
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 9, September 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Leveraging Event - Based Architecture, AWS Step

Functions, AWS Batch, and DynamoDB to Run

ETL or ELT Jobs Concurrently While Allowing

Granular Replay Capabilities

Akshay Prabhu

Abstract: Traditional Extract, Transform, Load (ETL) and Extract, Load, Transform (ELT) jobs are often perceived as hardware -

intensive, necessitating the use of persistent EC2 instances to handle large data sets. This conventional approach presents challenges,

including the need for manual monitoring of long - running jobs and the inability to replay jobs from specific points or stages in the

ETL/ELT process. Additionally, the intricate nature of ETL/ELT phases, each with potential failure points, complicates the operational

management of these workflows. AWS provides a suite of serverless services such as EventBridge, S3, SNS, Lambda, Step Functions, and

Batch that can be leveraged to create a scalable and resilient ETL/ELT architecture. This paper explores how integrating these services

can transform traditional ETL/ELT processes into a more flexible, state - managed saga (1) with granular replay capabilities. The goal

is to offer insights into how this architecture using the above - mentioned AWS services can enhance traditional data processing

workflows, focusing on concurrent job execution and precise error recovery, especially targeted for Software Architects and Engineers.

Keywords: Event - Based Architecture, AWS Step Functions, AWS Batch, Amazon, DynamoDB, ETL (Extract, Transform, Load), ELT

(Extract, Load, Transform), Serverless Computing

1. Introduction

AWS offers a diverse set of serverless services that can be

orchestrated to streamline ETL/ELT workflows.

AWS Step Functions provide a robust mechanism for

coordinating complex workflows by defining a state machine

that governs the sequence and conditions under which tasks

are executed. This service integrates seamlessly with other

AWS components, allowing for sophisticated error handling

and retry strategies. (2)

AWS Batch is designed to handle large - scale batch

processing, enabling users to run thousands of batch

computing jobs with dynamic resource allocation. It

integrates with AWS Step Functions to execute jobs in a

scalable and cost - efficient manner. (3)

AWS Lambda is a serverless compute service that runs code

in response to triggers, such as changes to data in S3 or

messages in SNS. It is ideal for executing lightweight tasks

and processing events in real - time. Lambda functions can be

used to transform data or trigger workflows defined in Step

Functions, providing a flexible and scalable approach to

ETL/ELT processes. (4)

Amazon EventBridge (formerly CloudWatch Events) is a

serverless event bus service that facilitates the creation of

event - driven architectures by routing events from various

sources to target services. It can trigger AWS Lambda

functions or Step Functions based on specific events, such as

file uploads to S3 or messages published to SNS. (5)

Amazon S3 provides scalable storage for raw and processed

data, while Amazon SNS enables message - based

communication between different components of the

workflow.

Amazon DynamoDB, a fully managed NoSQL database,

offers high availability and performance for storing metadata

and job state information. Its integration with EventBridge

and Lambda supports real - time event - driven processing

capabilities. (6)

By leveraging these AWS services in harmony, organizations

can build a scalable, resilient, and flexible ETL/ELT

architecture that addresses the limitations of traditional

methods and provides advanced capabilities for managing

complex data processing tasks.

Problem Statement

Consider a payment processing use case where various

payment files need to be ingested and processed through a

serverless ETL pipeline.

Payments, as we all know, are all around us, and as

consumers, we care about viewing our end payments as whole

transactions with all relevant metadata.

However, payment files are among the most complex, and

each underlying transaction/payment needs to be constructed

using various data points and fields. In a typical payment

ingestion scenario, files may come from multiple sources and

formats.

Paper ID: SR24829051214 DOI: https://dx.doi.org/10.21275/SR24829051214 25

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 9, September 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Traditional ETL approaches involve using persistent EC2

instances to perform extract, transform, and load operations.

This method requires constant monitoring and lacks the

flexibility to replay or restart failed jobs from specific stages.

A flexible architecture is necessary to handle different types

of data and complex transformation logic. The system must

be capable of handling failures gracefully, allowing for

granular reprocessing from specific points in the workflow.

