
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 7, July 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Event Driven Data Architecture: Design and

Implementation with Kinesis and Spark Streaming

Arjun Mantri

Independent Researcher, Bellevue, USA

Email: mantri.arjun[at]gmail.com

ORCID Number- 0009-0005-7715-0108

Abstract: This paper reviews the design and implementation of an event-driven data architecture using Amazon Kinesis and Apache

Spark Streaming. The evolution of real-time data processing has enabled organizations to handle and analyze data more dynamically and

responsively. Amazon Kinesis is highlighted for its robust data ingestion capabilities, while Apache Spark Streaming is noted for its high-

throughput, fault-tolerant stream processing. Integrating these technologies allows the creation of a scalable, low-latency, and fault-

tolerant system. The paper explores various case studies to illustrate practical applications and benefits across industries such as OTT

streaming services, travel booking platforms, and social media networks. For example, Netflix employs this architecture to personalize

content recommendations and monitor service quality, while Expedia uses it for real-time availability and pricing updates. LinkedIn

leverages the architecture for monitoring user activities and detecting trends in real-time. Implementation details include setting up Kinesis

for real-time data ingestion and configuring Spark Streaming for processing and analytics. The system's scalability is ensured by

dynamically adjusting Kinesis shards and Spark executors, while fault tolerance is achieved through data replication and checkpointing

mechanisms. The findings demonstrate that integrating Amazon Kinesis and Apache Spark Streaming creates a powerful, event-driven

data architecture that significantly enhances operational efficiency and supports advanced analytics. This architecture is crucial for

modern data-driven applications, providing organizations with the ability to build scalable, real-time data pipelines that enhance

performance and support sophisticated data analysis.

Keywords: Real-time data processing, Event-driven architecture, Amazon Kinesis, Apache Spark Streaming, Scalable data pipelines.

1. Introduction

The advent of real-time data processing has revolutionized the

way organizations handle and analyze data, enabling more

responsive and dynamic applications (Zaharia et al., 2012).

This paper reviews the design and implementation of an

event-driven data architecture using Amazon Kinesis and

Apache Spark Streaming. By leveraging Kinesis for data

ingestion and Spark Streaming for real-time processing, this

architecture supports high scalability, low latency, and robust

fault tolerance. The findings from various case studies

illustrate the practical applications and benefits of this

architecture in industries such as OTT (over-the-top)

streaming services, travel booking platforms, and social

media networks.

2. Event Driven Data Architecture

a) Overview

An event-driven data architecture processes data as it arrives

in real-time, rather than processing it in batches. This

approach is particularly useful for applications requiring low

latency and high throughput. The architecture typically

consists of three main components: data ingestion, real-time

processing, and data storage/analytics (AWS, 2020a).

Figure 1: Event-Driven Data Architecture

b) Data Ingestion with Amazon Kinesis

Amazon Kinesis is a fully managed service for real-time data

streaming. It allows the collection, processing, and analysis

of real-time data to provide timely insights and react quickly

to new information. Kinesis comprises several components:

• Kinesis Data Streams: Enables real-time ingestion and

processing of large streams of data records (AWS, 2020b).

Figure 2: Data Ingestion with Amazon Kinesis

• Kinesis Data Firehose: Simplifies the process of loading

streaming data into data lakes, data stores, and

analytics services (AWS, 2020c).
• Kinesis Data Analytics: Allows the running of real-time

SQL queries on streaming data (AWS, 2020d).

c) Real-Time Processing with Apache Spark Streaming

Figure 3: Apache Spark Streaming

Paper ID: SR24712103845 DOI: https://dx.doi.org/10.21275/SR24712103845 653

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 7, July 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Apache Spark Streaming extends the core Spark API to

enable scalable, high-throughput, and fault-tolerant stream

processing of live data streams (Karau et al., 2015). Spark

Streaming can ingest data from various sources like Kafka,

Flume, and Kinesis, process it using complex algorithms

expressed with high-level functions like map, reduce, join,

and window, and push out the processed data to file systems,

databases, and live dashboards (Zaharia et al., 2012).

d) Scalability and Fault Tolerance

The integration of Kinesis and Spark Streaming ensures that

the system can scale to handle high data volumes and

maintain low latency. Kinesis can elastically scale the

ingestion capacity, while Spark Streaming can scale the

processing capacity by adding more nodes to the Spark cluster

(Zaharia et al., 2013). Fault tolerance is achieved through

Kinesis's data replication and Spark Streaming's support for

checkpointing and replaying data (Karau et al., 2015).

3. Case Studies

a) OTT Streaming Services

In the OTT streaming industry, real-time data processing is

crucial for delivering personalized content recommendations

and monitoring service quality. For instance, Netflix uses a

real-time data architecture to process user interactions and

streaming logs. Kinesis ingests this data, and Spark Streaming

processes it to generate insights and drive recommendations

(Netflix Technology Blog, 2020).

b) Travel Booking Platforms

Travel booking platforms leverage real-time data to provide

up-to-date availability and pricing information. Companies

like Expedia use Kinesis to collect data from various sources,

including user searches and booking transactions. Spark

Streaming processes this data to update availability and

pricing in real-time, enhancing user experience and

operational efficiency (Expedia Engineering Blog, 2019).

c) Social Media Networks

Social media networks require real-time data processing to

monitor user activities, detect trends, and moderate content.

