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Abstract: Plant diseases are a critical threat to global food security and agricultural sustainability because of the crop losses they cause. 

195 million tons of crops are lost to fungal diseases each year and alone in India, more than 5 million metric tonnes go waste annually 

from it[1]. Also, from FAO “Globally up to 16% of harvests worth about US$220 billion are lost due to plant pests every year” [2] The 

urgency of the situation is clear, as wrapped up in these figures are reasons why long-term growth requires early bite detection services to 

prevent plant disease. In this paper, deep learning algorithms were used to detect diseases in plants by taking image of the leaves as input. 

Our research is limited to the detection of these 6 plant diseases, Aphid infestation, Bacterial leaf spot disease Black apple scab Early 

blight Septoria leaf spot on tomato Grape powdery mildew. In order to do this, we construct and train a machine learning model using two 

different raw image datasets. These were meticulously curated and enriched datasets, geared towards improving the model's 

generalisability across extensive variety of conditions. Our approach not only facilitates the early detection of these diseases but also 

demonstrates the potential for scalable, real-time applications in agricultural settings. The results highlight the effectiveness of deep 

learning in identifying and classifying plant diseases, offering a promising solution for reducing crop losses and improving agricultural 

productivity. 
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1. Introduction 
 

Agriculture remains the backbone of the global economy, 

providing food, raw materials, and employment for a 

significant portion of the population. The health of crops is 

paramount to ensuring food security and sustaining economic 

stability, particularly in regions heavily dependent on 

agriculture. However, plants are constantly threatened by a 

wide range of diseases caused by fungi, bacteria, viruses, and 

pests. These diseases can lead to substantial crop losses, with 

severe economic repercussions. In India, for example, fungal 

diseases alone are estimated to cause losses exceeding 5 

million tonnes of crops annually. On a global scale, the Food 

and Agriculture Organization of the United Nations (FAO) 

reports that plant pests account for 10-16% of global harvest 

losses, amounting to approximately US$220 billion each 

year.  

 

Traditionally, plant disease detection has relied on manual 

inspection by farmers or agricultural experts, often requiring 

significant time and expertise. This process is not only labor-

intensive but also prone to human error, leading to 

misdiagnosis or late detection of diseases. Early detection is 

critical, as it allows for timely intervention, preventing the 

spread of disease and minimizing crop damage. However, the 

manual methods currently in use often fail to provide the 

rapid, accurate diagnosis needed to protect crops effectively. 

The lack of scalable, automated solutions for early disease 

detection presents a significant challenge to the agricultural 

sector, limiting its ability to respond promptly to emerging 

threats. 

 

To address these challenges, this paper proposes the 

development of an AI-driven application that leverages deep 

learning, specifically the YOLOv8 model, for real-time plant 

disease detection using leaf images. Our objective is to create 

a tool that can accurately identify and diagnose plant diseases 

at an early stage, enabling farmers to take immediate action 

and reduce crop losses. The application focuses on detecting 

six specific plant diseases: Aphid infestation, Bacterial leaf 

spot, Black spot apple, Early blight, Septoria leaf spot on 

tomato, and Powdery mildew on grape. By training two 

models on distinct datasets created from raw images, we aim 

to assess the effectiveness of this approach and its potential 

for broader agricultural applications. 

 

This research explores the potential of deep learning models 

in revolutionizing plant health monitoring, offering a 

scalable, automated solution for real-time disease detection. 

Through this study, we seek to contribute to the growing body 

of knowledge on AI applications in agriculture and provide a 

practical tool for enhancing crop management practices. 

 

2. Literature Review 
 

• In one approach, as described in [16], the authors 

categorized the intensity of infection into different 

percentages: 20%, 40%, and 75%. Using these categories, 

they proposed a solution achieved through the Canny edge 

detection technique and the Gaussian Mixture Model 

(GMM). In a different study [14], the researchers 

identified plant diseases using an image processing 

technique involving K-means clustering, the Random 
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Forest algorithm, and the Gray Level Co-occurrence 

Matrix (GLCM). Although the authors did not specify the 

accuracy, they noted that the solution was notably fast. 

