
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 7, July 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Genetic Algorithms - A Brief Study

Ahana Srinath Murthy1, Dr. Dattatreya P. Mankame2

1Student, Department of Computer Science and Business Systems, Dayananda Sagar College of Engineering, Bengaluru, India

2Professor, Department of Computer Science and Business Systems, Dayananda Sagar College of Engineering, Bengaluru, India

Abstract: Genetic algorithms (GAs) are a powerful optimization technique inspired by the principles of natural selection and genetics.

This paper provides a comprehensive overview of the various types of GAs, including basic, steady - state, and hybrid models, and explores

their diverse applications in fields such as neural network optimization, travelling salesman problem, portfolio optimization, electrical

circuit design, scheduling, and drug design. By leveraging evolutionary processes, GAs have demonstrated their ability to effectively

navigate complex search spaces and identify optimal solutions. However, their implementation presents several challenges, including

premature convergence, computational intensity, and the need for careful parameter tuning. Through a synthesis of foundational works

by Holland (1975), Goldberg (1989), and contemporary studies by Deb (2001) and Michalewicz (1996), this paper highlights both the

strengths and limitations of GAs. It underscores the potential for future advancements in addressing current challenges, thereby

enhancing the efficiency and applicability of genetic algorithms in solving increasingly complex real - world problems.

Keywords: Genetic Algorithms, Evolutionary Algorithms

1. Introduction

Genetic algorithms (GAs) are an optimisation and search

technique based on natural selection and genetics principles.

They belong to the larger class of evolutionary algorithms

(EAs) and are used to find approximate solutions to complex

problems that may be difficult to solve using traditional

methods. They emulate evolution, including reproduction and

mutations. GAs create a population of potential solutions,

called individuals or chromosomes, and evolve them over

successive generations. Each individual is evaluated using a

fitness function that measures how well it solves the problem.

The most fit individuals are then selected to reproduce, with

crossover and mutation operations applied to create new

offspring. This process mimics natural evolution, where the

fittest individuals are likelier to pass on their genes to the next

generation

The strength of genetic algorithms lies in their ability to

search large and complex spaces efficiently. They are handy

for problems where the search space is too vast to explore

exhaustively; the objective function could be smoother or

have many local optima. Using Crossover and Mutation, GAs

can explore new areas of the search space and avoid getting

trapped in local optima. This makes them suitable for various

applications, including optimisation, machine learning,

engineering design, and artificial intelligence. GAs have been

successfully applied to multiple fields, such as scheduling,

robotics, bioinformatics, and game development,

demonstrating their versatility and robustness in solving

complex problems.

2. Basic Schema of A Genetic Algorithm

The basic schema of a genetic algorithm involves several key

components and steps, which are executed iteratively until a

termination criterion is met. Here's an in - depth description

of the basic schema of a genetic algorithm:

a) Initialization

The process begins with the creation of an initial population

of individuals. Each individual, also known as a chromosome,

represents a potential solution to the problem. The population

size, denoted as N, is a critical parameter influencing the

algorithm's performance.

• Population Representation: Individuals are typically

encoded as binary strings, real numbers, or other suitable

data structures.

• Random Initialization: The initial population is

randomly generated to ensure diverse solutions.

b) Evaluation

Each individual in the population is evaluated using a fitness

function. The fitness function measures the quality of the

solution the individual represents, indicating how well it

solves the problem at hand.

• Fitness Function: A problem - specific function that

assigns a fitness score to each individual based on their

performance.

c) Selection

Selection is choosing individuals from the current population

to create offspring for the next generation. The goal is to

select individuals with higher fitness scores who are more

likely to produce better offspring.

Selection Methods:

• Roulette Wheel Selection: Individuals are selected with

a probability proportional to their fitness.

• Tournament Selection: A set of individuals is randomly

chosen, and the best individual from this set is selected.

• Rank - Based Selection: Individuals are ranked based on

their fitness, and selection is based on these ranks.

• Stochastic Universal Sampling: A method that ensures a

more even selection pressure.

d) Crossover (Recombination)

Crossover is a genetic operator that combines the genetic

information of two parent individuals to produce one or more

offspring. It mimics the process of sexual reproduction.

Paper ID: SR24721004409 DOI: https://dx.doi.org/10.21275/SR24721004409 1196

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 7, July 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Types of Crossover:

• Single - Point Crossover: A crossover point is selected,

and the genetic material is exchanged between parents at

this point.

