
International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 13 Issue 8, August 2024 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

Deployment and Installation of the NFS Server 

using Ansible Automation Configuration 

Management Tool 
 

Melad Mohamed Salim Elfighi1, Younis Wrodko Ahmed Mohammed2, Osama Abdalla Elmahdi Elghali3 
 

1, 2, 3College of Technical Science - Sebha 
 

 

Abstract: Configuration management tools are essential for maintaining consistency, reliability, and efficiency in IT infrastructure. 

Among these tools, Ansible stands out due to its simplicity, powerful automation capabilities, and agentless architecture. Ansible uses 

human-readable YAML templates to define configuration states, enabling both system administrators and developers to manage and 

deploy applications efficiently. This abstract explores the core features of Ansible, including its playbooks, inventory management, and 

modularity through roles. Additionally, it highlights the benefits of using Ansible in diverse environments, such as reduced deployment 

times, minimized configuration drift, and enhanced collaboration between teams. By leveraging Ansible's robust and scalable architecture, 

organizations can achieve seamless infrastructure as code (IaC) practices, ensuring consistent and repeatable system configurations. Aim 

of this paper is to utilize Ansible for the automated deployment and installation of the NFS Server (NFS) on remote servers. 

 

Keywords: Ansible, Cloud, Automation, NFS, SSH 

 

1. Introduction 
 

Configuration Management in Industry was a purely manual 

task that is to be done by System Administrator. Automation 

helps in replacing repetitive tasks and helps in saving time, 

money, and increasing productivity. But the Industry is now 

changing a lot with the popularity of DevOps, Cloud 

Computing, and new Automation Tools. DevOps is in demand 

nowadays as it shortens the life cycle of Software 

Development. With today’s demand for automation, 

consistency, and the move towards cloud and DevOps, 

companies from different sectors are adopting easy-to-use 

tools that help them to achieve their goal by reducing 

complexities. Therefore, it is of the utmost importance for a 

company to have its services installed, configured, and 

running as quickly as possible and as consistent as possible to 

help reduce costs. 

 

In Today’s world the organizations want to shift from manual 

work to automation to decrease the cost of releasing software. 

To compete in the market, organizations want to release their 

software earlier and with better frequency. DevOps is a set of 

practices that combines software development (Dev) and IT 

operations (Ops). Main Goal of DevOps is to reduce the time 

between development and operation of software without 

affecting the quality. IBM has coined the term Collaborative 

DevOps as” designing processes for coordinating software 

development teams with IT operations teams”. There are 

various examples of organization practicing Devops including 

Flickr, Netflix and Etsy. All spawn and Hammond. By 

adopting DevOps and variants thereof, many organizations 

have improved the software delivery which increases the 

productivity. It consists of various stages such as continuous 

development, continuous integration, continuous testing, 

continuous deployment, and continuous monitoring. Teams 

that adopt DevOps culture, practices, and tools become high-

performing, building better products faster for greater 

customer satisfaction. 

 

In the rapidly evolving landscape of IT infrastructure, the need 

for efficient, consistent, and scalable management solutions is 

paramount. Ansible, an open-source automation tool, has 

emerged as a leader in configuration management, application 

deployment, and task automation. Developed by Michael 

DeHaan and first released in 2012, Ansible has gained 

widespread popularity due to its simplicity, flexibility, and 

powerful capabilities. 

 

Ansible distinguishes itself with its agentless architecture, 

which eliminates the need for additional software on managed 

nodes. Instead, it utilizes standard SSH connections and 

Python scripts to execute tasks, making it easier to set up and 

maintain compared to traditional agent-based systems. This 

approach not only reduces overhead but also enhances 

security and reliability by leveraging existing infrastructure 

components. 

 

At the core of Ansible's functionality are playbooks, which are 

written in YAML, a human-readable data serialization 

standard. Playbooks define a series of tasks that describe the 

desired state of a system, enabling users to automate complex 

processes with minimal effort. This declarative approach 

ensures idempotency, meaning that running the same 

playbook multiple times will always yield the same result, 

thus preventing configuration drift and ensuring consistency 

across environments. 

 

Ansible's modular design further enhances its versatility. 

Users can extend its functionality through custom modules, 

and the community-driven Ansible Galaxy provides a rich 

repository of reusable roles and playbooks. This modularity 

allows Ansible to integrate seamlessly with a wide range of 

technologies and platforms, from cloud services and 

containers to networking devices and bare-metal servers. 

 

In addition to its technical strengths, Ansible fosters a 

collaborative and inclusive community. The open-source 

nature of the project encourages contributions from users 

worldwide, leading to continuous improvement and 

Paper ID: SR24807201119 DOI: https://dx.doi.org/10.21275/SR24807201119 655 

https://www.ijsr.net/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 13 Issue 8, August 2024 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

innovation. The extensive documentation and active 

community forums provide valuable resources for both 

beginners and experienced users, facilitating knowledge 

sharing and best practices. 