• Another research effort [3] developed a system to identify 

plant diseases using image processing, employing various 

techniques to demonstrate overall precision, accuracy, 

recall, and F-measure. The accuracy of three algorithms 

was found to exceed 90%, with SVM (Linear Kernel) 

achieving 95.63%, SVM (RBF Kernel) 94.23%, and SVM 

(Polynomial Kernel) 95.87%. The SVM with a 

polynomial kernel provided the best result. In the 

proposed work detailed in [17], the experiment achieved 

an accuracy of 98.60%. The accuracy of the algorithm was 

tested using simple threshold and triangle thresholding 

methods. 

• The authors in [4] suggested using MATLAB for 

detecting plant diseases during image processing. 

Although the authors claimed that the system would 

provide high accuracy, they did not mention the specific 

accuracy percentage. The system utilized K-means 

clustering and Support Vector Machine (SVM). In another 

study [9], the authors used image processing techniques, 

including K-means clustering, Artificial Neural Networks 

(ANN), and fuzzy classification, to identify and quantify 

signs of paddy leaf disease. Despite not providing the 

accuracy rate, the authors stated that the solution was 

highly accurate. 

• For their research, the authors in [12] utilized a 

Convolutional Neural Network (CNN), achieving an 

excellent accuracy of 98%. Similarly, in [5], the authors 

proposed a system that detects unhealthy regions of plant 

leaves using texture features. The proposed algorithm was 

effective, with a 94% accuracy in detecting and classifying 

the studied diseases, achieved using Support Vector 

Machine and Minimum Distance Criterion. 

• In another work [18], the authors presented a system for 

studying and evaluating the use of image processing in 

cotton leaf disease identification. Segmentation was 

conducted using the K-means clustering approach, while 

classification was done using neural networks, resulting in 

an accuracy of 89.56%. In [15], the authors suggested 

identifying and classifying plant leaf diseases using color 

transformation, Content-Based Image Retrieval (CBIR) 

methods, and K-means clustering. The accuracy of this 

study was reported to be 90.98%. 

• Another approach [11] employed two cascaded classifiers. 

The authors proposed local statistical features and hue and 

luminance from the HSV color space. The KNN classifier 

was used, achieving an accuracy of 82.50%. Similarly, in 

[13], the authors used a convolutional neural network 

(CNN) innovatively to create a model for plant disease 

recognition based on leaf disease classification. A deep 

learning framework called Caffe was used to execute the 

CNN, resulting in an accuracy of 96.3%. 

• In [19], the authors proposed a method for segmenting 

images to differentiate between two categories of orchid 

leaf diseases. The study used MATLAB to examine orchid 

leaves using boundary segmentation techniques, and 

morphological processing techniques were applied to 

classify the images, achieving an accuracy of 86.36%, 

which is considered moderate. Another study [6] 

described a web-based application that helps farmers 

identify fruit diseases by uploading photographs of the 

fruit. The system compared the trained dataset with the 

input dataset, utilizing the K-means clustering approach 

for clustering and Support Vector Machine (SVM) for 

classification. The approach was effective, achieving an 

accuracy of 82%. 

• In [7], the authors proposed an SVM classifier to 

automatically detect rice leaf disease using image 

processing techniques. Features were extracted using the 

Scale-Invariant Feature Transform (SIFT), and both SVM 

and KNN classifiers were used to analyze the results. The 

accuracy results were 95.5% for SVM and 92.2% for 

KNN. A similar study [8] used digital image processing 

methods to examine and identify plant leaf diseases. 

Segmentation was carried out using K-means clustering, 

and features were extracted using GLCM and Local 

Binary Patterns (LBP). The classification was done using 

three classifiers: KNN, SVM, and Ensemble. Among 

these, the best accuracy was achieved with SVM using a 

cubic kernel, which was 98.2%. 