• Two - Point Crossover: Two crossover points are

selected, and segments between these points are swapped.

• Uniform Crossover: Each gene is independently chosen

from one of the parents with a certain probability.

e) Mutation

Mutation is a genetic operator that introduces random changes

to an individual's genes. It helps maintain genetic diversity

within the population and prevents premature convergence to

local optima.

Mutation Rate: The probability of a gene undergoing

mutation is typically a small value.

Types of Mutation:

• Bit Flip Mutation: In binary encoding, a bit is flipped

from 0 to 1 or vice versa.

• Gaussian Mutation: A gene is altered by adding a small

Gaussian - distributed random value in real - valued

encoding.

• Swap Mutation: In permutation - based encoding, two

genes are swapped.

f) Replacement

Replacement involves forming a new population by

combining the offspring with the current population. The goal

is to maintain a fixed population size while ensuring that the

most fit individuals are carried forward.

Replacement Strategies:

• Generational Replacement: The entire population is

replaced by the offspring.

• Steady - State Replacement: Only a few individuals are

replaced in each generation.

• Elitism: A certain number of the best individuals are

directly copied to the next generation to preserve the best

solutions.

g) Termination

The algorithm terminates when a predefined stopping

criterion is met. Standard stopping criteria include:

• Maximum Number of Generations: The algorithm stops

after a fixed number of generations.

• Satisfactory Fitness Level: The algorithm stops when an

individual with a satisfactory fitness level is found.

• Convergence: The algorithm stops when the population

shows slight variation, indicating convergence to a

solution.

h) Example Flow

• Initialise the population with random individuals.

• Evaluate the fitness of each individual in the population.

• Select pairs of individuals based on their fitness.

• Apply Crossover to the selected pairs to create offspring.

• Apply Mutation to the offspring to introduce variability.

• Evaluate the fitness of the new offspring.

• Replace the old population with the new offspring,

possibly including some elite individuals from the old

population.

• Terminate if the stopping criterion is met; return to step

3.

3. Implementing Genetic Algorithms

Genetic algorithms (GAs) can be implemented in various

ways, each with unique approaches and techniques to solve

optimization and search problems. Here are some of the main

methods used in genetic algorithms, along with an in - depth

explanation of each:

a) Basic Genetic Algorithm (BGA)

A Basic Genetic Algorithm is the simplest form of GA. It

involves the following steps:

• Initialization: Create an initial population of individuals

randomly.

• Selection: Select individuals based on their fitness for

reproduction.

• Crossover: Combine pairs of individuals (parents) to

produce new offspring (children).

• Mutation: Randomly alter some genes in the offspring.

• Replacement: Form a new population by replacing less

fit individuals with new offspring.

• Termination: Repeat the above steps until a stopping

criterion is met (e. g., a satisfactory fitness level or a

maximum number of generations).

b) Steady - State Genetic Algorithm

• In Steady - State GAs, only a few individuals are replaced

in each generation instead of the entire population. This

approach maintains a constant population size and often

leads to faster convergence.

• Selection: Choose a few parents from the population

based on their fitness.

• Crossover and Mutation: Generate a few offspring from

the selected parents.

• Replacement: Replace the least fit individuals in the

population with the new offspring.

c) Elitist Genetic Algorithm

• Elitist GAs ensure that the best individuals from the

current generation are preserved for the next generation,

ensuring that the best solutions are not lost.

• Elitism: Directly copy a certain number of the best

individuals to the next generation.

• Selection, Crossover, and Mutation: Apply these

operators to the remaining population to create new

offspring.

• Replacement: Combine the elite individuals and the new

offspring to form the next generation.

d) Parallel Genetic Algorithm

• Parallel GAs divide the population into subpopulations

(islands) that evolve independently for a certain number of

generations before exchanging individuals (migration).

• Initialization: Create multiple subpopulations.

• Independent Evolution: Each subpopulation evolves

using standard GA operations.

• Migration: Periodically exchange individuals between

subpopulations to maintain diversity.

• Termination: Continue the evolution and migration until

a stopping criterion is met.

Paper ID: SR24721004409 DOI: https://dx.doi.org/10.21275/SR24721004409 1197

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 7, July 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

e) Distributed Genetic Algorithm

• Similar to parallel GAs, distributed GAs run multiple

instances of GAs on different processors or machines.

However, instead of periodic migrations, they may use

asynchronous communication to exchange individuals.

• Initialization: Create subpopulations on different

processors/machines.