Implementation

Our end goal is to extract the file contents, transform them

into singular payment/transaction records so that each item

represents a transaction, and then load it into DynamoDB. The

solution will have three key stages:

Let's start with Stage 1 & 2

Paper ID: SR24829051214 DOI: https://dx.doi.org/10.21275/SR24829051214 26

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 9, September 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Step 1. Handles file transfer, encryption/decryption of the file,

and brings the file into your internal company ecosystem.

Step 2. This is the heavy lifting stage, where we need to

decrypt, tokenize contents, archive, and potentially encrypt

the file back. But each of these logical components are blocks

of function that can run independently.

Step 3. Now that the raw data is transformed, you can load

each transaction into DynamoDB.

Overlaying this logical flow with AWS serverless services

would resemble something like the below diagram across

regions, creating a highly resilient event - driven file ingestion

system.

For Stage 3, based on client needs, we may need to add APIs or file generator components by adding steps 4a and 4b.

Paper ID: SR24829051214 DOI: https://dx.doi.org/10.21275/SR24829051214 27

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 9, September 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Our overall Responsibilities and AWS Service Ownership

Boundary as a result of these decisions can be summarized

with below takeaways

1) Event - Driven Triggers: Use EventBridge to trigger

ETL workflows based on events such as file uploads to

S3 or message notifications from SNS.

2) State Management: Employ AWS Step Functions to

define and manage the ETL workflow, including error

handling and retries. The state machine will orchestrate

the sequence of tasks, utilizing AWS Batch for heavy

lifting.

3) Batch Processing: AWS Batch will process large

volumes of data concurrently, with the results being

stored in S3 or DynamoDB as required.

4) Error Handling and Replay: Implement granular error

handling within Step Functions to capture failure points.

Use DynamoDB to store metadata and state information,

enabling the system to replay jobs from specific stages as

needed.

5) Data Consistency: Ensure data consistency and

reliability by using DynamoDB for state tracking and S3

for data storage.

2. Conclusion

The proposed serverless ETL/ELT architecture represents a

significant advancement over traditional all - or - nothing ETL

processes. By leveraging AWS services such as Step

Functions, Batch, DynamoDB, and others, this approach

provides several key benefits:

1) Scalability: Serverless architecture allows for dynamic

scaling, handling varying workloads efficiently without

the need for persistent infrastructure.

2) Granular Replay: The integration of DynamoDB for state

management and Step Functions for workflow

orchestration enables the system to replay jobs from

specific stages, enhancing fault tolerance and error

recovery.

3) Operational Efficiency: The serverless model reduces

operational overhead by automating scaling, resource

management, and error handling, allowing engineers to

focus on improving the ETL process rather than

managing infrastructure.

4) Flexibility: The architecture can adapt to different types

of data and transformation requirements, making it

suitable for diverse use cases such as payment

processing.

This approach offers a robust and resilient solution for

modern ETL/ELT workflows, addressing the limitations of

traditional methods and providing advanced capabilities for

managing complex data processing tasks.

References

[1] Saga Pattern AWS Perspective. Available at: https:

//docs. aws. amazon. com/prescriptive -

guidance/latest/modernization - data - persistence/saga

- pattern. html [Accessed 26 August 2024].

[2] AWS. AWS Step Functions Documentation. Available

at: https: //docs. aws. amazon. com/step -

functions/latest/dg/welcome. html [Accessed 26 August

2024].

[3] AWS. AWS Batch Documentation. Available at: https:

//docs. aws. amazon. com/batch/latest/userguide/what -

is - batch. html [Accessed 26 August 2024].

[4] AWS. AWS Lambda Documentation. Available at:

https: //docs. aws. amazon.

com/lambda/latest/dg/welcome. html [Accessed 26

August 2024].

[5] AWS. Amazon EventBridge Documentation. Available

at: https: //docs. aws. amazon.

com/eventbridge/latest/userguide/what - is - amazon -

eventbridge. html [Accessed 26 August 2024].

[6] AWS. Amazon DynamoDB Documentation. Available

at: https: //docs. aws. amazon.

com/amazondynamodb/latest/developerguide/Introduct

ion. html [Accessed 26 August 2024].

Paper ID: SR24829051214 DOI: https://dx.doi.org/10.21275/SR24829051214 28

https://www.ijsr.net/

