International Journal of Science and Research (IJSR) ISSN: 2319-7064 SJIF (2022): 7.942

Quest of Some Advanced Results among Jacobsthal and Jacobsthal-Lucas Numbers

V. Pandichelvi¹ , B. Umamaheswari²

¹Assistant Professor, PG & Research Department of Mathematics, Urumu Dhanalakshmi College, Trichy (Affiliated to Bharathidasan University) Email: *[mvpmahesh2017\[at\]gmail.com](mailto:mvpmahesh2017@gmail.com)*

²Assistant Professor, Department of Mathematics, Meenakshi College of Engineering, Chennai Email: *bumavijay[at]gmail.com*

Abstract: *In this paper, the properties of Jacobsthal and Jacobsthal - Lucas sequences associated with an aspect of congruence and divisibility are analyzed using several relations that hook up these two sequences.*

Keywords: Jacobsthal sequences, Jacobsthal - Lucas sequences, Divisibility

1. Introduction

There is a wide literature about the Jacobsthal and Jacobsthal-Lucas sequences as well as others, including the Fibonacci sequence, Pell sequence, and Pell-Lucas sequence, where numerous features are researched. The Fibonacci Q-matrix and the Jacobsthal Lucas E- and R-matrices were defined by the authors in [2]. Moreover, the Jacobsthal-Lucas E-matrix and R-matrix are used to find certain equalities and a Binetlike formula for the Jacobsthal and Jacobsthal-Lucas numbers. Ahmet Daşdemir [3] investigated a novel complex sum formula and the identities between the Jacobsthal numbers and matrices. Authors [7] compared the precise and divisibility aspects of the Pell and Associated Pell numbers. Congruences and Divisibility properties of Pell and Pell-Lucas numbers deliberated by Pandichelvi. V and Sandhya. P in [8].For more information about Jacobsthal and Jacobsthal - Lucas sequences, one may refer $[3 - 6]$.

In this work, the characteristics of the Jacobsthal and Jacobsthal - Lucas sequences related to congruence and divisibility are examined using several relations that connect these two sequences.

2. Properties of Jacobsthal and Jacobsthal - Lucas numbers holding summation

The Jacobsthal sequence is characterized by $\{\mathcal{J}_n\}$ and labelled by the following recurrence relation $\mathcal{J}_n = \mathcal{J}_{n-1} + 2\mathcal{J}_{n-2}$ for $n \ge 2$ with initial condition $\mathcal{J}_0 = 0$ and $\mathcal{J}_1 = 1$. The Jacobsthal-Lucas sequence is regarded as $\{ \mathcal{L}_m \}$ and categorized by the same recurrence relation $\mathcal{L}_m = \mathcal{L}_{m-1}$ + $2\mathcal{L}_{m-2}$ for $n \ge 2$ with initial condition $\mathcal{L}_0 = 2$ and $\mathcal{L}_1 = 1$.

The Binet's formula for the Jacobsthal and Jacobsthal – Lucas numbers are $\frac{1}{3}(2^n - (-1)^n)$ and $[2^n + (-1)^n]$ respectively.

Theorem 2.1

If R is a square matrix with $R^2 = R + 2I$, then $R^n = J_n R +$ $2J_{n-1}I$ for every integer *n*.

Proof

Let $Z[i] = \{ pi + 2ql; p, q \in Z \}$ and $Z[R] = \{ pR +$ $2qI; p, q \in Z$

Define a function φ : $Z[i] \rightarrow Z[R]$ by φ $pi + qI$) = $pR + qI$. Then, φ is a ring isomorphism. Moreover, it is clear that $\varphi(i) = R$ and $\varphi(\mathcal{L}_m) = 2\mathcal{L}_m I$. Therefore, $R^n = (\varphi(i))^n = \varphi(i^n) = \varphi(\mathcal{J}_n i + 2\mathcal{J}_{n-1}) =$ $\mathcal{J}_n R + 2\mathcal{J}_{n-1}I$

Corollary 2.1.1
Let
$$
B = \begin{pmatrix} \frac{1}{2} & \frac{9}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}
$$
 and then $B^n = \begin{pmatrix} \frac{\ell_n}{2} & \frac{9\ell_n}{2} \\ \frac{\ell_n}{2} & \frac{\ell_n}{2} \end{pmatrix}$ for every $n \in \mathbb{Z}$

Proof

It is determined from Theorem 2.1 that $R^2 = R + 2I$. and it is well recognized that $\varphi : Z[i] \to Z[R]$ by φ (*pi* + qI) = $pR + qI$ is a ring isomorphism.