• Independent Evolution: Each subpopulation evolves

separately.

• Asynchronous Communication: Occasionally exchange

individuals between subpopulations as per predefined

rules.

• Termination: The algorithm stops when a global stopping

criterion is met.

f) Adaptive Genetic Algorithm

• Adaptive GAs dynamically adjust the parameters (e. g.,

mutation rate, crossover rate) based on the performance of

the algorithm during the run.

• Initialization: Start with an initial set of parameters.

• Adaptation: Continuously monitor the performance and

adjust the parameters accordingly.

• Evolution: Apply GA operations with adaptive

parameters.

• Termination: Stop when a stopping criterion is met, such

as a maximum number of generations or satisfactory

fitness.

g) Hybrid Genetic Algorithm

• Hybrid GAs combine genetic algorithms with other

optimization techniques (e. g., local search algorithms) to

improve performance.

• Initialization: Create an initial population.

• Selection, Crossover, and Mutation: Apply standard GA

operations.

• Local Search: Apply a local search algorithm to refine the

individuals after crossover and mutation.

• Replacement: Form a new population with refined

individuals.

• Termination: Continue until a stopping criterion is met.

h) Interactive Genetic Algorithm

• Interactive GAs involve human input in evaluating the

fitness of individuals, useful in problems where human

judgement is crucial (e. g., design, art).

• Initialization: Generate an initial population.

• Human Evaluation: Let humans evaluate the fitness of

individuals.

• Selection, Crossover, and Mutation: Apply these

operations based on human feedback.

• Replacement: Form the next generation with the new

offspring.

• Termination: Continue until the human evaluator is

satisfied or a maximum number of generations is reached.

i) Co - evolutionary Genetic Algorithm

• In Co - evolutionary GAs, multiple populations evolve

simultaneously with interactions between them. This

method is used in competitive or cooperative

environments.

• Initialization: Create multiple interacting populations.

• Independent Evolution: Each population evolves using

standard GA operations.

• Interaction: Individuals from different populations

interact (e. g., competition, cooperation) to influence

fitness.

• Replacement: Form new populations based on the

interactions.

• Termination: Continue until a global stopping criterion is

met.

j) Memetic Algorithm

• Memetic Algorithms combine genetic algorithms with

local refinement procedures, often referred to as

"Lamarckian evolution" or "Baldwinian learning. "

• Initialization: Create an initial population.

• Selection, Crossover, and Mutation: Apply standard GA

operations.

• Local Refinement: Apply a local optimization technique

to the offspring.

• Replacement: Form a new population with refined

offspring.

• Termination: Continue until a stopping criterion is met.

4. Applications of Genetic Algorithm

Genetic algorithms (GAs) have been applied successfully

across a variety of fields. Here are a few notable examples

along with an in - depth explanation of each application:

a) Optimization of Neural Networks

GAs optimise the architecture and parameters of neural

networks, which is crucial for improving their performance in

tasks such as image recognition, natural language processing,

and predictive analytics.

• Architecture Optimization: GAs can search through

different neural network architectures, including the

number of layers, number of neurons per layer, and types

of activation functions. This search process helps in

finding the best architecture that offers a good balance

between accuracy and complexity.

• Hyperparameter Tuning: GAs are used to optimise

hyperparameters such as learning rate, batch size, and

dropout rate. By encoding these hyperparameters as genes

in a chromosome, GAs can evolve a population of

candidate solutions and select the ones with the highest

validation accuracy.

b) Travelling Salesman Problem (TSP)

The TSP is a classic optimization problem where the goal is

to find the shortest possible route that visits a set of cities and

returns to the origin city.

• Chromosome Representation: In TSP, a chromosome

represents a possible route encoded as a permutation of

city indices.

• Fitness Function: The fitness function evaluates the total

distance of the route. Shorter routes have higher fitness

scores.

• Crossover and Mutation: Crossover operators, such as

order crossover (OX) and partially matched crossover

(PMX), create new routes by combining segments from

parent routes. Mutation operators, like swap mutation and

inversion mutation, introduce variability by altering the

order of cities in a route.

Paper ID: SR24721004409 DOI: https://dx.doi.org/10.21275/SR24721004409 1198

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 7, July 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

• Optimization: GAs iteratively improve the population of

routes, gradually converging towards the shortest possible

route.

c) Portfolio Optimization

GAs are applied in finance to optimise investment portfolios

by selecting the best combination of assets that maximise

returns and minimise risk.