• eFinally, in [10], a technique was proposed to detect and 

classify leaf diseases using artificial neural networks 

(ANN). The features were extracted using HSV, and the 

ANN classifier was employed to classify the input images, 

resulting in an accuracy of 80%, which is moderate. In 

another study [20], the authors aimed to identify leaf 

diseases using artificial neural networks and image 

processing. K-means clustering was used for 

segmentation, GLCM was employed for feature 

extraction, and the Back Propagation Neural Network 

(BPNN) was used for classification. Remarkably, the 

accuracy was found to be 100%. 

 

3. Methodology 
 

You Only Look Once (YOLO) is a revolutionary object 

detection model that addresses the challenge of real-time 

image analysis. Unlike traditional object detection methods 

that involve a multi-stage process, YOLO simplifies the task 

by framing it as a single regression problem. It divides the 

image into a grid and predicts bounding boxes and class 

probabilities for each grid cell simultaneously. YOLO models 

have evolved through various versions, each offering 

improvements in speed and accuracy. YOLOv8, the latest 

iteration, leverages advanced techniques in neural network 

architecture to enhance performance. It uses a convolutional 

neural network (CNN) to process images and employs anchor 

boxes to predict multiple bounding boxes per grid cell. This 

approach allows YOLO to detect objects quickly and 

accurately, making it suitable for applications requiring real-

time analysis, such as plant disease detection. 

 

3.1 Data Collection 

 

To train and evaluate our plant disease detection model, we 

curated a comprehensive dataset of leaf images representing 

various plant conditions. The dataset includes images of 

leaves affected by five distinct types of plant diseases, as well 

as healthy leaves, to ensure a diverse and balanced training 

set. The breakdown of the dataset is as follows: 

• Aphid Infestation: 100 images 

• Bacterial Leaf Spot: 173 images 

• Black Spot on Apple: 94 images 

• Early Blight: 126 images 
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• Powdery Mildew on Grape: 33 images 

• Healthy Leaves: 85 images 

 

In total, the dataset comprises 611 images. This diverse 

collection was designed to cover a range of common plant 

diseases and healthy conditions to improve the model's ability 

to generalize across different scenarios. The images were 

collected from various sources, ensuring variability in 

lighting conditions, backgrounds, and leaf appearances. 

 

3.2 Data Preprocessing 

 

Data preprocessing is a crucial step in preparing raw images 

for model training. It involves cleaning and transforming the 

data to enhance model performance. For our study, we 

applied different preprocessing techniques to two datasets: 

 

Dataset 1: No preprocessing techniques were applied to this 

dataset. It served as a baseline to evaluate the model’s 

performance on raw, unaltered images. 

 

Dataset 2: To enhance the quality and consistency of the 

images, we applied the following preprocessing techniques: 

• Static Crop: Extracted 25-75% of the horizontal region 

and 5-75% of the vertical region of the images. This 

cropping helped to focus on relevant areas of the leaf while 

removing extraneous background. 

• Grayscale Conversion: Converted images to grayscale to 

reduce the complexity of the data. This conversion helps 

the model to focus on structural features rather than color 

variations, which can be beneficial when color 

information is less relevant to the detection task. 

 

3.3 Data Augmentation 

 

Data augmentation techniques were employed to artificially 

expand the dataset and improve the model's robustness. 

Augmentation helps simulate variations that the model might 

encounter in real-world scenarios, thus enhancing its 

generalization capabilities. For one of the datasets, the 

following augmentation techniques were applied: 

• Flip: Applied horizontal and vertical flips to create 

mirror images of the original leaf images. This technique 

helps the model learn to detect diseases from different 

orientations. 

• Rotation: Rotated images by 90° clockwise, counter-

clockwise, and upside down to simulate different 

viewing angles and perspectives. 

• Grayscale Application: Applied to 19% of images to 

further diversify the dataset and assist the model in 

learning from both color and grayscale inputs. 

