Crystal Structure of Palladium (II) Complexes with Tridentate Diazene Ligand Having O, N, O Donor Set

Uday Sankar Agarwalla
Department of Chemistry, P. D. Women's College, Jalpaiguri - 735101, West Bengal, India
Email: udaygrwlla[at]gmail.com

Abstract

The solid state structures of $[P d(L)(D)], 1 a$ and $1 b\left(D=4\right.$-picoline and $P P h_{3}$ respectively), have been determined by single crystal X - ray diffraction. The crystal structures have revealed that diazene ligands, 1-(2'-hydroxy - 1'-naphthylazo)-2hydroxynaphthalene $\left(H_{2} L\right)$, bind to the metal ion as dianionic tridentate O, N, O donors and the fourth coordination position is occupied by Lewis base (D). The tetra co-ordination around palladium (II) is almost planar. Intermolecular association in the solid state is observed due to $\boldsymbol{C}-\boldsymbol{H} . . . \pi$ interactions.

Keywords: Palladium, Cyclopalladates, Crystal structure, X - ray crystallography

1. Introduction

The activation of $\mathrm{C}-\mathrm{H}$ bonds in organic compounds promoted by transition metal complexes are of considerable interest in view of its diverse synthetic potential [1-9]. In this regard, cyclopalladation reactions have received increased attention, because they represent a facile method for the activation of a $\mathrm{C}-\mathrm{H}$ bond in aromatic rings and have potential applications in organic synthesis. The $\mathrm{C}-\mathrm{H}$ bond activation reactions promoted by palladium (II) salts enjoy a special status for their wide application potential in metaloxylation reactions [10-14]. We have already reported C (naphthyl) - H bond activation by palladium (II) and subsequent stoichiometric as well as catalytic metaloxylation of Pd - C (naphthyl) bond [15]. Synthesis via non - oxidative route and characterization of structurally similar palladium (II) compound with tridentate $1-\left(2^{\prime}-\right.$ hydroxy - $1^{\prime}-$ naphthylazo) - 2 - hydroxynaphthalene $\left(\mathrm{H}_{2} \mathrm{~L}\right)$ ligand has also been reported [15]. In continuation of our previous work, herein we wish to establish, based on single - crystal X - ray crystallography technique, the molecular structure of the cyclopalladates [Pd (L) (D)] and to discuss crystallographic analysis of the compound.

2. Methodology

Single crystals of complexes $\mathbf{1 a}$ and $\mathbf{1 b}$ were grown by slow diffusion of n - hexane into dichloromethane solutions of the
cyclopalladates. Selected crystal data and data collection parameters are given in Table 3. Crystallographic data collection were performed on a Bruker SMART 1000 CCD area - detector diffractometer using graphite monochromated $\operatorname{MoK} \alpha(\lambda=0.71073 \AA)$ radiation by ω scan. The structure was solved by direct methods using SHELXS - 97 [16] and difference Fourier syntheses and refined with SHELXL97 package incorporated in WinGX 1.64 crystallographic collective package [17]. All the hydrogen positions for the compound were initially located in the difference Fourier map, and for the final refinement, the hydrogen atoms were placed geometrically and held in the riding mode. The last cycles of refinement included atomic positions for all the atoms, anisotropic thermal parameters for all non - hydrogen atoms and isotropic thermal parameters for all the hydrogen atoms. Full - matrix - least - squares structure refinement against $\left|\mathrm{F}^{2}\right|$. Molecular geometry calculations were performed with PLATON [18], and molecular graphics were prepared using ORTEP - 3 [19].

3. Results and Discussion

We have already reported the synthesis of palladium (II) compound with tridentate naphtholato - $\mathrm{O}, \mathrm{N}, \mathrm{O}$ ligand, 1 (2^{\prime} - hydroxy - 1' - naphthylazo) - 2 - hydroxynaphthalene $\left(\mathrm{H}_{2} \mathrm{~L}\right)$ ligand, [Pd (L) (D)] (1a and 1b) in presence of neutral Lewis base, $\mathrm{D}\left[\mathrm{D}=4\right.$ - picoline or PPh_{3}] (Scheme 1).