• Chromosome Representation: Each chromosome

represents a portfolio, with genes encoding the proportion

of the total investment allocated to each asset.

• Fitness Function: The fitness function is typically based

on a combination of expected return and risk (e. g., using

the Sharpe ratio or mean - variance optimization).

• Selection and Crossover: Selection methods like roulette

wheel or tournament selection choose high - performing

portfolios for reproduction. Crossover operators blend

asset allocations from parent portfolios to create new

portfolios.

• Mutation: Mutation introduces small changes in asset

allocation to explore new potential solutions and prevent

premature convergence.

d) Design of Electrical Circuits

GAs are used to design electrical circuits, optimising

component values and configurations to meet specific

performance criteria.

• Chromosome Representation: A chromosome represents

the configuration of an electrical circuit, including

component types, values, and connections.

• Fitness Function: The fitness function evaluates the

circuit’s performance based on criteria such as power

consumption, signal integrity, and cost.

• Crossover and Mutation: Crossover combines sections of

parent circuits to create new designs, while mutation alters

component values or connections to introduce new

variations.

• Evolution: GAs evolve the population of circuit designs,

iteratively improving their performance towards the

desired specifications.

e) Scheduling Problems

GAs are applied to various scheduling problems, such as job

- shop scheduling, where the objective is to schedule jobs on

machines to minimise total processing time or maximise

efficiency.

• Chromosome Representation: Each chromosome

represents a possible schedule, encoding the order and

timing of jobs on machines.

• Fitness Function: The fitness function evaluates the

schedule based on criteria like total completion time,

machine utilisation, and job delays.

• Crossover and Mutation: Crossover operators, such as

uniform or position - based crossover, combine schedules

from parent chromosomes. Mutation operators introduce

changes in job sequences to explore new scheduling

possibilities.

• Optimization: GAs iteratively refine the population of

schedules, aiming to find the optimal or near - optimal

scheduling solution.

f) Drug Design

In the pharmaceutical industry, GAs are used to design new

drugs by optimising the molecular structure of compounds for

desired biological activity.

• Chromosome Representation: A chromosome represents a

potential drug molecule, with genes encoding chemical

properties or structural elements.

• Fitness Function: The fitness function evaluates the

biological activity of the molecule, considering factors

like binding affinity, toxicity, and stability.

• Crossover and Mutation: Crossover operators create new

molecules by combining parts of parent molecules, while

mutation introduces random changes to explore new

chemical structures.

• Evolution: GAs evolve the population of drug candidates,

searching for molecules with optimal therapeutic

properties.

These examples illustrate the versatility and effectiveness of

genetic algorithms in solving complex optimization problems

across various domains, demonstrating their significant

impact and potential for future applications.

5. Challenges of Genetic Algorithm

Genetic algorithms (GAs) face several challenges in modern

applications, including premature convergence, scalability

issues, and the design of practical fitness functions. Premature

convergence occurs when the population becomes too similar

too quickly, leading to suboptimal solutions. This can be

mitigated by maintaining diversity through adaptive mutation

and hybrid methods. The design of fitness functions is also

crucial; poorly designed functions can mislead the search

process. Multi - objective optimisation and fitness

approximation can help improve fitness function design.

Parameter tuning and handling complex problem landscapes

are additional challenges for GAs. GAs involve several

parameters, such as mutation mutation and crossover rates,

which must be optimally set for effective performance.

Adaptive algorithms and automated tuning techniques can

ease this process. Complex problem landscapes characterised

by multimodality and ruggedness pose difficulties for GAs.

Hybrid algorithms, problem decomposition, and advanced

genetic operators can enhance GAs' ability to navigate these

landscapes. Furthermore, real - time and dynamic

environments present unique challenges, as GAs are

traditionally designed for static problems. Dynamic GAs, real

- time processing techniques, and feedback mechanisms can

help GAs adapt to changing environments.

Application - specific challenges in engineering,

bioinformatics, and robotics necessitate tailored GA

implementations. Integrating domain - specific knowledge,

customising genetic operators, and collaborating with domain

experts can enhance GAs' effectiveness in these areas.

Addressing these challenges involves a combination of

algorithmic improvements, leveraging advanced computing

technologies, and incorporating domain - specific insights.

