
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 9, September 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Selecting Effective Metrics for Evaluating and

Measuring Software Application Performance

Krishna Mohan Pitchikala

Abstract: The success of a software application depends on how well it measures up against Key Performance Indicators (KPIs). User

Acceptance Testing (UAT) is the final testing stage where end - users assess the software to confirm that it meets their needs and is ready

for release. While UAT plays a crucial role in determining whether the software application meets user expectations, it alone is not

sufficient either to guarantee a software's success or to evaluate the application's performance. To ensure ongoing success, it is essential

to have metrics that continuously monitor and evaluate the application's performance throughout its lifecycle. This continuous

measurement helps proactively identify and fix issues, ensuring that the software consistently meets the required standards. Performance

evaluation in software development is complex due to the lack of universal guidelines for selecting performance metrics. These metrics

vary depending on the specific characteristics of the application and the business goals it aims to achieve. Choosing the right set of metrics

is crucial for accurately assessing how well the software performs. These metrics should be tailored to the unique aspects of the application

and aligned with the objectives of the business. This paper explores the fundamental principles and approaches that guide the selection

of relevant metrics for evaluating and measuring software performance. By understanding these principles, organizations can better

ensure that their software applications not only meet functional requirements but also deliver a reliable and optimal user experience.

Keywords: software performance, key performance indicators, user acceptance testing, performance metrics, software evaluation

1. Introduction

Metrics in the context of software application refers to a

quantifiable measure that is used to evaluate the effectiveness

of both the software development process and the software

itself. They provide insights into various aspects such as

quality, performance, reliability, and efficiency. They are

crucial for developers, managers, and other stakeholders to

make informed decisions, or to identify areas that need

improvement during the software development life cycle

(SDLC).

Metrics can be collected at every stage of the SDLC, with

each type serving its own specific purpose. When the right

metrics are identified, implemented, and monitored, they

support data - driven decision - making. In software

applications, metrics can be broadly classified into five types:

Security, Process, Performance, Code Quality, and Usability,

as shown in the figure 1.

In this paper, we will focus on performance metrics, which

are used to evaluate the efficiency and effectiveness of

software. Performance metrics help us understand how

software behaves in different situations, allowing us to make

improvements. As applications evolve, these metrics give

developers and stakeholders the information they need to

make smart decisions about optimizing performance,

managing resources, and maintaining system health. The

challenge, however, is selecting the right metrics that capture

the most crucial aspects of performance, since different

metrics highlight different areas.

Figure 1: Metrics in Software Applications

Selecting performance metrics begins with a clear

understanding of the software's purpose, its users, and the

business goals it aims to achieve. The metrics must align with

these goals to provide meaningful insights into the software's

performance. Performance metrics are generally divided into

two types: operational metrics and business - oriented

metrics. The main challenge is finding the right balance

between these two, which depends on the type of software

application. Balancing operational metrics (like response

time, availability, and error rates) with business - oriented

metrics (like user satisfaction, retention rates, and business

impact) is crucial for getting a complete view of the software's

performance.

2. Performance Metrics

2.1 Operational Metrics

Operational metrics are the key performance indicators of any

software applications. These metrics are used in measuring

the internal, system - level performance of the software. These

metrics are primarily concerned with the efficiency, speed,

stability, and resource utilization of the software. They help

developers and IT teams optimize the software’s technical

performance. The following are the main operations metrics

that every software application developer should consider

monitoring and improve the application efficiency

Paper ID: SR24903025128 DOI: https://dx.doi.org/10.21275/SR24903025128 223

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 9, September 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

2.1.1 Availability

Availability is the amount of time a system is accessible and

usable by its users. In other words, it tells us how often the

system is up and running. Critical systems often boast

availability rates as high as 99.9999%, meaning they are

almost always available. Tracking availability is crucial

because it shows how long an application is accessible or not

to users. There are different ways to measure this. One can

assess the availability of an entire system or just a single API.

A simple way to measure availability is by calculating the

uptime, which is the time the system is working, as a

percentage of the total time. In basic terms, availability is the

amount of time the system is running divided by the total

time, which includes both the time it's running (uptime) and

the time it's not (downtime) [6].

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
Uptime

Uptime + Downtime

Another approach is to use "canaries, " which are small

groups of test users who simulate real user activity. These

canaries regularly interact with the critical parts of the

software to ensure everything is functioning as expected. If

they encounter issues, it helps catch problems early.

For a single API, availability can be measured by comparing

the number of successful requests to the total number of

requests made [5].

