore q is an odd integer and let it be q = 2a + 1

Thus $\mathcal{L}_y = \mathcal{L}_{2xa+x+r} \equiv (-1)^{(x+1)a} 2^{xa} \mathcal{L}_{x+r} \pmod{\mathcal{L}_x}$

Also, since $\mathcal{L}_x \mid \mathcal{L}_y$, $\mathcal{L}_x \mid 2^{mx} \mathcal{L}_{x+r}$

To prove r = 0

Suppose r > 0By employing the identity $\mathcal{L}_{x+r} = 2\mathcal{L}_x \mathcal{J}_{r-1} + \mathcal{J}_r \mathcal{L}_{x+1}$, it is attained by $\mathcal{L}_x \mid \mathcal{J}_r \mathcal{L}_{x+1}$

But $g.c.d(\mathcal{L}_x,\mathcal{L}_{x+1}) = 1$ leads to $\mathcal{L}_x \mid \mathcal{J}_r$

This violates the conditions that $\mathcal{J}_r \leq \mathcal{J}_x \leq \mathcal{L}_x$ Therefore, r = 0 and y = xq where q is an odd integer.

Conversely, suppose x | y and y = x(2a + 1) for some $a \in Z$

Then, $\mathcal{L}_y = \mathcal{L}_{2xa+x} \equiv (-1)^{(x+1)a} 2^{xa} \mathcal{L}_x \pmod{\mathcal{L}_x}$

Thus, $\mathcal{L}_x \mid \mathcal{L}_y$

Theorem 3.2

Let $x, y \in N$ and $x \ge 2$. Then $\mathcal{L}_x \mid \mathcal{J}_y$ if and only if $x \mid y$ and $\frac{y}{x}$ is an even integer.

Proof

Suppose $\mathcal{L}_x \mid \mathcal{J}_y$

If $x \nmid y$, then by division algorithm y = xq + r, $0 \le r < x$ and $x \ge 2$.

If q is an odd integer, then q = 2a + 1 for some $a \in Z$ $\mathcal{J}_y = \mathcal{J}_{x(2a+1)+r} \equiv (-1)^{(x+1)a} 2^{xa} \mathcal{J}_{x+r} \pmod{\mathcal{L}_x}$

Thus, $\mathcal{L}_x \mid \mathcal{J}_{x+r}$ and hence $\mathcal{L}_x \mid 9 \mathcal{J}_{x+r}$

Because of the identity $9\mathcal{J}_{x+r} = \mathcal{L}_x\mathcal{L}_{x+1} + 2\mathcal{L}_{x-1}\mathcal{L}_r$, it is received that $\mathcal{L}_x \mid 2\mathcal{L}_{x-1}\mathcal{L}_r$

Since $g. c. d (\mathcal{L}_x, \mathcal{L}_{x-1}) = 1$, it is obtained by $\mathcal{L}_x \mid \mathcal{L}_r$ and $\mathcal{L}_x \leq \mathcal{L}_r$

This is illogical to fact that r < x gives $\mathcal{L}_r \mid \mathcal{L}_x$

Therefore q is an even integer it is taken as q = 2a for some $a \in Z$.

Then, from (7)

 $\mathcal{J}_{y} = \mathcal{J}_{2xa+r} \equiv (-1)^{(x+1)a} 2^{xa} \mathcal{J}_{r} (\text{mod } \mathcal{L}_{x})$

Now $\mathcal{L}_x | \mathcal{J}_y$ implies that $\mathcal{L}_x | \mathcal{J}_r$.

But this is impossible to the statement that r < x implies that $\mathcal{J}_r \leq \mathcal{J}_x < \mathcal{L}_x$.

Then it follows that r = 0 and y = xq where q is an even integer.

Conversely, suppose $x \mid y$ and y = 2xa for some $a \in Z$

Then, $\mathcal{J}_{y} = \mathcal{J}_{2xa} \equiv (-1)^{(x+1)a} (2)^{xa} \mathcal{J}_{0} (\text{mod } \mathcal{L}_{x})$

Consequently $\mathcal{L}_{x} \mid \mathcal{J}_{y}$

Theorem 3.3

Let $x, y \in N$ and $x \ge 3$. Then $\mathcal{J}_x \mid \mathcal{J}_y$ if and only if $x \mid y$

Proof

Assume that $\mathcal{J}_x \mid \mathcal{J}_y$, but $x \nmid y$ Then, y = xq + r with 0 < r < x. Suppose that q is an even integer. Let us choose q = 2a for some $a \in Z$

In the vision of (9), it is perceived that $\mathcal{J}_y = \mathcal{J}_{2xa+r} \equiv (-1)^{(x+1)a} 2^{xa} \mathcal{J}_r \pmod{\mathcal{J}_x}$

But $\mathcal{J}_x \mid \mathcal{J}_y$ results that $\mathcal{J}_x \mid \mathcal{J}_r$.