Further, the identities from these conditions are discovered by $i^{2x} - \mathcal{L}_x i^x + (-2)^x = 0$ (1)

$$
i^{2x} - 3J_x i^x - (-2)^x = 0 \tag{2}
$$

Application of the function φ in (1) and (2) respectively provides that

$$
B^{2x} - \mathcal{L}_x B^x + (-2)^x = 0 \tag{3}
$$

$$
B^{2x} - T \mathcal{J}_x B^x - (-2)^x = 0 \tag{4}
$$

where

$$
T = \varphi(3) = \varphi(2B - 1) = 2B - I = \begin{pmatrix} 0 & 9 \\ 1 & 0 \end{pmatrix}
$$

Theorem 2.3

If $y \in N$ and $x, u \in Z$, then

$$
\mathcal{L}_{2xy+u} = (-1)^{(x+1)y} 2^{xy} \sum_{t=0}^{y} {y \choose t} (-1)^{(x+1)t} 2^{-xt} \mathcal{L}_x^t \mathcal{L}_{xt+u}
$$

$$
\mathcal{J}_{2xy+u} = (-1)^{(x+1)y} 2^{xy} \sum_{t=0}^{y} {y \choose t} (-1)^{(x+1)t} 2^{-xt} \mathcal{L}_x^t \mathcal{J}_{xt+u}
$$

Volume 13 Issue 6, June 2024 Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Proof

From (3) in Theorem 2.2, it is noted by $B^{2x} = \mathcal{L}_x B^x - (-2)^x$ (5)

Levitation of y^{th} power and multiplying B^u on both sides of (5) yields that

$$
B^{2xy+u} = (-1)^{(x+1)y} 2^{xy} \sum_{t=0}^{y} {y \choose t} (-1)^{(x+1)t} 2^{-xt} \mathcal{L}_x^t B^{xt+u}
$$

Thus, it follows that

 $t=0$

Thus, it follows that

$$
\mathcal{L}_{2xy+u}
$$

= $(-1)^{(x+1)y} 2^{xy} \sum_{t=0}^{y} {y \choose t} (-1)^{(x+1)t} 2^{-xt} \mathcal{L}_x^t \mathcal{L}_{xt+u}$

$$
\mathcal{J}_{2xy+u}
$$

= $(-1)^{(x+1)y} 2^{xy} \sum_{t=0}^{y} {y \choose t} (-1)^{(x+1)t} 2^{-xt} \mathcal{L}_x^t \mathcal{J}_{xt+u}$

Corollary 2.3.1

For all
$$
y \in N
$$
 and $x, u \in Z$,
\n
$$
L_{2xy+u} \equiv (-1)^{(x+1)y} 2^{xy} \mathcal{L}_u \text{ (mod } \mathcal{L}_x)
$$
\n(6)

$$
\mathcal{J}_{2xy+u} \equiv (-1)^{(x+1)y} 2^{xy} \mathcal{J}_u \pmod{\mathcal{L}_x}
$$
 (7)

Remarks:

1) Since $T = 2M - I = M + 2M^{-1}$, $M^{\chi}T = MT^{\chi}$ for all $x \in Z$ 2) $T^2 = \begin{pmatrix} 9 & 0 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 9 & 0 \\ 0 & 9 \end{pmatrix} = 9I$ and $\begin{pmatrix} 0 & 9 \\ 1 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 9 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} i & j \\ k & l \end{pmatrix}$ $\begin{pmatrix} i & j \\ k & l \end{pmatrix} = \begin{pmatrix} 9k & 9l \\ i & j \end{pmatrix}$ $\begin{pmatrix} 1 & j \\ i & j \end{pmatrix}$

Theorem 2.5

If $y \in N$ and $x, u \in Z$, then

$$
\mathcal{L}_{2xy+u} = (-2)^{xy} \left\{ \sum_{t=0}^{\left[\frac{y}{2}\right]} \left(\frac{y}{2t}\right) 9^t \mathcal{J}_x^{2t} \mathcal{L}_{2xt+u} + \sum_{t=0}^{\left[\frac{(y-1)}{2}\right]} \left(\frac{y}{2t+1}\right) (-1)^{xt} 9^t \mathcal{J}_x^{2t+1} \mathcal{J}_{2xt+xt+u} \right\}
$$

$$
\mathcal{J}_{2xy+u} = (-2)^{xy} \left\{ \sum_{t=0}^{\left[\frac{y}{2}\right]} \left(\frac{y}{2t}\right) 9^t \mathcal{J}_x^{2t} \mathcal{J}_{2xt+u} + \sum_{t=0}^{\left[\frac{(y-1)}{2}\right]} \left(\frac{y}{2t+1}\right) (-1)^{xt} 9^t \mathcal{J}_x^{2t+1} \mathcal{L}_{2xt+xt+u} \right\}
$$