2.1.2 Latency

Latency in software systems is the time it takes to send

information between a client and a server. It's usually referred

as the is the duration that a request is waiting to be handled.

Keeping the latency low is important because high latency can

make applications slow to respond. High latency can cause

communication issues, making applications slower and less

responsive.

By measuring latency, developers and network architects can

identify where delays are happening, whether in data

transmission, or somewhere else. This helps them fix specific

problems and improve overall performance. In applications

like online games, stock trading, and live broadcasts, where

quick response times are crucial, managing and reducing

latency is essential to ensure a smooth user experience.

2.1.3 Response times

Often people assume response time and latency are same, but

they are not. Latency refers to the time it takes for information

to travel between a client and a server. Response time, on the

other hand, is the total time it takes from the moment a client

sends a request until it receives a response back. Response

time as a combination of two factors:

• Latency: This is the time the message spends in transit

between two points, such as traveling across a network or

passing through different gateways.

• Processing Time: This is the time it takes for the server to

process the request, which might involve translating data,

adding extra information, or performing other tasks.

Response Time = Latency + Processing Time.

If the processing time is very short, which is usually the case

in well - designed systems, the response time might feel

almost the same as the latency. However, it's important to

remember that they are technically different. For accuracy, it's

best to use the correct terms and not mix them up.

2.1.4 Error rates

Error rates in software applications refer to how often errors,

bugs, or failures happen when the software is being used.

These issues can include the application crashing, giving

incorrect results, responding slowly, or having security

weaknesses. Tracking these error rates is important because it

helps ensure the software is of good quality and works well.

High error rates often mean there are problems in the code or

design that need fixing. By monitoring and fixing errors,

developers can improve the user experience, make the

software more reliable, and ensure it meets security and

performance standards. Regularly tracking error rates also

helps in preventing future issues and continuously improving

the software. It can be calculates using the following formula:

Error Rate = (Number of requests with errors / Total number

of requests) * 100%

In some cases, we can directly monitor the HTTP - 500 status

codes returned by APIs to users instead of the percentage.

This helps us in identifying all the cases where the server

couldn't process a request and return a response, often due to

improper error handling. By tracking these failures, we can

fix them and improve the system's reliability.

2.1.5 Resource Utilization

Resource utilization in a software application refers to how

much of the system's resources—such as CPU power,

memory and storage—the application uses while it's running.

Tracking this utilization is essential because it allows

developers to identify inefficiencies, optimize performance,

and ensure the application runs smoothly under various

conditions. It also plays a critical role in scalability, helping

to plan for future growth by ensuring that the necessary

resources are available to handle increased traffic without

compromising performance.

When running software on our own servers, monitoring CPU

and memory usage on each server is crucial to ensure

sufficient space and smooth operation without exhausting

available resources. Tracking resource usage also helps in

planning and estimating new resources that might be needed

or cutting costs if we have allocated more resources than

necessary. In cloud environments, where costs are based on

usage, keeping an eye on resource consumption helps in

managing expenses by avoiding waste and making informed

decisions about scaling resources up or down. Monitoring

resource usage also contributes to system stability, preventing

slowdowns or crashes caused by overuse. This leads to a

better user experience, as applications that efficiently use

resources tend to be faster and more reliable. Overall, tracking

resource usage is essential for improving performance,

managing costs, maintaining system stability, and providing

a good user experience.

Paper ID: SR24903025128 DOI: https://dx.doi.org/10.21275/SR24903025128 224

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 9, September 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

2.2 Business oriented metrics

While operational metrics provide insights into the technical

performance of a software application, offering developers

the information they need to enhance the application and

enabling business stakeholders to make informed decisions.

Business - oriented metrics help business owners to

understand how well the software is supporting their overall

goals. These metrics focus on the impact the software has on

the business, including the number of users, its contribution

to revenue, customer satisfaction, and overall efficiency.

Business - oriented metrics can vary depending on the type of

business, but in this discussion, we will focus on two

commonly used metrics that apply across all types of software

applications. These metrics are crucial for evaluating how

effectively the software aligns with business objectives and

drives success.

2.2.1 Request Volume

The Request Volume metric measures how many requests are

made to a software application over a specific period. A

"request" is any action that a user or another system asks the

application to perform, such as loading a page, submitting a

form, or making an API call to retrieve data from a server.

This metric is important because it helps us understand how

much the application is being used. It can be used in several

ways:

• Monitoring Performance: By tracking request volume,

we can see if there are any unusual spikes or drops in

activity. For example, if the application suddenly becomes

slow or crashes, we can check the request volume to see if

a high number of requests might have caused the issue.