• Hue Adjustment: Modified the hue between -180° and 

+180° to account for color variations and lighting 

conditions. 

• Brightness Adjustment: Adjusted brightness levels 

between -49% and +49% to simulate different lighting 

environments. 

• Blur: Introduced blur up to 15.8px to simulate out-of-

focus or low-quality images. 

• Noise: Added noise to up to 1.13% of pixels to mimic 

image artifacts and variations in real-world conditions. 

 

3.4 Model Architecture 

 

The YOLOv8 architecture is designed for high efficiency and 

accuracy in object detection tasks. The architecture operates 

as follows: 

• Image Resizing: The input image is resized to 448x448 

pixels to standardize the input size and ensure consistent 

processing across the network. 

• Convolutional Layers: Initially, a 1x1 convolution is 

applied to reduce the number of channels, followed by a 

3x3 convolution to generate a feature map with spatial and 

semantic information. 

• Activation Functions: ReLU (Rectified Linear Unit) is 

used as the activation function in the intermediate layers, 

providing non-linearity and allowing the network to learn 

complex patterns. The final layer utilizes a linear 

activation function to produce continuous outputs for 

bounding box coordinates and class probabilities. 

• Regularization Techniques: Batch normalization is 

applied to normalize activations and gradients, improving 

training stability and convergence. Dropout is used to 

prevent overfitting by randomly dropping units during 

training, which encourages the model to generalize better. 

 

 
Figure 1: YOLO Model Architecture 

 

3.5 Training Process: 

 

The model training was conducted using JupyterLab with the 

YOLOv8n (nano) model. The YOLOv8n model is a 

lightweight variant of the YOLOv8 architecture, designed to 

deliver high performance with reduced computational 

requirements. It is well-suited for applications where resource 

constraints are a concern, such as real-time detection on edge 

devices. 

 

The dataset was split into three parts: 

• Training Set: 70% of the images were used for training the 

model. This large portion of the dataset allowed the model 

to learn from a diverse range of examples and improve its 

accuracy. 

• Validation Set: 20% of the images were reserved for 

validation. This subset was used to tune hyperparameters 

and monitor the model's performance during training, 

helping to prevent overfitting. 

• Test Set: 10% of the images were used for final testing. 

This set provided an unbiased evaluation of the model's 

performance on unseen data, ensuring that the results were 

reflective of its real-world applicability. 

 

The training involved the following configurations: 

• Libraries Used: Ultralytics (for YOLOv8 

implementation), PyTorch (for deep learning framework), 

and Roboflow (for data labeling and management). 
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• Training Configuration: 

 

model.train( 

    data='leafs-dataset/data.yaml', 

    epochs=150, 

    save=True, 

    batch=32, 

) 

 

3.6 Evaluation Metrics: 

 

To evaluate the performance of the trained models, several 

key metrics were used: 

• Intersection over Union (IoU): IoU quantifies the overlap 

between predicted and ground truth bounding boxes. It is 

essential for assessing the accuracy of object localization 

and determining how well the model identifies disease-

affected areas. 

• Average Precision (AP): AP calculates the area under the 

precision-recall curve for each class, providing a measure 

of the model's precision and recall performance. 

• Mean Average Precision (mAP): mAP aggregates the AP 

values across all classes, offering a comprehensive 

evaluation of the model’s performance in multi-class 

object detection tasks. 

• Precision and Recall: Precision measures the proportion of 

true positives among all positive predictions, while recall 

assesses the proportion of true positives among all actual 

positives. These metrics help evaluate the model’s ability 

to detect diseases accurately and consistently. 

• F1 Score: The F1 Score is the harmonic mean of precision 

and recall, providing a balanced assessment that accounts 

for both false positives and false negatives. 

 

4. Results 
 

4.1 Model Performance on Raw Labeled Data: 

 

The performance of the YOLOv8n model on raw labeled data 

reveals how well it can detect and classify plant diseases and 

healthy leaves based solely on unprocessed, original images.  