Proof

From (4), it tracks that

$$
B^{2x} = T \mathcal{J}_x B^x + (-2)^x I
$$

Therefore,

$$
= (-2)^{xy} \left\{ \sum_{t=0}^{y} {y \choose t} \left[(-1)^{x} 2^{x} I \right]^{y-t} \left[T J_{x} B^{x} \right]^{t} \right\} B^{u}
$$
\n
$$
= (-2)^{xy} \sum_{t=0}^{y} {y \choose t} \left[(-1)^{x} 2^{-xt} T^{t} J_{x}^{t} B^{xt+u} \right]
$$
\n
$$
= (-2)^{xy} \left\{ \sum_{t=0}^{\left[\frac{y}{2}\right]} {y \choose 2} 2^{-2xt} T^{2t} J_{x}^{2t} B^{2xt+u} + \sum_{t=1}^{\left[\frac{(y-1)}{2}\right]} {y \choose 2t+1} (-1)^{x(2t+1)} 2^{-x(2t+1)} T^{(2t+1)} J_{x}^{(2t+1)} B^{x(2t+1)+u} \right\}
$$
\n
$$
= (-2)^{xy} \left\{ \sum_{t=0}^{\left[\frac{y}{2}\right]} {y \choose 2t} 4^{-xt} 9^{t} J_{x}^{2t} B^{2xt+u} + \sum_{t=1}^{\left[\frac{(y-1)}{2}\right]} {y \choose 2t+1} (-1)^{x} 2^{-x(2t+1)} 9^{t} T J_{x}^{(2t+1)} B^{x(2t+1)+u} \right\}
$$

Since,
$$
B^{2xt+u} = \begin{pmatrix} \frac{\ell_{2xt+u}}{2} & \frac{9\mathcal{J}_{2xt+u}}{2} \\ \frac{\mathcal{J}_{2xt+u}}{2} & \frac{\ell_{2xt+u}}{2} \end{pmatrix}
$$

Hence the proof.

Corollary 2.5.1

For every
$$
y \in N \cup \{0\}
$$
 and $x, u \in Z$
\n
$$
\mathcal{L}_{2xy+u} \equiv (-1)^{xy} (2)^{xy} \mathcal{L}_u \text{(mod } \mathcal{J}_x)
$$
\n
$$
\mathcal{J}_{2xy+u} \equiv (-1)^{xy} (2)^{xy} \mathcal{J}_u \text{(mod } \mathcal{J}_x)
$$
\n(9)

3. Properties of Jacobsthal and Jacobsthal Lucas numbers using divisibility

Theorem 3.1

Let $x, y \in N$ and $x \ge 2$. Then $\mathcal{L}_x | \mathcal{L}_y$ if and only if $x | y$ and $\frac{y}{x}$ is an odd integer.

Proof

Let us assume that \mathcal{L}_x | \mathcal{L}_y and $x \nmid y$ By Division algorithm $y = xq + r$ where $0 \le r < x$

Volume 13 Issue 6, June 2024 Fully Refereed | Open Access | Double Blind Peer Reviewed Journal www.ijsr.net

If q is an even integer, then $q = 2a$ for some $a \in Z$ From (6), it is pointed out by

$$
\mathcal{L}_y = \mathcal{L}_{2xy+r} \equiv (-1)^{(x+1)y} 2^{xa} \mathcal{L}_r \pmod{\mathcal{L}_x}
$$

The conditions $\mathcal{L}_x | \mathcal{L}_y$ and g.c.d $(\mathcal{L}_x, 2^{mx}) = 1$ together gives $\mathcal{L}_x \mid \mathcal{L}_r$

This is a contradiction to the fact that \mathcal{L}_r | \mathcal{L}_x as $r < x$

Hence, our assumption that q is an even integer is wrong.