6. Future Scope of Genetic Algorithms

Paper ID: SR24721004409 DOI: https://dx.doi.org/10.21275/SR24721004409 1199

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 7, July 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

The future potential of genetic algorithms (GAs) is vast and

encouraging, propelled by developments in computational

capabilities, data accessibility, and interdisciplinary

applications. One notable growth area is the fusion of GAs

with machine learning and artificial intelligence. By

optimising hyper - parameters, selecting features, and

designing neural network architectures, GAs can significantly

enhance the performance and efficiency of AI models.

Furthermore, the advent of big data provides an ideal setting

for GAs, as they excel in managing complex, high -

dimensional search spaces typical in data - centric

applications. This integration between GAs and AI promises

to yield more robust and adaptive systems capable of

addressing problems in real - time and dynamic settings.

Additionally, the application of genetic algorithms in

emerging fields such as bioinformatics, personalised

medicine, and evolutionary robotics is highly promising. In

bioinformatics, GAs can analyse genetic data, predict protein

structures, and elucidate evolutionary processes. In

evolutionary robotics, GAs can evolve control strategies and

physical designs for autonomous robots, enabling them to

adapt to complex and variable environments. As

technological advancements continue, the versatility and

adaptability of genetic algorithms will likely expand their

application to a broader array of real - world challenges,

pushing the limits of what is achievable in various scientific

and engineering fields.

7. Conclusion

In conclusion, genetic algorithms (GAs) have demonstrated

their versatility and robustness as powerful optimisation tools

capable of addressing complex problems across multiple

domains. Their ability to efficiently explore large and

complex search spaces, coupled with mechanisms inspired by

natural selection and genetics, has led to significant

advancements in machine learning, bioinformatics,

engineering design, and robotics. The various types of GAs,

from basic to hybrid and adaptive versions, offer tailored

solutions that enhance performance and adaptability. Despite

their advantages, including parallelism and global search

capabilities, GAs face challenges such as premature

convergence and computational intensity. Ongoing research

aims to mitigate these issues through improved selection

methods, advanced Mutation and crossover techniques, and

integration with other optimisation approaches. The future of

GAs looks promising, with continuous innovations expanding

their applicability and effectiveness in solving ever more

complex real - world problems.

References

[1] Holland, J. H, "Adaptation in Natural and Artificial

Systems". University of Michigan Press, 1975

[2] Goldberg, D. E., & Holland, J. H, "Genetic algorithms

and machine learning". Machine Learning, vol 3 (2),

p.95 - 99, 1988

[3] Melanie Mitchell, "An Introduction to Genetic

Algorithms", MIT Press, 1998

[4] David E. Goldberg, "Genetic Algorithms in Search,

Optimization, and Machine Learning", 1989

[5] Whitley, D, "A Genetic Algorithm Tutorial", Statistics

and Computing, vol 4 (2), p.65 - 85, 1994

[6] Deb, K, "Multi - Objective Optimization using

Evolutionary Algorithms", 2001

[7] A. E. Eiben & J. E. Smith,, "Introduction to

Evolutionary Computing", 2003

[8] John R. Koza, "Genetic Programming: On the

Programming of Computers by Means of Natural

Selection" by John R. Koza, 1992

[9] David B. Fogel, "Evolutionary Computation: Toward a

New Philosophy of Machine Intelligence", 1995

[10] De Jong, (1975). "An Analysis of the Behavior of a

Class of Genetic Adaptive Systems". Ph. D.

Dissertation, University of Michigan, 1975

[11] T. Back, U. Hammel and H. . - P. Schwefel,

"Evolutionary computation: comments on the history

and current state", IEEE Transactions on Evolutionary

Computation, vol.1, no.1, pp.3 - 17, April 1997

[12] Z. Michalewicz, "Genetic Algorithms + Data Structures

= Evolution Programs", 1996

[13] L. D. Davis, Handbook of Genetic Algorithms, 1991

[14] Paterson IK, Hoyle A, Ochoa G, Baker - Austin C,

Taylor NG, “Optimising Antibiotic Usage to Treat

Bacterial Infections”, University of Stirling, 2016

[15] Momeni Z, Saniee Abadeh M, “MapReduce - Based

Parallel Genetic Algorithm for CpG - Site Selection in

Age Prediction”, 2019, vol 10 (12)

[16] Shi, Leyuan & Olafsson, Sigurdur, “Hybrid Nested

Partitions Algorithm”, 2009

Paper ID: SR24721004409 DOI: https://dx.doi.org/10.21275/SR24721004409 1200

https://www.ijsr.net/