 

a) Aphid Infestation: 64% accuracy 

The model demonstrated moderate success in identifying 

aphid infestation. While it achieved a reasonable accuracy, 

there is room for improvement, particularly in distinguishing 

this condition from other similar-looking diseases or 

variations. 

Bacterial Leaf Spot: 55% accuracy 

 

The accuracy for detecting bacterial leaf spot was relatively 

low. This lower performance may be attributed to the 

variability in the appearance of the spots or similarities with 

other types of leaf damage, making it challenging for the 

model to differentiate effectively. 

 

b) Black Spot on Apple: 86% accuracy 

The model performed well in identifying black spot on apple 

leaves, achieving high accuracy. This suggests that the black 

spot disease has distinct features that the YOLOv8n model 

can recognize effectively, likely due to clear visual patterns 

or well-defined symptoms. 

 

c) Early Blight: 53% accuracy 

The model’s accuracy for early blight was also on the lower 

side. The challenges here may involve the early stage of the 

disease, which might present less distinctive symptoms 

compared to more advanced stages or other diseases. 

 

d) Powdery Mildew on Grape: 71% accuracy 

The model showed moderate accuracy in detecting powdery 

mildew on grape leaves. While it performed better than some 

other conditions, the accuracy suggests that there may be 

overlapping features with other diseases or variability in the 

visual presentation of powdery mildew. 

 

e) Healthy Leaves: 100% accuracy 

The model achieved perfect accuracy in classifying healthy 

leaves. This indicates that healthy leaves are visually distinct 

and easily recognizable, allowing the model to perform 

flawlessly in this category. 

 

Overall, while the model showed strong performance in 

certain categories like healthy leaves and black spot on apple, 

there is variability in accuracy across different disease types. 

This suggests that the raw labeled data alone might not fully 

capture the complexity and diversity of plant diseases, 

impacting the model's ability to generalize effectively. 

 

 
Figure 2: Confusion Matrix (Raw Dataset) 

 

4.2 Model Performance on Augmented and Processed 

Labeled Data: 

 

When the model was trained on augmented and preprocessed 

data, the performance metrics changed as follows: 

 

a) Aphid Infestation: 68% accuracy 

The model's accuracy improved with the augmented and 

processed data, indicating that data augmentation techniques 

such as rotation, flipping, and hue adjustment helped the 

model better recognize aphid infestation. The increase in 

accuracy suggests that these techniques made the disease 

features more distinct and varied, aiding the model’s learning. 

 

b) Bacterial Leaf Spot: 63% accuracy 

Accuracy increased for bacterial leaf spot with the augmented 

and processed data. This improvement may be due to 

preprocessing techniques like static cropping and grayscale 

conversion, which helped the model focus on relevant 

features and reduce background noise, leading to better 

identification of bacterial leaf spot. 
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c) Black Spot on Apple: 64% accuracy 

There was a decrease in accuracy for black spot on apple 

leaves with the augmented data. This might suggest that some 

augmentation techniques inadvertently introduced variations 

that made it harder for the model to recognize the disease 

consistently. It highlights the need for careful selection of 

augmentation methods to avoid compromising the model's 

ability to identify specific conditions. 

 

d) Early Blight: 67% accuracy 

The accuracy for early blight improved with the augmented 

and processed data. This suggests that the preprocessing and 

augmentation techniques helped highlight the disease's 

features better, making it easier for the model to learn and 

detect early blight effectively. 

 

e) Powdery Mildew on Grape: 57% accuracy 

The accuracy for powdery mildew on grape leaves decreased 

with the augmented data. This reduction might indicate that 

the augmentation techniques introduced variations that were 

not representative of the disease’s typical appearance, leading 

to decreased model performance. 

 

f) Healthy Leaves: 100% accuracy 

The accuracy for healthy leaves remained unchanged at 

100%. This consistency indicates that the preprocessing and 

augmentation methods did not affect the model’s ability to 

correctly classify healthy leaves, which are likely easily 

distinguishable from diseased conditions. 