Therefore q is an odd integer and let it be $q = 2a + 1$

Thus $\mathcal{L}_y = \mathcal{L}_{2xa+x+r} \equiv (-1)^{(x+1)a} 2^{xa} \mathcal{L}_{x+r} \pmod{\mathcal{L}_x}$

Also, since $\mathcal{L}_x | \mathcal{L}_y$, $\mathcal{L}_x | 2^{mx} \mathcal{L}_{x+r}$

To prove $r = 0$

Suppose $r > 0$ By employing the identity $\mathcal{L}_{x+r} = 2\mathcal{L}_x \mathcal{J}_{r-1} + \mathcal{J}_r \mathcal{L}_{x+1}$, it is attained by \mathcal{L}_x | $\mathcal{J}_r \mathcal{L}_{x+1}$

But $g.c.d(\mathcal{L}_x, \mathcal{L}_{x+1}) = 1$ leads to $\mathcal{L}_x \mid \mathcal{J}_r$

This violates the conditions that $\mathcal{J}_r \leq \mathcal{J}_x \leq \mathcal{L}_x$ Therefore, $r = 0$ and $y = xq$ where q is an odd integer.

Conversely, suppose $x \mid y$ and $y = x(2a + 1)$ for some $a \in \mathbb{R}$ Z

Then, $\mathcal{L}_y = \mathcal{L}_{2xa+x} \equiv (-1)^{(x+1)a} 2^{xa} \mathcal{L}_x \pmod{\mathcal{L}_x}$

Thus, $\mathcal{L}_x \mid \mathcal{L}_v$

Theorem 3.2

Let $x, y \in N$ and $x \ge 2$. Then $\mathcal{L}_x \mid \mathcal{J}_y$ if and only if $x \mid y$ and \mathcal{Y} $\frac{y}{x}$ is an even integer.

Proof

Suppose \mathcal{L}_x | \mathcal{J}_v

If $x \nmid y$, then by division algorithm $y = xq + r$, $0 \le r < x$ and $x \geq 2$.

If q is an odd integer, then $q = 2a + 1$ for some $a \in Z$ $\mathcal{J}_y = \mathcal{J}_{x(2a+1)+r} \equiv (-1)^{(x+1)a} 2^{xa} \mathcal{J}_{x+r} \text{ (mod } \mathcal{L}_x)$

Thus, $\mathcal{L}_x \mid \mathcal{J}_{x+r}$ and hence $\mathcal{L}_x \mid 9 \mathcal{J}_{x+r}$

Because of the identity $9J_{x+r} = \mathcal{L}_x \mathcal{L}_{x+1} + 2\mathcal{L}_{x-1} \mathcal{L}_r$, it is received that \mathcal{L}_x | 2 \mathcal{L}_{x-1} \mathcal{L}_r

Since g. c. d $(\mathcal{L}_x, \mathcal{L}_{x-1}) = 1$, it is obtained by $\mathcal{L}_x \mid \mathcal{L}_r$ and $\mathcal{L}_x \leq \mathcal{L}_r$

This is illogical to fact that $r < x$ gives $\mathcal{L}_r \mid \mathcal{L}_x$

Therefore q is an even integer it is taken as $q = 2a$ for some $a \in Z$.

Then, from (7) $J_y = J_{2xa+r} \equiv (-1)^{(x+1)a} 2^{xa} J_r \pmod{\mathcal{L}_x}$

Now \mathcal{L}_x ∂_y implies that \mathcal{L}_x ∂_y .

But this is impossible to the statement that $r < x$ implies that $J_r \leq J_x < L_x$.

Then it follows that $r = 0$ and $y = xq$ where q is an even integer.

Conversely, suppose $x | y$ and $y = 2xa$ for some $a \in Z$

Then, $J_y = J_{2xa} \equiv (-1)^{(x+1)a} (2)^{xa} J_0 \pmod{L_x}$

Consequently $\mathcal{L}_{\mathbf{r}} \mid \mathcal{J}_{\mathbf{v}}$

Theorem 3.3

Let $x, y \in N$ and $x \ge 3$. Then $\mathcal{J}_x | \mathcal{J}_y$ if and only if $x | y$

Proof

Assume that $\mathcal{J}_x | \mathcal{J}_y$, but $x \nmid y$ Then, $y = xq + r$ with $0 < r < x$. Suppose that q is an even integer. Let us choose $q = 2a$ for some $a \in Z$

In the vision of (9), it is perceived that $J_y = J_{2xa+r} \equiv (-1)^{(x+1)a} 2^{xa} J_r \pmod{J_x}$

But $\mathcal{J}_x | \mathcal{J}_y$ results that $\mathcal{J}_x | \mathcal{J}_r$.

