
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 7, July 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Framework for Natural Neuron Network Modeling:

The Jneopallium Approach

Dmytro Rakovskyi

Jneopallium, Kharkiv, Ukraine

Corresponding Author Email: rakovpublic[at]gmail.com

Abstract: This article presents Jneopallium, a robust framework designed for modeling natural neuron networks with varying levels of

detail. Drawing inspiration from historical advancements in neuropsychology and artificial neural networks, Jneopallium offers a

modular and flexible approach to simulate neural structures. It allows for the definition of multiple signal types, neuron types, and

processing logic, enabling detailed replication of natural cognitive processes. Utilizing Java for implementation, Jneopallium provides an

intuitive interface for researchers to define neural architectures, processing rules, and inputoutput logic. This framework aims to bridge

the gap between neurobiology and computer science, supporting applications in robotics, AI development, and neuroscience research.

The paper details the functional, structural, and IO logic definition processes, showcasing the frameworks versatility and potential for

advancing neural network modeling.

Keywords: Neuron network modeling, Jneopallium, neural architecture, signal processing, neurobiology simulation

1. Introduction

Psychologist Donald Olding Hebb performed the first

theoretical attempt to describe a learning algorithm based on

natural neuron nets in the 1940s [1]. Farley and Wesley

Allison Clark implemented the Hebbian network in code in

1954 at MIT [2]. Psychologist Frank Rosenblatt published the

idea of perceptron in 1958 [3]. In 1982 neurophysiologically

inspired self - organizing maps were described by Teuvo

Kohonen [4] [5]. Neocognitron has been designed by

Kunihiko Fukushima in 1980 [6]. This invention has been

inspired by the visual cortex research of neuropsychologists

David Hunter Hubel and Torsten Nils Wiesel [7].

It is safe to say that a lot of core artificial neuron network

algorithms are low - detailed models of natural neuron

networks and/or their parts.

2. Problem Formalization

Accordingly, to the previous section, it seems logical to have

some unified framework for building custom depth

detalization natural neuron networks modeling framework.

After high - level research of neurobiology and comparison

with current artificial neuron network algorithms, I have

formed the next statements:

1) Neurons can process 2 classes of signals: biochemical

and bioelectrical. Differences in bioelectrical and

biochemical signal propagation are significant.

2) Different signals have different propagation times.

3) The set of neuron receptors defines signals it can process

and structure. The set of receptors in different neuron

types is different.

4) Cognitive processes are time - related.

The modelling framework should be able to:

1) Define different types of signals.

2) Define a neuron that able to process multiple signal types

with different processing logic for each signal type.

3) Define different types of neurons.

4) Define relative processing rates for 2 classes of signals.

5) Define the relative processing rate for each type of signal.

These requirements have been used for jneopallium

implementation.

Natural neuron net modeling process

High - level architecture

Jneopallium is a set of interfaces and implementations that

separate neuron network processing logic from actual neuron

and signal types in a similar way collections separate storage

logic from actual object types that it stores with the help of

generics. I have chosen java for implementation because it is

suitable for interfaces and generic usage and provides some

sort of type safety. All jneopallium code placed in github [8]

and gitlab [9] repositories are distributed by BSD 3 – Clause

License.

To build a model user should define signal types, neuron

types, input sources, and output collector classes. Then

describe the neuron network structure, specify technical

information in the configuration file, and launch jneupallium

with the specified path to the user - defined code jar, neuron

network structure, and configuration file. The second reason

why I have chosen java for implementation is because it can

load user - defined code in runtime. Jneopallium can work in

3 modes: local, cluster http and cluster grpc. Grpc allows to

run jneopallium on FPGAs. For this article, I have split the

modeling process into 3 parts: functional logic definition,

structural logic definition, and io logic definition. The

following 3 sub - sections describe the modeling process.

Functional Logic Definition

The modeling process starts with the signal definition. The

user should define all signals in the system and the weight

object that will be used for learning. The next step is neuron

interface definitions. Each processing mechanism should

have a separate neuron interface that extends the basic

INeuron interface. The third step is signal processor

Paper ID: SR24703042047 DOI: https://dx.doi.org/10.21275/SR24703042047 284

https://www.ijsr.net/
mailto:rakovpublic@gmail.com

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 7, July 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

implementation. Signal processors should implement an

ISignalProcessor interface parametrized by signal process and

neuron interface that has suitable mechanisms for processing.