This is not possible because 0 < r < x and $x \ge 3$ affords that $\mathcal{J}_r \mid \mathcal{J}_x$.

If q is an odd integer, then q = 2a + 1 for some $a \in Z$.

Thus, $\mathcal{J}_y = \mathcal{J}_{x(2a+1)+r} \equiv (-1)^{xa} \mathcal{J}_{x+r} \pmod{\mathcal{J}_x}$

From $\mathcal{J}_x \mid \mathcal{J}_y$, it follows that $\mathcal{J}_x \mid \mathcal{J}_{x+r}$

The identity $\mathcal{J}_{x+r} = \mathcal{J}_r \mathcal{J}_{x+1} + 2 \mathcal{J}_{r-1} \mathcal{J}_x$ grades that $\mathcal{J}_x \mid \mathcal{J}_{x+1} \mathcal{J}_r$.

Now $g.c.d(\mathcal{J}_x,\mathcal{J}_{x+1}) = 1 \Longrightarrow \mathcal{J}_x | \mathcal{J}_r$

Again $\mathcal{J}_r \mid \mathcal{J}_x$, if $x \ge 3$ and r < x.

Hence, it tracks that r = 0 and y = xq. So x|y

Conversely if x|y, then y = xq for some $q \in N$

Thus, $\mathcal{J}_{y} = \mathcal{J}_{xq} = \sum_{j=0}^{q} {\binom{q}{j}} \mathcal{J}_{x}^{j} \mathcal{J}_{x-1}^{q-j} \mathcal{J}_{j} 2^{q-j}$

Hence, it is clear that $\mathcal{J}_x \mid \mathcal{J}_y$.

Theorem 3.4

If $k \ge 2$ and t is an odd number, then $L_{2^{k_t}} \equiv 2 \pmod{5}$.

Volume 13 Issue 6, June 2024 Fully Refereed | Open Access | Double Blind Peer Reviewed Journal www.ijsr.net

Proof

If t is an odd number, then $t \equiv \pm 1, \pm 3, \pm 5, \pm 7 \pmod{8}$. Moreover, it can be proved by induction that $2^k \equiv 0, \pm 4 \pmod{8}$ for $k \ge 2$.

Hence $2^k t \equiv 0, \pm 4 \pmod{8}$.

Therefore, $2^k t = 8q$ or $2^k t = 8q \pm 4$ for $q \ge 0$. Then it seeks that $Q_{2^k t} = Q_{8q} \equiv Q_0 \pmod{P_4}$ or $Q_{2^k t} = Q_{8q \pm 4} \equiv$

Thus, $Q_{2^k t} \equiv 2,10 \pmod{12}, k \ge 2.$

4. Conclusion

 $Q_{\pm 4} \pmod{P_4}$

In this manuscript, the congruence and divisibility properties of the Jacobsthal and Jacobsthal-Lucas sequences are investigated. By analysing in this manner, one can examine a wide range of relationships that connect any two sequences.

References

- [1] Koshy.T, "Fibonacci and Lucas Numbers with Applications", John Wiley and Sons, NY, 2001.
- [2] Fikri Koken and Durmus Bozkurt, "On the Jacobsthal-Lucas number by 11 matrix method", Int. J. Contemp. Math. Science. 2008;3(12): 1629–1633.
- [3] Koken, F., Bozkurt D. "On the Jacobsthal-Lucas numbers by matrix methods", International Journal of Contemporary Mathematical Sciences. 2008; 3(13):1629 – 1633.
- [4] Dasdemir. A, "A study on the Jacobsthal and Jacobsthal-Lucas numbers", Dicle University Journal of the Institute of Natural and Applied Science. 2014; 3(1): 13 – 18.
- [5] Torunbalci Aydin, F., & Yuce, S. "A new approach to Jacobsthal quaternions", Filomat. 2017; 31(18): 5567 – 5579.
- [6] Paula Catarino, Helena Campos, Paulo Vasco, Ana Paula Aires and Anabela Borges."New familiar of Jacobsthal and Jacobsthal-Luca numbers", Algebra and Discrete Mathematics. 2015; 20(1): 40 – 54.
- [7] Panda.G.K., and Asim Patra. "Exact divisibility by powers of the Pell and Associated Pell numbers", Proceedings-Mathematical Sciences. 2021; 131(2): 1 – 9.
- [8] Sandhya. P and Pandichelvi. V, "A state of-the-art of sums, congruence relations and divisibility Properties of Pell and Pell-Lucas numbers" Stochastic Modeling & Applications. 2022; 26 (3): 123 – 129.