 

 
Figure 3: Confusion Matrix (Augmented and Processed 

Dataset) 
 

5. Comparative Analysis 
 

5.1 Analysis of Performance Differences 

 

The performance differences between the models trained on 

raw labeled data and those trained on augmented and 

processed labeled data can be attributed to several factors: 

 

a) Feature Representation and Complexity: 

Raw Labeled Data: The model's performance on raw data 

often reflects its ability to learn and generalize from the 

original, unaltered images. Variations in lighting, 

backgrounds, and leaf appearances can make it challenging 

for the model to identify subtle disease features, leading to 

lower accuracy in some categories. 

Augmented and Processed Data: Data augmentation 

techniques, such as flipping, rotating, and adjusting hue, help 

the model learn from a broader range of variations. These 

methods enhance the model's ability to recognize diseases 

under different conditions, often leading to improved 

accuracy. However, if the augmentations introduce unrealistic 

variations, they may also confuse the model, leading to 

decreased performance in certain cases. 

 

b) Disease Specificity: 

Aphid Infestation and Early Blight: The improvements in 

accuracy for these diseases with augmented data suggest that 

the model benefits from enhanced feature diversity. 

Augmentation likely made it easier for the model to recognize 

these diseases by providing varied examples. However, the 

complexity of disease features and their similarity to other 

conditions might still pose challenges. 

 

Black Spot on Apple and Powdery Mildew on Grape: The 

decrease in accuracy for black spot on apple and powdery 

mildew on grape when using augmented data could be due to 

the specific characteristics of these diseases being altered or 

distorted by the augmentation techniques, making them 

harder for the model to identify consistently. 

 

c) Preprocessing Techniques: 

Static Crop and Grayscale Conversion: The preprocessing 

techniques applied to one of the datasets helped improve the 

model’s ability to focus on relevant features and reduce noise. 

This likely contributed to better performance for some 

diseases, such as bacterial leaf spot, by highlighting disease-

specific patterns and reducing background variability. 

 

5.2 Impact of Data Augmentation on Model 

Generalization and Accuracy 

 

Data augmentation generally helps improve model 

generalization by exposing it to a wider range of variations 

and scenarios. This allows the model to become more robust 

to different conditions and enhances its ability to generalize 

from the training data to real-world situations. The benefits of 

augmentation are evident in the increased accuracy for 

diseases like aphid infestation and bacterial leaf spot. 

 

However, excessive or poorly chosen augmentation 

techniques can introduce distortions that do not accurately 

represent real-world variations. For instance, unrealistic 

rotations or hue adjustments might lead to reduced 

performance if the model encounters variations that are not 

representative of the actual disease features. Thus, while data 

augmentation is a powerful tool for improving generalization, 

it requires careful implementation to balance the benefits and 

avoid introducing misleading variations. 

 

6. Discussion on Overfitting/Underfitting 
 

6.1 Overfitting: 

 

Signs of Overfitting: Overfitting occurs when the model 

performs exceptionally well on the training data but poorly on 

unseen validation or test data. In this case, if the model trained 

on raw labeled data shows significantly higher accuracy on 

the training set but lower accuracy on the validation or test 
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sets, it may indicate overfitting. The model might have 

learned to memorize specific details of the training images 

rather than generalizing the disease features. 

 

Detection: Overfitting can be detected through a high 

discrepancy between training and validation/test accuracies. 

If the model’s performance on the validation/test sets is 

significantly worse compared to the training set, it suggests 

overfitting. 

 

6.2 Underfitting: 

 

Signs of Underfitting: Underfitting occurs when the model 

fails to capture the underlying patterns in the data, leading to 

poor performance on both training and validation/test sets. If 

the model trained on augmented data consistently shows 

lower accuracy across all datasets, it might indicate 

underfitting. The model may not be complex enough to learn 

the disease features or may have been trained on augmented 

data that did not effectively represent real-world variations. 