Then user should implement neurons by extending the

Neuron. class and implementing the interface or interfaces

defined in step 2. Multiple inheritance via interface

implementation allows the user to implement neurons with

multiple processing mechanisms that can process different

signal types. Also, the neuron has Axon. class and Dendrites.

class. Dendreties incapsulate input addresses (input source

name or layer id and neuron id), signal types, and weights.

These weights apply to input signals and should be used in the

learning process. Axon incapsulate output addresses (layer id

and neuron id) signal type and weight. These weights apply

to output signals and also should be used in the learning

process.

To show an example of a modeling process I have defined 4

signals and 3 neurons in the separate test branch [10].

IntSignal. class represents a signal described with an integer

value. DoubleSignal. class represents signal described with

double value. IntProcessor and DoubleProcessor classes

describe the processing logic for these signals.

NeuronIntField and NeuronWithDoubleField interfaces

describe neurons with an internal structure that allows to

process IntSignal and DoubleSignal respectively. NeuronC

and NeuronB are neuron implementations that process just

one type of signal. NeuronA is neuron that can process both

signals i. e. it has 2 receptors.

Structural logic definition

After all functional model parts have been defined user should

define the structure of the neural network. I recommend using

a statistical approach i. e. finding the probability appearance

of each neuron on each layer. It allows for modeling

horizontal structure. In order to define what neuron order on

layers can be user should implement NeighboringRules

interface. This feature allows for the modeling of vertical

neuron structure.

Structure modeling examples are placed here [11]. Structure

modeling was performed with the help of

NeuronNetStructureGenerator. It requires hash map with

layer sizes, hash map with statistical properties for each

neuron type, a list of NeighboringRules, and class that

implements IConnectionGenerator. IConnectionGenerator

describes how to connect neurons.

I/O logic definition

I/O logic describes input sources and output destinations. The

neuron net can have multiple inputs. To define the input

source user should implement the interface IInitInput. Each

input has a default processing frequency that shows how often

signals from the input will be propagated to neurons.

Processing frequency can be modified with the help of signal

sending to CycleNeuron (more details about it will be in the

next sub - section). The way how input signals propagate to

neurons should be described with the help of the

implementation of InputInitStrategy interface. Each input

source can have a separate InputInitStrategy. If the input is

another neuron network output, signals can be send to the

neuron network. In this case, input should be implemented

INeuronNetInput interface. This feature can be useful to build

modular models in order to simplify learning. To define the

output destination user should implement IOutputAggregator

interface. The example of i/o logic definition is placed in this

package [12].

Signals processing frequency

The signal processing frequency is defined by 2 processing

loops. Fast loop processes every processing iteration and slow

loop processes once in n iterations of the fast loop. The n is

defined in CycleNeuron and can be changed with the help of

sending the signal to layer with id –2147483648 and neuron

with id 0. Each signal type and input source have

ProcessingFrequency that is described with an integer field

loop and long field epoch. Signal with ProcessingFrequency

loop 1 will be processed each time of fast loop processing,

with value 2 once in 2 processing, with value 3 once in 3

processing, etc. ProcessingFrequency epoch uses the same

logic but for a slow loop. The following code describes all

possible signal to CycleNeuron and processing logic [13].

Layer sizing

Layer can be sized with the help of signal sending to

LayerManipulatingNeuron. It is situated on each layer with id

–9 223 372 036 854 775 808 and can create and delete

neurons. Here You can find the list of signal and processing

logic [14].

Additional features

There exists the ability to define any number of discriminators

for neuron networks. It can be used to implement GAN. Also,

the user can store and extract parameters in layers.

Configuration files

Examples of configuration files can be found here [15].

Application, monetization, competitors

Application

Models built with the help of jneopallium can be used for

robotics. The output and input are defined by the user so it can

directly communicate with controllers. I expect that general

AI can be implemented with such an approach.

Also, such models can be used for company management in

environments with different volatility signals and metrics.

It can be used for natural neuron network modeling especially

when should model control structure and structure with

different deviations.

It can be used for autonomous mission control when the

connection latency to high and exists high conditions and

mission flow uncertainty.

Paper ID: SR24703042047 DOI: https://dx.doi.org/10.21275/SR24703042047 285

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 7, July 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Monetization

Jneopallium has a few scenarios of monetization. The first

one is through building models for different products. The

other way of monetization is providing hosting services the

same way cloud providers do with Spark. The third way is

FPGAs optimization for a model.