 

This introduction explores the fundamental principles and 

components of Ansible, highlighting its impact on modern IT 

operations. By automating repetitive tasks, reducing errors, 

and promoting infrastructure as code (IaC) practices, Ansible 

empowers organizations to achieve greater efficiency, agility, 

and scalability in their IT operations. As businesses continue 

to embrace digital transformation, Ansible's role as a 

cornerstone of infrastructure automation and management 

becomes increasingly significant. 

 

Ansible employs a human-readable language, YAML, for 

defining configuration states, enabling users to manage and 

deploy applications seamlessly across diverse environments. 

Unlike traditional configuration management tools that rely 

on agent-based architecture, Ansible operates over standard 

SSH connections, simplifying the deployment process and 

reducing the overhead associated with maintaining additional 

software on managed nodes. 

 

This research paper delves into the core features of Ansible, 

examining its architecture, functionality, and practical 

applications. By exploring the use of playbooks, roles, and 

inventory management, this paper aims to illustrate how 

Ansible facilitates Infrastructure as Code (IaC) practices, 

ensuring consistency, repeatability, and scalability in 

managing IT infrastructure. Furthermore, it investigates the 

advantages of Ansible in various deployment scenarios, 

emphasizing its role in enhancing operational efficiency, 

reducing configuration drift, and fostering collaboration 

across teams. 

 

As organizations continue to seek agile and reliable solutions 

for managing their growing IT ecosystems, Ansible's 

relevance and impact become increasingly significant. This 

paper aims to provide a comprehensive understanding of 

Ansible's capabilities, showcasing its potential to transform 

infrastructure management through automation and 

streamlined operations. 

 

2. Objective & Aim of the research 
 

The objective this research paper is to utilize Ansible for the 

automated deployment and installation of the NFS Server 

(NFS) on remote servers. This involves creating an Ansible 

playbook that will: 

1) Ensure that the target remote servers are reachable and 

properly configured for Ansible automation. 

2) Update the package manager repositories to guarantee the 

latest version of NFS is installed. 

3) Install the NFS package (nfs-utils-1.3.0-0.68.el7.x86_64) 

on the remote servers. 

4) Configure the NFS service to start on boot and ensure that 

it is running. 

5) Deploy a basic configuration file for NFS to demonstrate 

its operational state. 

6) Verify the successful installation and operation of the 

NFS service on all targeted remote servers. 

 

By achieving this objective, the process will demonstrate the 

efficiency and reliability of Ansible in managing software 

deployments across multiple remote systems, ensuring 

consistency and reducing manual intervention. 

 

3. Key features of Ansible 
 

Agentless Architecture: Ansible does not require any agents 

or additional software to be installed on the managed nodes. It 

uses SSH for communication, which simplifies the setup and 

maintenance process. 

 

Idempotency: Ensures that operations are applied only when 

necessary, avoiding redundant actions and maintaining the 

desired state. 

 

Modules: Ansible uses modules to accomplish specific tasks. 

Modules can manage system resources, install software, or 

interact with APIs. Users can also write custom modules. 

 

Playbooks: Playbooks are YAML files that define a series of 

tasks to be executed on remote hosts. They are the heart of 

Ansible's configuration, deployment, and orchestration. 

 

Roles: Roles are a way to organize playbooks and related files. 

They facilitate reuse and sharing of configurations. 

 

Inventory: An inventory file lists the hosts and groups of 

hosts that Ansible manages. It can be static or dynamic 

 

4. Architecture & Component of Ansible 
 

The Ansible automation engine consists of various 

components as described below as follows. 

 

 
Figure 1: Architecture of Ansible tool 

 

Inventories:  

Ansible inventories are lists of hosts with their IP addresses, 

servers, and databases which have to be managed via an SSH 

for UNIX, Linux, or Networking devices, and WinRM for 

Windows systems. 

 

APIs: 

Application Programming Interface or APIs are used as a 

mode of transport for public and private cloud services. 

Paper ID: SR24807201119 DOI: https://dx.doi.org/10.21275/SR24807201119 656 

https://www.ijsr.net/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 13 Issue 8, August 2024 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

Modules: 

Modules are executed directly on remote hosts through 

playbooks and can control resources like services, packages, 

files, or execute system commands. They act on system files, 

install packages and make API calls to the service network. 

There are over 450 Ansible that provide modules that 

automate various jobs in an environment. For example, Cloud 

Modules like Cloud Formation create or delete an AWS cloud 

formation stack. 