This is not possible because $0 < r < x$ and $x \geq 3$ affords that $\mathcal{J}_r \mid \mathcal{J}_x.$

If q is an odd integer, then $q = 2a + 1$ for some $a \in Z$.

Thus, $\mathcal{J}_y = \mathcal{J}_{x(2a+1)+r} \equiv (-1)^{xa} \mathcal{J}_{x+r} \pmod{\mathcal{J}_x}$

From \mathcal{J}_x | \mathcal{J}_y , it follows that \mathcal{J}_x | \mathcal{J}_{x+r}

The identity $\mathcal{J}_{x+r} = \mathcal{J}_r \mathcal{J}_{x+1} + 2 \mathcal{J}_{r-1} \mathcal{J}_x$ grades that $\mathcal{J}_x \mid \mathcal{J}_{x+1} \mathcal{J}_r$.

Now g. c. d $(\mathcal{J}_x, \mathcal{J}_{x+1}) = 1 \implies \mathcal{J}_x \mid \mathcal{J}_r$

Again $\mathcal{J}_r \mid \mathcal{J}_x$, if $x \geq 3$ and $r < x$.

Hence, it tracks that $r = 0$ and $y = xq$. So $x|y$

Conversely if $x|y$, then $y = xq$ for some $q \in N$

Thus,
$$
\mathcal{J}_y = \mathcal{J}_{xq} = \sum_{j=0}^q {q \choose j} \mathcal{J}_x^j \mathcal{J}_{x-1}^{q-j} \mathcal{J}_j 2^{q-j}
$$

Hence, it is clear that $\mathcal{J}_x | \mathcal{J}_y$.

Theorem 3.4

If $k \ge 2$ and t is an odd number, then $L_{2}k_{t} \equiv 2 \pmod{5}$.

Volume 13 Issue 6, June 2024 Fully Refereed | Open Access | Double Blind Peer Reviewed Journal www.ijsr.net

Proof

If t is an odd number, then $t \equiv \pm 1, \pm 3, \pm 5, \pm 7 \pmod{8}$. Moreover, it can be proved by induction that $2^k \equiv$ $0, \pm 4 \pmod{8}$ for $k \ge 2$.

Hence $2^k t \equiv 0, \pm 4 \pmod{8}$.

Therefore, $2^k t = 8q$ or $2^k t = 8q \pm 4$ for $q \ge 0$. Then it seeks that $Q_{2^k t} = Q_{8q} \equiv Q_0 \pmod{P_4}$ or Q_2 $Q_{2^k t} = Q_{8q+4} \equiv$

 Q_{+4} (mod P_4)

Thus, $Q_{2^k t} \equiv 2,10 \pmod{12}$, $k \ge 2$.

4. Conclusion

In this manuscript, the congruence and divisibility properties of the Jacobsthal and Jacobsthal-Lucas sequences are investigated. By analysing in this manner, one can examine a wide range of relationships that connect any two sequences.

References

- [1] Koshy.T, "Fibonacci and Lucas Numbers with Applications", John Wiley and Sons, NY, 2001.
- [2] Fikri Koken and Durmus Bozkurt, "On the Jacobsthal-Lucas number by 11 matrix method", Int. J. Contemp. Math. Science. 2008;3(12): 1629– 1633.
- [3] Koken, F., Bozkurt D. "On the Jacobsthal-Lucas numbers by matrix methods", International Journal of Contemporary Mathematical Sciences. 2008 ; 3(13): 1629 − 1633.
- [4] Dasdemir. A, "A study on the Jacobsthal and Jacobsthal-Lucas numbers", Dicle University Journal of the Institute of Natural and Applied Science. $2014; 3(1): 13 - 18.$
- [5] Torunbalci Aydin, F., & Yuce, S. "A new approach to Jacobsthal quaternions", Filomat. 2017; 31(18): 5567 −5579.
- [6] Paula Catarino, Helena Campos, Paulo Vasco, Ana Paula Aires and Anabela Borges."New familiar of Jacobsthal and Jacobsthal-Luca numbers", Algebra and Discrete Mathematics. 2015; 20(1): 40 − 54.
- [7] Panda.G.K., and Asim Patra. "Exact divisibility by powers of the Pell and Associated Pell numbers", Proceedings-Mathematical Sciences. 2021; 131(2): 1− 9.
- [8] Sandhya. P and Pandichelvi. V, "A state of-the-art of sums, congruence relations and divisibility Properties of Pell and Pell-Lucas numbers" Stochastic Modeling & Applications. 2022; 26 (3): 123− 129.