• Capacity Planning: As the application grows and attracts

more users, the request volume will likely increase. By

monitoring this metric, we can plan and make sure we

have enough resources (like servers or bandwidth) to

handle the extra load. If the request volume decreases, we

might consider scaling back resources to save money.

• Understanding User Behavior: Request volume can also

give insights into how users interact with the application.

For instance, we might see higher request volumes during

certain times of the day or after releasing a new feature.

The request volume is typically calculated by counting the

number of requests received by the application over a specific

period, such as per second, minute, hour, or day. This

counting is usually done automatically by the application's

server or by using monitoring tools that track and record every

request made to the application.

2.2.2 Support Ticket Volume and Resolution Time

Another important metric for software applications is the

Support Ticket Volume and its Resolution Time. Support

Ticket Volume refers to the total number of support requests

and outgoing emails handled by the customer support team

within a specific time frame. These requests could be issues,

questions, or help users need with the software. Resolution

Time is the time it takes to resolve a support ticket, starting

from when the ticket is created until it’s marked as resolved.

Tracking these metrics is helpful because if there are many

tickets or if it takes a long time to resolve them, it could mean

there are problems with the software or that customer support

isn't efficient.

These metrics are also useful for making important business

decisions about the software, like deciding which new

features to prioritize or finding resources to fix recurring

issues that generate a significant number of support tickets.

These metrics can be tracked using dashboards, which allow

teams to monitor the number of tickets and how quickly they

are resolved.

3. Effective Strategies for Performance

Measurement

When evaluating the software application performance, it's

important to use metrics that match the goals of the project.

Key areas to focus on include performance, quality, usability,

and maintainability, which together give a full picture of how

well the software is working. Tracking these metrics helps

identify problems in the software and make informed

decisions to fix them, ensuring the best possible experience

for the user. Here are a few strategies that one can use to

measure the performance of a software application.

1) Align Metrics with Business Needs: Start by choosing

performance metrics that align with the business's goals.

For example, in an e - commerce site, response time and

uptime are crucial for user engagement and sales, while

backend systems might prioritize resource use.

2) Set Clear Guidelines and Limits: Once the important

metrics are identified, set clear benchmarks based on best

practices, past performance, and user expectations. This

helps in detecting any performance issues before users

experience them.

3) Monitor and Analyze Continuously: Performance

evaluation should be ongoing. Use monitoring tools to

track how the application performs over time and address

issues as they arise. Regular analysis of performance data

is crucial for application success and can reveal patterns

and areas for improvement.

4) Regularly Review and Update Metrics: As the

application evolves, so should the performance metrics.

Regularly reviewing and updating these metrics ensures

they remain relevant and effective, involving both

technical and business teams to balance different needs.

4. Conclusion

To accurately determine if software applications are meeting

their goals and business targets, it's crucial to choose the right

performance metrics. By using a mix of these metrics,

organizations can get a full picture of how their software is

performing and make informed decisions on any necessary

changes. The key is to select metrics that match the specific

needs of the software and business, and then regularly

measure and track them. This approach allows software teams

to spot and fix issues early, improve user experience, and

increase the software's positive impact on the business.

Performance evaluation isn't a one - time task; it's an ongoing

process that requires teamwork between technical and

business teams. Regular analysis is essential for building a

Paper ID: SR24903025128 DOI: https://dx.doi.org/10.21275/SR24903025128 225

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 9, September 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

strong performance measurement system that supports data -

driven decisions and continuous software improvement.

References

[1] https: //www.browserstack. com/guide/what - is -

software - metrics

[2] https: //stackify. com/track - software - metrics/

[3] https: //en. wikipedia. org/wiki/Software_metric

[4] https: //www.researchgate.

net/publication/333505554_A_Study_on_Software_Met

rics_and_its_Impact_on_Software_Quality

[5] https: //docs. aws. amazon.

com/whitepapers/latest/availability - and - beyond -

improving - resilience/measuring - availability. html

[6] https: //www.ni. com/en/shop/electronic - test -

instrumentation/add - ons - for - electronic - test - and -

instrumentation/what - is - systemlink - tdm - datafinder

- module/what - is - rasm/what - is - availability - .

html?srsltid=AfmBOoodulPM -

T6Ik65mGMQRLxYtM4m10YloTh -

R69CzqHQFYESkDswn

[7] https: //stackoverflow. com/questions/58082389/what -

is - the - difference - between - latency - and - response -

time

[8] https: //adapty. io/glossary/error - rate/

[9] https: //www.globallogic. com/uki/insights/blogs/which

- software - metrics - to - choose - and - why/

[10] https: //www.researchgate.

