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Abstract: This article presents Jneopallium, a robust framework designed for modeling natural neuron networks with varying levels of 

detail. Drawing inspiration from historical advancements in neuropsychology and artificial neural networks, Jneopallium offers a 

modular and flexible approach to simulate neural structures. It allows for the definition of multiple signal types, neuron types, and 

processing logic, enabling detailed replication of natural cognitive processes. Utilizing Java for implementation, Jneopallium provides an 

intuitive interface for researchers to define neural architectures, processing rules, and inputoutput logic. This framework aims to bridge 

the gap between neurobiology and computer science, supporting applications in robotics, AI development, and neuroscience research. 

The paper details the functional, structural, and IO logic definition processes, showcasing the frameworks versatility and potential for 

advancing neural network modeling.  
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1. Introduction 
  

Psychologist Donald Olding Hebb performed the first 

theoretical attempt to describe a learning algorithm based on 

natural neuron nets in the 1940s [1]. Farley and Wesley 

Allison Clark implemented the Hebbian network in code in 

1954 at MIT [2]. Psychologist Frank Rosenblatt published the 

idea of perceptron in 1958 [3]. In 1982 neurophysiologically 

inspired self - organizing maps were described by Teuvo 

Kohonen [4] [5]. Neocognitron has been designed by 

Kunihiko Fukushima in 1980 [6]. This invention has been 

inspired by the visual cortex research of neuropsychologists 

David Hunter Hubel and Torsten Nils Wiesel [7].  

 

It is safe to say that a lot of core artificial neuron network 

algorithms are low - detailed models of natural neuron 

networks and/or their parts.  

  

2. Problem Formalization 
  

Accordingly, to the previous section, it seems logical to have 

some unified framework for building custom depth 

detalization natural neuron networks modeling framework. 

After high - level research of neurobiology and comparison 

with current artificial neuron network algorithms, I have 

formed the next statements:  

1) Neurons can process 2 classes of signals: biochemical 

and bioelectrical. Differences in bioelectrical and 

biochemical signal propagation are significant.  

2) Different signals have different propagation times.  

3) The set of neuron receptors defines signals it can process 

and structure. The set of receptors in different neuron 

types is different.  

4) Cognitive processes are time - related.  

 

The modelling framework should be able to:  

1) Define different types of signals.  

2) Define a neuron that able to process multiple signal types 

with different processing logic for each signal type.  

3) Define different types of neurons.  

4) Define relative processing rates for 2 classes of signals.  

5) Define the relative processing rate for each type of signal.  

 

These requirements have been used for jneopallium 

implementation.  

 

Natural neuron net modeling process 

  

High - level architecture 

 

Jneopallium is a set of interfaces and implementations that 

separate neuron network processing logic from actual neuron 

and signal types in a similar way collections separate storage 

logic from actual object types that it stores with the help of 

generics. I have chosen java for implementation because it is 

suitable for interfaces and generic usage and provides some 

sort of type safety. All jneopallium code placed in github [8] 

and gitlab [9] repositories are distributed by BSD 3 – Clause 

License.  

 

To build a model user should define signal types, neuron 

types, input sources, and output collector classes. Then 

describe the neuron network structure, specify technical 

information in the configuration file, and launch jneupallium 

with the specified path to the user - defined code jar, neuron 

network structure, and configuration file. The second reason 

why I have chosen java for implementation is because it can 

load user - defined code in runtime. Jneopallium can work in 

3 modes: local, cluster http and cluster grpc. Grpc allows to 

run jneopallium on FPGAs. For this article, I have split the 

modeling process into 3 parts: functional logic definition, 

structural logic definition, and io logic definition. The 

following 3 sub - sections describe the modeling process.  

  

Functional Logic Definition 

  

The modeling process starts with the signal definition. The 

user should define all signals in the system and the weight 

object that will be used for learning. The next step is neuron 

interface definitions. Each processing mechanism should 

have a separate neuron interface that extends the basic 

INeuron interface. The third step is signal processor 
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implementation. Signal processors should implement an 

ISignalProcessor interface parametrized by signal process and 

neuron interface that has suitable mechanisms for processing. 

Then user should implement neurons by extending the 

Neuron. class and implementing the interface or interfaces 

defined in step 2. Multiple inheritance via interface 

implementation allows the user to implement neurons with 

multiple processing mechanisms that can process different 

signal types. Also, the neuron has Axon. class and Dendrites. 

class. Dendreties incapsulate input addresses (input source 

name or layer id and neuron id), signal types, and weights. 

These weights apply to input signals and should be used in the 

learning process. Axon incapsulate output addresses (layer id 

and neuron id) signal type and weight. These weights apply 

to output signals and also should be used in the learning 

process.  

 

To show an example of a modeling process I have defined 4 

signals and 3 neurons in the separate test branch [10]. 

IntSignal. class represents a signal described with an integer 

value. DoubleSignal. class represents signal described with 

double value. IntProcessor and DoubleProcessor classes 

describe the processing logic for these signals. 