Competitors

The closest competitor for jneopallium is NEURON

Simulator [16] [17] and CoreNeuron [18]. It allows the

building of highly detailed models of natural neuron

networks. The main difference is that jneopallium allows

users to choose the level of detalization. Jneopallium's main

purpose is to be a bridge between neurobiology and computer

science. NEURON Simulator and CoreNeuron main purpose

is to build an exact copy of a natural neuron network.

Thank You for your attention.

Competitors

Jneopallium represents a significant step forward in the

modeling of natural neuron networks, offering a versatile and

scalable framework that integrates the complexities of

neurobiology with the precision of computer science. By

allowing users to define various neuron and signal types,

processing logic, and neural structures, Jneopallium

facilitates the creation of detailed and functional neural

models. Its potential applications span across robotics,

artificial intelligence, and neuroscience research, providing a

valuable tool for exploring and understanding cognitive

processes. As a bridge between the fields of neurobiology and

computer science, Jneopallium stands out for its ability to

simulate natural neural networks with customizable levels of

detail, promising advancements in both theoretical and

practical domains.

Author’s Contributions: Architecture design, code

implementation, testing – Dmytro Rakovskyi

References

[1] Hebb D (1949). The Organization of Behavior. New

York: Wiley. ISBN 978 - 1 - 135 - 63190 - 1.

[2] Farley B, W. A. Clark (1954). "Simulation of Self -

Organizing Systems by Digital Computer". IRE

Transactions on Information Theory.4 (4): 76–84. doi:

10.1109/TIT.1954.1057468.

[3] Rosenblatt F (1957). "The Perceptron—a perceiving

and recognizing automaton". Report 85 - 460 - 1.

Cornell Aeronautical Laboratory.

[4] Kohonen T (1982). "Self - Organized Formation of

Topologically Correct Feature Maps". Biological

Cybernetics.43 (1): 59–69. doi: 10.1007/bf00337288.

S2CID 206775459.

[5] Von der Malsburg C (1973). "Self - organization of

orientation sensitive cells in the striate cortex".

Kybernetik.14 (2): 85–100. doi: 10.1007/bf00288907.

PMID 4786750. S2CID 3351573.

[6] Fukushima, Kunihiko (1980). "Neocognitron: A Self -

organizing Neural Network Model for a Mechanism of

Pattern Recognition Unaffected by Shift in Position"

(PDF). Biological Cybernetics.36 (4): 193–202. doi:

10.1007/BF00344251. PMID 7370364. S2CID

206775608. Archived (PDF) from the original on 3 June

2014. Retrieved 16 November 2013.

[7] Hubel, D. H.; Wiesel, T. N. (1968 - 03 - 01). "Receptive

fields and functional architecture of monkey striate

cortex". The Journal of Physiology.195 (1): 215–243.

doi: 10.1113/jphysiol.1968. sp008455. ISSN 0022 -

3751. PMC 1557912. PMID 4966457.

[8] https://github.com/rakovpublic/jneopallium

[9] https://gitlab.com/rakovpublic/jneopallium

[10] https://github.com/rakovpublic/jneopallium/tree/test/alf

aTestAndGettingStarted

[11] https://github.com/rakovpublic/jneopallium/tree/test/alf

aTestAndGettingStarted/worker/src/main/java/com/rak

ovpublic/jneuropallium/worker/test/definitions/structur

allogic

[12] https://github.com/rakovpublic/jneopallium/tree/test/alf

aTestAndGettingStarted/worker/src/main/java/com/rak

ovpublic/jneuropallium/worker/test/definitions/ioutils

[13] https://github.com/rakovpublic/jneopallium/tree/master

/worker/src/main/java/com/rakovpublic/jneuropallium/

worker/net/neuron/impl/cycleprocessing

[14] https://github.com/rakovpublic/jneopallium/tree/master

/worker/src/main/java/com/rakovpublic/jneuropallium/

worker/net/neuron/impl/layersizing

[15] https://github.com/rakovpublic/jneopallium/tree/test/alf

aTestAndGettingStarted/worker/src/main/resources

[16] https://github.com/neuronsimulator/nrn

[17] https://nrn. readthedocs. io/en/8.2.4/

[18] https://github.com/BlueBrain/CoreNeuron

Paper ID: SR24703042047 DOI: https://dx.doi.org/10.21275/SR24703042047 286

https://www.ijsr.net/