 

Detection: Underfitting can be identified by consistently low 

accuracy across training, validation, and test sets. If the model 

struggles to perform well on any subset of data, it suggests 

that it is not learning the essential features of the diseases. 

 

 
Figure 4: Analysis Results (Raw Dataset) 

 

 
Figure 5: Analysis Results (Augmented and Processed 

Dataset) 

 

7. Comparative Analysis 
 

7.1 Key Findings 

 

The YOLOv8 model has demonstrated substantial potential 

for plant disease detection using leaf images. The model's 

ability to effectively identify various plant diseases and 

healthy leaves underscores its applicability in agricultural 

settings. The comparative analysis of performance on raw 

labeled data versus augmented and processed labeled data 

revealed important insights: 

• Effectiveness: The YOLOv8 model generally showed 

strong performance in identifying distinct conditions such 

as healthy leaves and black spot on apple. Data 

augmentation and preprocessing improved the model’s 

accuracy for several diseases, including aphid infestation 

and bacterial leaf spot, by diversifying the training data 

and enhancing feature representation. 

 

• Comparative Results: The analysis highlighted both 

improvements and challenges associated with data 

augmentation. While augmentation techniques often led to 

better performance in recognizing certain diseases, they 

also introduced variations that affected the accuracy for 

some conditions. This underscores the need for careful 

implementation of augmentation strategies to optimize 

model performance. 

 

8. Limitations 
 

Several limitations were identified in the study: 

• Dataset Size and Diversity: The relatively small size of the 

dataset and the limited number of images for certain 

diseases, such as powdery mildew on grape, may have 

constrained the model's ability to generalize effectively. A 

larger and more diverse dataset could enhance the model's 

accuracy and robustness. 

• Augmentation Effects: While data augmentation generally 

improved performance, some techniques led to decreased 

accuracy for specific diseases. This indicates that not all 

augmentations are equally beneficial and that careful 

selection is crucial to avoid introducing misleading 

variations. 

• Model Complexity: The YOLOv8n (nano) model, being a 

lightweight variant, may have limitations in capturing 

complex features compared to larger models. This could 

impact the model’s ability to detect subtle or early-stage 

symptoms of plant diseases. 

 

9. Results 
 

Detection Images: The results of the model's performance on 

raw labeled data and augmented data can be visualized 

through the detection images provided. These images 

illustrate the model's ability to identify and classify different 

diseases and healthy leaves accurately, highlighting both 

successful detections and areas where improvements are 

needed. 

 

 
Figure 6: Detection Results (Raw Dataset) 
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Figure 7: Detection Results (Augmented and Processed 

Dataset) 

 

10. Future Work 
 

To enhance the model and extend the research, several 

directions are suggested: 

• Dataset Expansion: Increasing the size and diversity of the 

dataset by including more images of each disease and 

healthy leaves can improve the model's generalization and 

accuracy. Collecting data from different sources and 

conditions will help the model learn from a broader range 

of variations. 

• Enhanced Data Augmentation: Refining the data 

augmentation techniques to better simulate realistic 

variations without introducing excessive noise or 

distortions can further improve model performance. 

Experimenting with different augmentation strategies and 

their impact on specific diseases will be beneficial. 

• Model Optimization: Exploring more complex variants of 

YOLO or alternative architectures may yield better 

results, especially for detecting subtle or early-stage 

symptoms. Experimenting with different model 

configurations and hyperparameters can help find the 

optimal balance between accuracy and computational 

efficiency. 

• Expansion to Other Diseases: Extending the research to 

include additional types of plant diseases and pest 

infestations will broaden the model's applicability. 

Incorporating a wider range of conditions can provide a 

more comprehensive tool for plant health monitoring. 

• Integration of Multimodal Data: Combining image data 

with other types of information, such as environmental 

conditions or sensor data, could enhance the model's 

ability to diagnose plant health issues more accurately and 

holistically. 
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