Scheme 1: (i) $\mathrm{Na}_{2}\left[\mathrm{PdCl}_{4}\right]$, EtOH , room temperature, 8 h ; (ii) 4 - picoline or PPh_{3}, room temperature, 2 h

The cyclopalladates have been characterized by single crystal X - ray crystallography. Single crystals of complexes were grown by slow diffusion of n - hexane into dichloromethane solution of the complexes. The structures of divalent cyclopalladates ($\mathbf{1 a}$ and $\mathbf{1 b}$) derived from the reaction of $\mathrm{H}_{2} \mathrm{~L}$ and $\mathrm{Na}_{2}\left[\mathrm{PdCl}_{4}\right]$ in presence of neutral donar (D) are shown in Figures 1 and 2 respectively. The selected bond parameters are given in Tables 1 and 2 respectively.

The structure of 1a shows that the palladium (II) is bonded to N 1 of diazene group, O 1 and O 2 of naptholato function and N3 of donor 4 - picoline. Therefore, 1 - (2^{\prime} - hydroxy - 1^{\prime} - naphthylazo) - 2 - hydroxynaphthalene ($\mathrm{H}_{2} \mathrm{~L}$) binds palladium (II) as a dianionic tridentate [$\mathrm{O}, \mathrm{N}, \mathrm{O}$] fashion forming a five membered chelate ring and a six - membered chelate ring. The tetra co - ordination around Pd (II) is almost planar. The maximum deviation is represented by the ‘bite’ angle $\mathrm{O}(2)-\mathrm{Pd}(1)-\mathrm{N}$ (1) of 93.83 (13) ${ }^{\circ}$. Similarly the palladium (II) center in $\mathbf{1 b}$ is found to be bonded to N1 of diazene group, O 1 and O 2 of naptholato function and P1 of triphenylphosphine.

Figure 1: Molecular structure of 1a with ellipsoids drawn at the 50% probability level

Table 1: Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for

	Bond lengths (̊)		Bond angles $\left({ }^{\circ}\right)$
$\mathrm{Pd}(1)-\mathrm{N}(1)$	$1.961(3)$	$\mathrm{N}(1)-\mathrm{Pd}(1)-\mathrm{O}(1)$	$83.41(13)$
$\mathrm{Pd}(1)-\mathrm{O}(1)$	$1.987(3)$	$\mathrm{N}(1)-\mathrm{Pd}(1)-\mathrm{O}(2)$	$93.83(13)$
$\mathrm{Pd}(1)-\mathrm{O}(2)$	$1.954(3)$	$\mathrm{O}(1)-\mathrm{Pd}(1)-\mathrm{N}(3)$	$93.77(13)$
$\mathrm{Pd}(1)-\mathrm{N}(3)$	$2.078(4)$	$\mathrm{O}(2)-\mathrm{Pd}(1)-\mathrm{N}(3)$	$88.99(13)$
$\mathrm{N}(1)-\mathrm{N}(2)$	$1.269(5)$		
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.415(5)$		
$\mathrm{N}(2)-\mathrm{C}(11)$	$1.392(5)$		
$\mathrm{O}(1)-\mathrm{C}(2)$	$1.311(5)$		
$\mathrm{O}(2)-\mathrm{C}(12)$	$1.302(5)$		

In both the structures, the $\mathrm{C}-\mathrm{O}$ bond lengths $[1.311$ (5) and 1.302 (5) \AA in 1a; 1.328 (8) and 1.312 (8) \AA in 1b] are shorter than the $\mathrm{C}-\mathrm{O}$ bond length found in naphthols (1.385 A) [20]. The shortening of the $\mathrm{C}-\mathrm{O}$ bond length in azonaphtholato chelate ring may be ascribed to favourable conjugation of a lone pair p - orbital on the naphthalato oxygen atom with the π - system of the chelate ring [21]. The crystal data and structure refinement data for $\mathbf{1 a}$ and $\mathbf{1 b}$ has been compiled in Table 3.