 

Plugins: 

Plugins are pieces of code that augment Ansible’s core 

functionality and allow executing Ansible tasks as a job build 

step. Ansible ships with several handy plugins and one can 

also write it on their own. For example, Action plugins act as 

front-ends to modules and can execute tasks on the controller 

before calling the modules themselves. 

 

Networking: 

Ansible uses a simple, powerful, and agent-less automation 

framework to automate network tasks. It uses a separate data 

model and spans different network hardware. 

 

Hosts: 

Hosts refer to the nodes or systems (Linux, Windows, etc) 

which are automated by Ansible.  

 

Playbooks: 

Playbooks are simple files written in YAML format which 

describe the tasks to be executed by Ansible. Playbooks can 

declare configurations, orchestrate the steps of any manual 

ordered process and can also launch various tasks. 

 

CMDB: 

It stands for Configuration Management Database (CMDB). 

In this, it holds data to a collection of IT assets, and it is a 

repository or data warehouse where we will store this kind of 

data, and It also defines the relationships between such assets. 

 

Cloud: 

It is a network of remote servers hosted on the internet to store, 

manage and process data instead of storing it on a local server. 

 

Component of Ansible: 

Ansible automates the management of remote systems and 

controls their desired state. 

 

 
Figure 2: Comprehensive component of Ansible 

 

As shown in the preceding figure, most Ansible environments 

have three main components: 

 

Control node: 

A system on which Ansible is installed. You run Ansible 

commands such as ansible or ansible-inventory on a control 

node. 

 

Inventory: 

A list of managed nodes that are logically organized. You 

create an inventory on the control node to describe host 

deployments to Ansible. 

 

Managed node: 

A remote system, or host, that Ansible controls. 

 

Use Cases 

• Configuration Management: Ensuring that systems are 

configured to a desired state. 

• Application Deployment: Automating the deployment of 

applications across multiple servers. 

• Task Automation: Automating repetitive IT tasks such as 

backups, system updates, and user management. 

• Orchestration: Coordinating multiple systems and 

services to work together in complex deployments. 

• Benefits 

• Ease of Use: Simple syntax and agentless architecture 

make it easy to learn and implement. 

• Scalability: Suitable for managing both small and large-

scale environments. 

• Consistency: Ensures that configurations are applied 

uniformly across all managed nodes. 

• Flexibility: Can manage a wide variety of systems and 

applications, both on-premises and in the cloud. 

• Community Support: Large, active community 

contributing to modules, roles, and best practices. 

 

5. Simulation setup and installation of NFS 

server on worker node using Ansible 

configuration automation tools 
 

In this paper, we are using VMware Workstation 16 Pro tool 

for setup server, VMware Workstation Pro is a hosted (Type 

2) hypervisor that runs on x64 versions of Windows and Linux 

operating systems for networking we are using bridge 

Network. 

 

 
Figure 3: VMware Workstation hypervisor Type-2 

Paper ID: SR24807201119 DOI: https://dx.doi.org/10.21275/SR24807201119 657 

https://www.ijsr.net/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 13 Issue 8, August 2024 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

Set Up Ansible Controller Node: 

Ensure you have a machine (local or remote) where Ansible is 

installed. This will be your control node. 

 

Setup worker Nodes: 

Set up one or more remote servers that Ansible will manage. 

These servers should be reachable via SSH and have Python 

installed. 

 

Create an Inventory File: 

The inventory file lists the hosts Ansible will manage. Save 

this file as inventory 

 

[root@controller ~] # vi inventory 

 

[nfsserver] 

server1 ansible_host=192.168.29.22 

server2 ansible_host=192.168.29.48 

 

 
Figure 4: Worker’s node IP configuration in Inventory file 

 

Table1: Specification of Servers 
Sr. 

No. 
Devices RAM,CPU,HD OS Version IP address 

1 
Controller 

Node 

2Gb,1Core, 

20Gb(SCSi) 
Centos_v7.9 192.168.29.132 

2 
Worker 

Node-1 

1Gb,1Core, 

20Gb(SCSi) 
Centos_v7.9 192.168.29.22 

3 
Worker 

Node-2 

1Gb,1Core, 

20Gb(SCSi) 
Centos_v7.9 192.168.29.48 

 

Controller Node: 

 
Figure 5: Specification of Controller Node 

 

Worker Node-1: 

 
Figure 6: Specification of Worker Node-1 Node 

 

 

 

 

 

Worker Node-2: 

 
Figure 7: Specification of Worker Node-2 Node 

 

Create an Ansible Playbook: Write a playbook to install and 

start nfs on the remote servers. Save this file as 

install_nfs.yaml. 

Package name-: nfs-utils-1.3.0-0.68.el7.x86_64 

 

For creation of anisible playbook to install nfs server, first we 

write an yaml, below file yaml language to install & start the 

nfs service in both worker node: 

 

 
Figure 8: yaml script for Installation of NFS. 