net/publication/331080288_Software_Performance_Tes

ting_Measures

Paper ID: SR24903025128 DOI: https://dx.doi.org/10.21275/SR24903025128 226

https://www.ijsr.net/
https://www.browserstack.com/guide/what-is-software-metrics
https://www.browserstack.com/guide/what-is-software-metrics
https://stackify.com/track-software-metrics/
https://en.wikipedia.org/wiki/Software_metric
https://www.researchgate.net/publication/333505554_A_Study_on_Software_Metrics_and_its_Impact_on_Software_Quality
https://www.researchgate.net/publication/333505554_A_Study_on_Software_Metrics_and_its_Impact_on_Software_Quality
https://www.researchgate.net/publication/333505554_A_Study_on_Software_Metrics_and_its_Impact_on_Software_Quality
https://docs.aws.amazon.com/whitepapers/latest/availability-and-beyond-improving-resilience/measuring-availability.html
https://docs.aws.amazon.com/whitepapers/latest/availability-and-beyond-improving-resilience/measuring-availability.html
https://docs.aws.amazon.com/whitepapers/latest/availability-and-beyond-improving-resilience/measuring-availability.html
https://www.ni.com/en/shop/electronic-test-instrumentation/add-ons-for-electronic-test-and-instrumentation/what-is-systemlink-tdm-datafinder-module/what-is-rasm/what-is-availability-.html?srsltid=AfmBOoodulPM-T6Ik65mGMQRLxYtM4m10YloTh-R69CzqHQFYESkDswn
https://www.ni.com/en/shop/electronic-test-instrumentation/add-ons-for-electronic-test-and-instrumentation/what-is-systemlink-tdm-datafinder-module/what-is-rasm/what-is-availability-.html?srsltid=AfmBOoodulPM-T6Ik65mGMQRLxYtM4m10YloTh-R69CzqHQFYESkDswn
https://www.ni.com/en/shop/electronic-test-instrumentation/add-ons-for-electronic-test-and-instrumentation/what-is-systemlink-tdm-datafinder-module/what-is-rasm/what-is-availability-.html?srsltid=AfmBOoodulPM-T6Ik65mGMQRLxYtM4m10YloTh-R69CzqHQFYESkDswn
https://www.ni.com/en/shop/electronic-test-instrumentation/add-ons-for-electronic-test-and-instrumentation/what-is-systemlink-tdm-datafinder-module/what-is-rasm/what-is-availability-.html?srsltid=AfmBOoodulPM-T6Ik65mGMQRLxYtM4m10YloTh-R69CzqHQFYESkDswn
https://www.ni.com/en/shop/electronic-test-instrumentation/add-ons-for-electronic-test-and-instrumentation/what-is-systemlink-tdm-datafinder-module/what-is-rasm/what-is-availability-.html?srsltid=AfmBOoodulPM-T6Ik65mGMQRLxYtM4m10YloTh-R69CzqHQFYESkDswn
https://www.ni.com/en/shop/electronic-test-instrumentation/add-ons-for-electronic-test-and-instrumentation/what-is-systemlink-tdm-datafinder-module/what-is-rasm/what-is-availability-.html?srsltid=AfmBOoodulPM-T6Ik65mGMQRLxYtM4m10YloTh-R69CzqHQFYESkDswn
https://www.ni.com/en/shop/electronic-test-instrumentation/add-ons-for-electronic-test-and-instrumentation/what-is-systemlink-tdm-datafinder-module/what-is-rasm/what-is-availability-.html?srsltid=AfmBOoodulPM-T6Ik65mGMQRLxYtM4m10YloTh-R69CzqHQFYESkDswn
https://stackoverflow.com/questions/58082389/what-is-the-difference-between-latency-and-response-time
https://stackoverflow.com/questions/58082389/what-is-the-difference-between-latency-and-response-time
https://stackoverflow.com/questions/58082389/what-is-the-difference-between-latency-and-response-time
https://adapty.io/glossary/error-rate/
https://www.globallogic.com/uki/insights/blogs/which-software-metrics-to-choose-and-why/
https://www.globallogic.com/uki/insights/blogs/which-software-metrics-to-choose-and-why/
https://www.researchgate.net/publication/331080288_Software_Performance_Testing_Measures
https://www.researchgate.net/publication/331080288_Software_Performance_Testing_Measures
https://www.researchgate.net/publication/331080288_Software_Performance_Testing_Measures

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 9, September 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Paper ID: SR24903025128 DOI: https://dx.doi.org/10.21275/SR24903025128 227

https://www.ijsr.net/