Volume 13 Issue 6, June 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal www.ijsr.net

International Journal of Science and Research (IJSR)

ISSN: 2319-7064
SJIF (2022): 7.942

Figure 2: Molecular structure of $\mathbf{1 b}$ with ellipsoids drawn at the 50% probability level
Table 2: Selected bond lengths ((\AA) and bond angles $\left({ }^{\circ}\right)$ for $\mathbf{1 b}$

	Bond lengths (̊)		Bond angles $\left(^{\circ}\right)$
$\mathrm{Pd}(1)-\mathrm{N}(1)$	$2.043(6)$	$\mathrm{N}(1)-\mathrm{Pd}(1)-\mathrm{O}(1)$	$81.1(2)$
$\mathrm{Pd}(1)-\mathrm{O}(1)$	$1.983(5)$	$\mathrm{N}(1)-\mathrm{Pd}(1)-\mathrm{O}(2)$	$95.5(2)$
$\mathrm{Pd}(1)-\mathrm{O}(2)$	$1.944(6)$	$\mathrm{O}(1)-\mathrm{Pd}(1)-\mathrm{P}(1)$	$91.11(15)$
$\mathrm{Pd}(1)-\mathrm{P}(1)$	$2.3024(16)$	$\mathrm{O}(2)-\mathrm{Pd}(1)-\mathrm{P}(1)$	$92.29(15)$
$\mathrm{N}(1)-\mathrm{N}(2)$	$1.207(7)$		
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.387(8)$		
$\mathrm{N}(2)-\mathrm{C}(11)$	$1.477(9)$		
$\mathrm{O}(1)-\mathrm{C}(2)$	$1.328(8)$		
$\mathrm{O}(2)-\mathrm{C}(12)$	$1.312(8)$		

Table 3: Crystal data and structure refinement for 1a and 1b

Identification Code	12	1b
Empirical formula	C26 H19 N3 O2 Pd	C38 H27 N2 O2 P Pd
Formula weight	511.84	680.99
Temperature	293 (2) K	293 (2) K
Wavelength	0.71073 A	0.71073 A
Crystal system, Space Group	Orthorhombic, Pbca	Triclinic, P-1
Unit cell dimensions	$\begin{gathered} \mathrm{a}=8.275(2) \AA \\ \mathrm{b}=18.111(5) \AA \\ \mathrm{c}=28.216(8) \AA \\ \alpha=90.00^{\circ} \\ \beta=90.00^{\circ} \\ \gamma=90.00^{\circ} \end{gathered}$	$\begin{gathered} \mathrm{a}=9.038(2) \AA \\ \mathrm{b}=12.990(3) \AA \\ \mathrm{c}=14.575(3) \AA \\ \alpha=78.877(3)^{\circ} \\ \beta=84.288(3)^{\circ} \\ \gamma=70.974(3)^{\circ} \end{gathered}$
Volume	4229 (2) \AA^{3}	1586.2 (6) \AA^{3}
Z, Calculated density	$8,1.608 \mathrm{Mg} / \mathrm{m}^{3}$	$2,1.426 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.907 \mathrm{~mm}^{-1}$	$0.672 \mathrm{~mm}^{-1}$
F (000)	2064	692
Crystal size	$0.24 \times 0.22 \times 0.12 \mathrm{~mm}$	$0.24 \times 0.16 \times 0.09 \mathrm{~mm}$
Theta range for data collection	2.25 to 25 deg.	2.01 to 25 deg.
Limiting indices	- $9 \leq \mathrm{h} \leq 9,-21 \leq \mathrm{k} \leq 21,-33 \leq 1 \leq 33$	$-10 \leq \mathrm{h} \leq 10,-15 \leq \mathrm{k} \leq 15,-17 \leq \mathrm{l} \leq 17$
Reflections collected/unique	$38675 / 3721[\mathrm{R}(\mathrm{int})=0.0589]$	15436/5532 [R (int) $=0.0295$]
Completeness to theta	25 deg., 100.0\%	25 deg., 98.9%
Refinement method	Full - matrix least - squares on F^{2}	Full - matrix least - squares on F^{2}
Data/restraints/parameters	3721/0/289	5532/0/404
Goodness - of - fit on F^{2}	1.010	1.149
Final R indices [I>2sigma (I)]	$\mathrm{R} 1=0.0441$, wR2=0.1134	$\mathrm{R} 1=0.0741$, wR2=0.1788
R indices (all data)	$\mathrm{R} 1=0.0581$, wR2=0.1238	$\mathrm{R} 1=0.0808$, wR2=0.1831
Largest diff. Peak and hole	1.856 and - 0.423 e. \AA^{-3}	2.676 and -1.364 e. \AA^{-3}