 

After written yaml, we need to execute this yaml file to deploy 

nfs server on both workers. 

 

Run the Playbook: 

Use the Ansible command line to run the playbook against the 

inventory. 

 

 
 

[root@controller ~]# ansible-playbook -i inventory 

install_nfs.yaml 

 

Paper ID: SR24807201119 DOI: https://dx.doi.org/10.21275/SR24807201119 658 

https://www.ijsr.net/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 13 Issue 8, August 2024 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

 
 

This output indicates that the NFS package was installed and 

the service was started and enabled on both servers. 

 

By following these steps, you can simulate the installation and 

configuration of the NFS Server using Ansible, demonstrating 

its power and simplicity in automating system administration 

tasks. 

 

6. Verify Installation & Service status of NFS  
 

After the playbook runs, verify that NFSd is installed and 

running on the managed nodes by SSHing into the nodes and 

checking the status of the nfs service. 

 

Worker-1: Verify the status of nfs service in worker-1 

through ssh  

 

  
 

From above image it’s clear that nfs service successfully 

installed from controller node using ansible-playbook yaml 

and services also started on worker node-1. 

 

Worker-2: Verify the status of nfs service in worker-2 

through ssh 

 

 
 

From above image it’s clear that nfs service successfully 

installed from controller node using ansible-playbook yaml 

and services also started on worker node-2 

 

7. Conclusion 
 

The automation of NFS Server (NFS) installation and 

configuration using Ansible showcases the powerful 

capabilities of Ansible in managing complex IT infrastructure 

tasks efficiently and reliably. Through a well-structured 

playbook, Ansible can ensure the consistent deployment of 

NFS services across multiple servers, significantly reducing 

manual effort and the potential for human error. 

 

By leveraging Ansible's agentless architecture, simple YAML 

syntax, and idempotent operations, administrators can 

automate repetitive tasks, maintain uniform configurations, 

and achieve a high degree of scalability in managing 

distributed systems. The step-by-step approach, from setting 

up the control node and managed nodes to creating and 

running the playbook, demonstrates a clear and effective 

method for implementing NFS services in diverse 

environments. 

 

Incorporating Ansible for the deployment of NFS servers not 

only enhances operational efficiency but also promotes best 

practices in infrastructure as code (IaC), fostering a more agile 

and resilient IT ecosystem. This approach ensures that NFS 

services are consistently configured and readily available, 

supporting seamless file sharing and collaboration across the 

network. 

 

In conclusion, Ansible proves to be an invaluable tool for 

automating the installation and management of NFS servers, 

empowering organizations to streamline their IT operations 

and achieve greater consistency, reliability, and scalability in 

their infrastructure management practices. 

 

References 
 

[1] Ramandeep Singh, Dr. Ravindra Kumar Purwar, 2019, 

Cloud Automation with Configuration 

Managementusing CHEF Tool, INTERNATIONAL 

JOURNAL OF ENGINEERING RESEARCH & 

TECHNOLOGY (IJERT) Volume 08, Issue 04 (April – 

2019) 
[2] Masek, Pavel & Štůsek, Martin & Krejčí, Jan & Zeman, 

Krystof & Pokorny, Jiri & Kudlacek, Marek. (2018). 
Unleashing Full Potential of Ansible Framework: 
University Labs Administration. Proceedings of the 
XXth Conference of Open Innovations Association 
FRUCT. 426. 10.23919/FRUCT.2018.8468270. 

[3] Kumari, Priti, and Parmeet Kaur. "A survey of fault 
tolerance in cloud computing."Journal of King Saud 
University-Computer and Information Sciences 33.10 
(2021):. 

[4] Rao, Umesh Hodeghatta, and Umesha Nayak. "Data 
backups and cloud computing." The InfoSec Handbook. 
Apress, Berkeley, CA, 2014. 263-288. 

[5] Gentile, Ugo, and Luigi Serio. "Survey on international 
standards and best practices for patch management of 
complex industrial control systems: the critical 
infrastructure of particle accelerators case study." 
International Journal of Critical Computer-Based 
Systems 9.1-2 (2019): 115-132. 

[6] Tomarchio, Orazio, Domenico Calcaterra, and Giuseppe 
Di Modica. "Cloud resource orchestration in the multi-
cloud landscape: a systematic review of existing 
frameworks." Journal of Cloud Computing 9.1 (2020): 
1-24. 

[7] Weerasiri, Denis, et al. "A taxonomy and survey of cloud 
resource orchestration techniques." ACM Computing 
Surveys (CSUR) 50.2 (2017): 1-41 

Paper ID: SR24807201119 DOI: https://dx.doi.org/10.21275/SR24807201119 659 

https://www.ijsr.net/