For example, LinkedIn uses a similar architecture to process

user interactions and engagement metrics in real-time.

Kinesis streams the data, and Spark Streaming processes it to

generate analytics and support various features like feed

ranking and spam detection (LinkedIn Engineering Blog,

2018).

4. Implementation Details

Setting Up Amazon Kinesis

1) Create a Kinesis Stream: Define the stream with the

required shard capacity based on the expected data

volume (AWS, 2020b).

2) Ingest Data: Use the Kinesis Producer Library (KPL) or

the AWS SDK to send data records to the stream (AWS,

2020b).

3) Configure Kinesis Data Firehose: Set up the delivery

stream to transfer data from Kinesis Data Streams to the

target destinations such as S3, Redshift, or Elasticsearch

(AWS, 2020c).

Configuring Apache Spark Streaming

1) Set Up a Spark Cluster: Deploy a Spark cluster on

Amazon EMR or another supported platform (AWS,

2020e).

2) Integrate with Kinesis: Use the Spark-Kinesis

integration library to read data from the Kinesis stream

(Karau et al., 2015).

3) Develop Spark Streaming Applications: Write Spark

applications to process the ingested data. This may include

transformations, aggregations, and machine learning

algorithms (Zaharia et al., 2012).

Deploy and Monitor: Deploy the Spark applications and use

monitoring tools to ensure the system's performance and

reliability (AWS, 2020e).

Benefits of the Architecture

a) High Scalability

The architecture can handle large volumes of data by scaling

Kinesis shards and Spark executors. This elastic scalability

ensures that the system can adapt to varying data loads

without compromising performance (Zaharia et al., 2013).

b) Low Latency

The real-time processing capabilities of Spark Streaming,

combined with the low-latency data ingestion of Kinesis,

enable the system to deliver timely insights and support

dynamic applications (Zaharia et al., 2012).

c) Robust Fault Tolerance

Both Kinesis and Spark Streaming offer robust fault-tolerant

features. Kinesis replicates data across multiple availability

zones, while Spark Streaming supports checkpointing and

replay mechanisms to recover from failures (Karau et al.,

2015).

d) Advanced Analytics

By integrating with Spark, the architecture supports advanced

analytics, including machine learning and graph processing.

This enables organizations to derive deeper insights from

their data and build sophisticated data-driven applications

(Zaharia et al., 2013).

5. Findings and Conclusion

The integration of Amazon Kinesis and Apache Spark

Streaming creates a powerful event-driven data architecture

that supports high scalability, low latency, and robust fault

tolerance. Case studies from various industries demonstrate

that this architecture can significantly enhance operational

efficiency and support advanced analytics. Organizations can

leverage this architecture to build scalable, real-time data

pipelines, enabling more responsive and dynamic

applications.

This review paper provides a comprehensive overview of the

design and implementation of an event-driven data

architecture using Amazon Kinesis and Apache Spark

Streaming. The integration of these technologies enables

organizations to handle and analyze data in real-time,

supporting high scalability, low latency, and robust fault

tolerance. The practical applications and benefits of this

Paper ID: SR24712103845 DOI: https://dx.doi.org/10.21275/SR24712103845 654

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 7, July 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

architecture are illustrated through various case studies from

different industries. The findings demonstrate that integrating

Kinesis and Spark Streaming can significantly enhance

operational efficiency and support advanced analytics,

making it a valuable architecture for modern data-driven

applications.

References

[1] AWS. (2020a). Real-Time Data Processing with

Amazon Kinesis. Retrieved from

https://aws.amazon.com/whitepapers/

[2] AWS. (2020b). Kinesis Data Streams. Retrieved from

https://docs.aws.amazon.com/kinesis/

[3] AWS. (2020c). Kinesis Data Firehose. Retrieved from

https://docs.aws.amazon.com/kinesis/

[4] AWS. (2020d). Kinesis Data Analytics. Retrieved from

https://docs.aws.amazon.com/kinesis/

[5] AWS. (2020e). Using Apache Spark with Amazon

EMR. Retrieved from

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/

emr-spark.html

[6] Expedia Engineering Blog. (2019). Real-Time Data

Processing at Expedia. Retrieved from

https://techblog.expedia.com/

[7] Karau, H., Konwinski, A., Wendell, P., & Zaharia, M.

(2015). Learning Spark: Lightning-Fast Big Data

Analysis. O'Reilly Media.

[8] LinkedIn Engineering Blog. (2018). Real-Time Data

Processing at LinkedIn. Retrieved from

https://engineering.linkedin.com/

[9] Netflix Technology Blog. (2020). Real-Time Data

Architecture at Netflix. Retrieved from

https://netflixtechblog.com/

[10] Zaharia, M., Das, T., Li, H., et al. (2012). Discretized

Streams: An Efficient and Fault-Tolerant Model for

Stream Processing on Large Clusters. HotCloud, 2012.

[11] Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker,

S., & Stoica, I. (2013). Spark: Cluster Computing with

Working Sets. HotCloud, 2013.

Paper ID: SR24712103845 DOI: https://dx.doi.org/10.21275/SR24712103845 655

https://www.ijsr.net/
https://aws.amazon.com/whitepapers/
https://docs.aws.amazon.com/kinesis/
https://docs.aws.amazon.com/kinesis/
https://docs.aws.amazon.com/kinesis/
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark.html
https://engineering.linkedin.com/
https://netflixtechblog.com/