Volume 13 Issue 6, June 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal www.ijsr.net

Crystallographic Analysis

Solid state structures of palladium (II) complexes have been thoroughly investigated by X - ray crystallography. A detailed analysis revealed several interactions in the solid state structures of the cyclopalladates.

Structure of 1a and Intra - /intermolecular Interaction in Solid State

The ortep diagram of $\mathbf{1 a}$ is presented in Figure 1 and the packing diagram is presented in Figure 3. The crystal packing has been found to be stabililized by two
intermolecular C-H... π interaction: C6-H6...Cg7 [where Cg 7 is the centroid of the $\mathrm{C} 15-\mathrm{C} 20$ ring at $-1 / 2-\mathrm{X}$, $1 / 2+\mathrm{Y}, \mathrm{Z}$] and $\mathrm{C} 13-\mathrm{H} 13 \ldots \mathrm{Cg} 4$ [where Cg 4 is the centroid of the C1-C9 ring at $1 / 2-\mathrm{X}, 1 / 2+\mathrm{Y}, \mathrm{Z}$] [Figure 4, Table 4]. Moreover, the crystal packing has been found to be further stabilized by one intermolecular C-H...O interaction (C4 H4...O1 distance being $2.58 \AA$; symmetry operator is $1 / 2+X, 1 / 2-Y,-Z)$. Further, the solid state structure of $\mathbf{1 a}$ is characterized by four intramolecular interactions (C8 H8 ...N2, C18 - H18...N2, C21 - H21. . O1 and C25 H25...O2) [Figure 5, Table 5].

Figure 3: Packing diagram of 1a

Table 4: Geometric parameters of the $\mathrm{C}-\mathrm{H} . . . \pi$ interactions

		$\mathrm{H} \cdots \mathrm{Cg} / \AA$	γ^{a}	$\mathrm{C}-\mathrm{H} \cdots \mathrm{Cg} /{ }^{\circ}$	$\mathrm{H} \cdots \mathrm{Cg} / \AA$	Symm. Operation on Cg
$\mathbf{1 a}^{\mathrm{b}}$	$\mathrm{C} 6-\mathrm{H} 6 \ldots \mathrm{Cg}(7)$	2.83	11.99	157	$3.700(6)$	$-1 / 2-\mathrm{X},-1 / 2+\mathrm{Y}, \mathrm{Z}$
	$\mathrm{C} 13-\mathrm{H} 13 \ldots \mathrm{Cg}(4)$	2.86	21.94	158	$3.737(5)$	$1 / 2-\mathrm{X}, 1 / 2+\mathrm{Y}, \mathrm{Z}$
$\mathbf{1 b}^{\mathrm{c}}$	$\mathrm{C} 7-\mathrm{H} 7 \ldots \mathrm{Cg}(8)$	2.92	18.14	161	$3.813(8)$	$-\mathrm{X}, 1-\mathrm{Y},-\mathrm{Z}$
	$\mathrm{C} 30-\mathrm{H} 30 \ldots \mathrm{Cg}(9)$	2.83	10.71	140	$3.597(9)$	$-1+\mathrm{X}, \mathrm{Y}, \mathrm{Z}$