NeuronIntField and NeuronWithDoubleField interfaces 

describe neurons with an internal structure that allows to 

process IntSignal and DoubleSignal respectively. NeuronC 

and NeuronB are neuron implementations that process just 

one type of signal. NeuronA is neuron that can process both 

signals i. e. it has 2 receptors.  

  

Structural logic definition 

  

After all functional model parts have been defined user should 

define the structure of the neural network. I recommend using 

a statistical approach i. e. finding the probability appearance 

of each neuron on each layer. It allows for modeling 

horizontal structure. In order to define what neuron order on 

layers can be user should implement NeighboringRules 

interface. This feature allows for the modeling of vertical 

neuron structure.  

 

Structure modeling examples are placed here [11]. Structure 

modeling was performed with the help of 

NeuronNetStructureGenerator. It requires hash map with 

layer sizes, hash map with statistical properties for each 

neuron type, a list of NeighboringRules, and class that 

implements IConnectionGenerator. IConnectionGenerator 

describes how to connect neurons.  

  

I/O logic definition 

  

I/O logic describes input sources and output destinations. The 

neuron net can have multiple inputs. To define the input 

source user should implement the interface IInitInput. Each 

input has a default processing frequency that shows how often 

signals from the input will be propagated to neurons. 

Processing frequency can be modified with the help of signal 

sending to CycleNeuron (more details about it will be in the 

next sub - section). The way how input signals propagate to 

neurons should be described with the help of the 

implementation of InputInitStrategy interface. Each input 

source can have a separate InputInitStrategy. If the input is 

another neuron network output, signals can be send to the 

neuron network. In this case, input should be implemented 

INeuronNetInput interface. This feature can be useful to build 

modular models in order to simplify learning. To define the 

output destination user should implement IOutputAggregator 

interface. The example of i/o logic definition is placed in this 

package [12].  

  

Signals processing frequency 

  

The signal processing frequency is defined by 2 processing 

loops. Fast loop processes every processing iteration and slow 

loop processes once in n iterations of the fast loop. The n is 

defined in CycleNeuron and can be changed with the help of 

sending the signal to layer with id –2147483648 and neuron 

with id 0. Each signal type and input source have 

ProcessingFrequency that is described with an integer field 

loop and long field epoch. Signal with ProcessingFrequency 

loop 1 will be processed each time of fast loop processing, 

with value 2 once in 2 processing, with value 3 once in 3 

processing, etc. ProcessingFrequency epoch uses the same 

logic but for a slow loop. The following code describes all 

possible signal to CycleNeuron and processing logic [13].  

  

Layer sizing 

  

Layer can be sized with the help of signal sending to 

LayerManipulatingNeuron. It is situated on each layer with id 

–9 223 372 036 854 775 808 and can create and delete 

neurons. Here You can find the list of signal and processing 

logic [14].  

  

Additional features 

  

There exists the ability to define any number of discriminators 

for neuron networks. It can be used to implement GAN. Also, 

the user can store and extract parameters in layers.  

  

Configuration files 

  

Examples of configuration files can be found here [15].  

  

Application, monetization, competitors 

  

Application 

  

Models built with the help of jneopallium can be used for 

robotics. The output and input are defined by the user so it can 

directly communicate with controllers. I expect that general 

AI can be implemented with such an approach.  

 

Also, such models can be used for company management in 

environments with different volatility signals and metrics.  

 

It can be used for natural neuron network modeling especially 

when should model control structure and structure with 

different deviations.  

 

It can be used for autonomous mission control when the 

connection latency to high and exists high conditions and 

mission flow uncertainty.  
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Monetization 

  

Jneopallium has a few scenarios of monetization. The first 

one is through building models for different products. The 

other way of monetization is providing hosting services the 

same way cloud providers do with Spark. The third way is 

FPGAs optimization for a model.  

  

Competitors 

The closest competitor for jneopallium is NEURON 

Simulator [16] [17] and CoreNeuron [18]. It allows the 

building of highly detailed models of natural neuron 

networks. The main difference is that jneopallium allows 

users to choose the level of detalization. Jneopallium's main 

purpose is to be a bridge between neurobiology and computer 

science. NEURON Simulator and CoreNeuron main purpose 

is to build an exact copy of a natural neuron network.  

  

Thank You for your attention.  

 

Competitors 

Jneopallium represents a significant step forward in the 

modeling of natural neuron networks, offering a versatile and 

scalable framework that integrates the complexities of 

neurobiology with the precision of computer science. By 

allowing users to define various neuron and signal types, 

processing logic, and neural structures, Jneopallium 

facilitates the creation of detailed and functional neural 

models. Its potential applications span across robotics, 

artificial intelligence, and neuroscience research, providing a 

valuable tool for exploring and understanding cognitive 

processes. As a bridge between the fields of neurobiology and 

computer science, Jneopallium stands out for its ability to 

simulate natural neural networks with customizable levels of 

detail, promising advancements in both theoretical and 

practical domains.  

 

Author’s Contributions: Architecture design, code 

implementation, testing – Dmytro Rakovskyi 
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