${ }^{\mathrm{a}} \gamma=$ angle defined by a line connecting center of gravity of the aromatic ring with H atom and the normal to the aromatic ring
${ }^{\mathrm{b}} \mathrm{Cg}(4)$ and $\mathrm{Cg}(7)$ are the centroids of $\mathrm{C} 1-\mathrm{C} 9$ and $\mathrm{C} 15-\mathrm{C} 20$ rings respectively
${ }^{\mathrm{c}} \mathrm{Cg}(8)$ and $\mathrm{Cg}(9)$ are the centroids of C27-C32 and C33-C38 rings respectively

Figure 5: C - $\mathrm{H} . . . \mathrm{O}$ interactions in 1a; Possible hydrogen bonds $\mathrm{C} 4-\mathrm{H} 4 \ldots \mathrm{O}$; Symmetry operator is $-1 / 2+\mathrm{X}, 1 / 2-\mathrm{Y}$, - Z and other intramolecular hydrogen bonds [C8-H8 ..N2, C18-H18 ..N2, C21-H21...O1 and C25-H25...O2]

Table 5: Geometric parameters of the hydrogen bonding interactions

		d (D - H) / \AA	d (H...A) / \AA	d (D...A) / \AA	D - H...A/ ${ }^{\circ}$	Symm. operation on A
19	C4-H4...O1	0.93	2.58	3.479 (5)	162	- 1/2+X, 1/2-Y, - Z
	*C8-H8...N2	0.93	2.31	2.897 (5)	121	X, Y, Z
	${ }^{*} \mathrm{C} 18-\mathrm{H} 18 \ldots \mathrm{~N} 2$	0.93	2.46	2.779 (6)	100	X, Y, Z
	* $\mathrm{C} 21-\mathrm{H} 21 \ldots \mathrm{O} 1$	0.93	2.42	3.010 (6)	121	X, Y, Z
	${ }^{*} \mathrm{C} 25-\mathrm{H} 25 \ldots \mathrm{O} 2$	0.93	2.29	2.870 (5)	120	X, Y, Z
1b	* C 8 - H8...N2	0.93	2.32	2.916 (10)	121	X, Y, Z
	${ }^{*} \mathrm{C} 18-\mathrm{H} 18 \ldots \mathrm{~N} 2$	0.93	2.41	2.763 (11)	103	X, Y, Z
	* $\mathrm{C} 34-\mathrm{H} 34 \ldots \mathrm{O} 2$	0.93	2.59	2.993 (10)	107	X, Y, Z

[^0]Volume 13 Issue 6, June 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal www.ijsr.net

Figure 6: Packing arrangement in 1b

Structure of 1b and Intra - /intermolecular Interaction in Solid State
The crystal packing arrangement in the cyclopalladate $\mathbf{1 b}$ is shown in Figure 6. The crystal packing has been found to be stabilized by two intermolecular C-H... π interactions. The intermolecular $\mathrm{C}-\mathrm{H} \ldots \pi$ interactions involve the centroids of the rings $\mathrm{C} 27 \rightarrow \mathrm{C} 32(\mathrm{Cg} 8)$ and $\mathrm{C} 33 \rightarrow \mathrm{C} 38(\mathrm{Cg} 9)$ [symmetry
codes: (i) - X, $1-\mathrm{Y},-\mathrm{Z}$; (ii) $-1+\mathrm{X}, \mathrm{Y}, \mathrm{Z}]$ with the hydrogen H7 and H30; the H...Cg bond distances are 2.92 and $2.83 \AA$ respectively [Figure 7, Table 4]. The solid state structure of 1b is characterized by three intramolecular interactions (C8 H8 ...N2, C18-H18...N2 and C34-H34...O2) [Figure 8, Table 5].

Figure 7: C-H... π interactions in $\mathbf{1 b}[\mathrm{Cg}(8)$ and $\mathrm{Cg}(9)$ are the centroids of C27-C32 and C33-C38 rings respectively.
Symmetry operators are (i) - X, 1-Y, - Z (ii) - 1+X, Y, Z]

Volume 13 Issue 6, June 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal www.ijsr.net

International Journal of Science and Research (IJSR)

ISSN: 2319-7064
SJIF (2022): 7.942

Figure 8: Intramolecular hydrogen bonds [C8-H8 ...N2, C18-H18 ...N2 and C34-H34...O2]

4. Conclusion

Molecular structure of cyclopalladates with different donor, 4 - picoline and PPh_{3}, has been successfully established by single crystal X - ray crystallography. In both the structures, the ligand 1 - ($2^{\prime}-$ hydroxy - 1^{\prime} - naphthylazo) - 2 hydroxynaphthalene $\left(\mathrm{H}_{2} \mathrm{~L}\right)$ binds palladium (II) as a dianionic tridentate $[\mathrm{O}, \mathrm{N}, \mathrm{O}]$ fashion and thev fourth position is occupied by donor D . The crystal packing has been found to be stabilized by intermolecular C-H... π interactions.

Acknowledgments

The financial support from Department of Science \& Technology and CSIR, New Delhi are gratefully acknowledged. The author is grateful to Dr. P. Bandyapadhyay for his assistance and kind cooperation. The author also expresses his sincere thanks to the Department of Chemistry, University of North Bengal for providing instrumentation facilities.

References

[1] Crabtree R. H. (2001) J. Chem. Soc., Dalton Trans., 17, 2437-2450.
[2] Labinger J. A., \& Bercaw J. E. (2002) Nature, 417, 507-514.
[3] Omae I. (2004) Coord. Chem. Rev., 248 (11-12), 995 - 1023.
[4] Shilov A. E., \& Shul'pin G. B. (2000) Activation and Catalytic Reactions of Saturated Hydrocarbons in the Presence of Metal Complexes, Kluwer Academic Publishers, Dordretch, Germany.
[5] Jones W. D. (2003) Acc. Chem. Res., 36 (2), 140-146.
[6] Fiedler D., Leung D. H., Bergman R. G., \& Raymond K. N. (2005) Acc. Chem. Res., 38 (4), 349-358.
[7] Lersch M., \& Tilset M. (2005) Chem. Rev., 105 (6), 2471-2526.
[8] Crabtree R. H. (2004) J. Organomet. Chem., 689 (24), 4083-4091.
[9] Giri R., Shi B. - F., Engle K. M., Maugel N., \& Yu J. Q. (2009) Chem. Soc. Rev., 38, 3242-3272.
[10] Mahapatra A. K., Bandyopadhyay D., Bandyopadhyay P., \& Chakravorty A. (1984) J. Chem. Soc., Chem. Commun., 999-1000.
[11] Sinha C. R., Bandyopadhyay D., \& Chakravorty A. (1988) J. Chem. Soc., Chem. Commun., 468-470.
[12] Mahapatra A. K., Bandyopadhyay D., Bandyopadhyay P., \& Chakravorty A. (1986) Inorg. Chem., 25 (13), 2214-2221.
[13] Sinha C. R., Bandyopadhyay D., \& Chakravorty A. (1988) Inorg. Chem., 27 (7), 1173-1178.
[14] Bhawmick R., \& Bandyopadhyay P. (1996) Polyhedron, 15 (17), 2923-2926.
[15] Agarwalla U. S. (2023) Int. J. of Chem. Res. and Dev., 5(2), 4-10.
[16] Sheldrick G. M. (1997) SHELX97, University of Gottingen, Germany,
[17] Farrugia L. J. (2003) winGX Version 1.64, An Integrated System of Windows Programs for the Solution, Refinement and Analysis of Single - Crystal X - ray Diffraction Data, Department of Chemistry, University of Glasgow.
[18] PLATON: Spek A. L. (2003) J. Appl. Crystallogr., 36, 7-13.
[19] Farrugia L. J. (1997) J. Appl. Crystallogr., 30, 565 566.
[20] Marciniak R., Rozycka - Skolowska E., \& Pavlyuk V. (2001) Acta. Cryst. Sec. E, 59, 52.
[21] Alsters P. L., Teunissen H. T., Boersma J., Spek A. L., \& van Koten G. (1993) Organometallics, 12 (11), 4691 - 4696.

Volume 13 Issue 6, June 2024

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

 www.ijsr.net
[^0]: *Intramolecular hydrogen bond.

