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Abstract: This study investigates the socioeconomic determinants of healthcare quality in the United States using advanced statistical 

and machine learning techniques, including regression models, Random Forests, and Neural Networks. By analyzing data from 2016 to 

2019, the research identifies key predictors of life expectancy and evaluates the efficacy of various models in capturing the complex 

interplay of socioeconomic factors. The findings provide critical insights for policymakers aiming to improve healthcare outcomes.  
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1. Data Preparation 
 

To explore the complex relationship between socioeconomic 

factors and healthcare quality, life expectancy was selected as 

the proxy variable. The data, gathered from the U. S. Census 

Bureau [1], CMS. gov [2], and the Kaiser Family Foundation 

(KFF) [3], was carefully curated and integrated into a master 

dataset by merging multiple sources through the common 

variables of state and year. The independent variables 

included in the analysis were percentage of state population 

uninsured, healthcare expenditures per capita, poverty rate by 

state, average median income per household, Medicare and 

Medicaid estimates by state residence, GDP by state, high 

school graduation rate, Gini coefficient (income inequality), 

unemployment rate, and the population burdened by high 

medical costs. The master dataset was then split into two 

segments: data from 2016 to 2018 was used for training and 

testing, while 2019 data served as the validation set. The data 

cleaning process involved handling missing values through 

multiple imputation, removing outliers based on standard 

deviation and interquartile range methods, and normalizing 

variables to ensure consistency across datasets. This 

comprehensive approach ensured that the final dataset was 

both robust and reflective of the underlying socioeconomic 

conditions, allowing for a thorough analysis of their impact 

on life expectancy.  

 

2. Exploratory Data Analysis 
 

Heat Maps Analysis 

 
Figure 1: Heat Map of Avg. Longevity in the United States (2016 - 2018) 
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Figure 2: Heat Map of Avg. Longevity in the United States (2019) 

 

The heat maps displayed in Figure 1 & Figure 2 present an 

insightful overview of life expectancy trends across the 

United States during two distinct periods: 2016 - 2018 and 

2019. The upper map shows the average life expectancy by 

state for 2016 - 2018, while the lower map depicts the same 

metric for 2019. Notably, the states with the highest average 

life expectancy remain consistent across both time frames, 

with California, Minnesota, and New York leading in 

longevity. Conversely, Mississippi, West Virginia, and 

Alabama consistently exhibit the lowest life expectancy 

during these periods. This consistency between the training 

data (2016 - 2018) and the validation data (2019) bodes well 

for our model, suggesting that the underlying patterns and 

relationships in the data are stable over time.  

Distribution of Predictors 

 
Figure 3: Histogram of Variable: ‘Insurance’ (2016 - 2019) 

 

 
Figure 4: Histogram of Variable: ‘Longevity’ (2016 - 2019) 

 
Figure 5: Histogram of Variable: ‘Poverty’ (2016 - 2019) 

 

 
Figure 6: Histogram of Variable: ‘Medicaid’ (2016 - 2019) 

 

Figures 3 - 6 delve into the distribution of key variables used 

in our analysis, emphasizing the importance of understanding 

their underlying characteristics. We focused on four crucial 

predictors: the percentage of uninsured population, poverty 

rate, life expectancy, and Medicaid estimates by state 

residence. Histograms illustrate that most variables, including 

the uninsured population percentage, poverty rate, and life 

expectancy, exhibit a normal distribution, indicating that the 

data is symmetrically distributed around the mean. However, 

Figure 6, which represents Medicaid estimates, reveals a right 

- skewed distribution with outliers. This deviation from 

normality in the Medicaid estimates underscores the need for 

careful consideration when interpreting its influence on 

healthcare outcomes, as skewed distributions can introduce 

bias and affect model performance. Understanding these 

distributions is pivotal for subsequent modeling steps, 
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informing decisions on data transformations and the selection 

of statistical methods.  

Scatter Plots Analysis 

 

 
Figure 7: Scatter Plot: Poverty Rate vs. Longevity (2016 - 2019) 

 

 
Figure 8: Scatter Plot: Medicaid vs. Longevity (2016 - 2019) 

 

 
Figure 9: Scatter Plot: Medicare vs. Longevity (2016 - 2019) 
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Figure 10: Scatter Plot: % Uninsured vs. Longevity (2016 - 2019) 

 

The scatter plots in Figures 7 - 10 were generated to examine 

the relationships between life expectancy and several key 

independent variables—poverty rate, Medicaid expenditures, 

Medicare estimates, and the percentage of uninsured 

residents—across the United States from 2016 to 2019. By 

visually assessing these plots, we aimed to identify any strong 

linear correlations that might indicate these variables' 

predictive power regarding longevity.  

 

Figure 7 illustrates the relationship between poverty rate and 

life expectancy, which shows a moderate negative 

correlation, with an R - squared value of 0.574 and a highly 

significant p - value (p < 2e - 16). This suggests that as the 

poverty rate increases, the average life expectancy decreases, 

a finding that aligns with existing literature and highlights 

poverty as a significant factor affecting health outcomes.  

 

In contrast, Figure 8, which examines Medicaid expenditures 

per state, shows a weaker positive correlation with life 

expectancy (R - squared = 0.0265, p - value = 0.047). 

Although statistically significant, the low R - squared value 

suggests that Medicaid expenditures alone may not strongly 

predict longevity, indicating that other factors likely play a 

more critical role.  

 

Similarly, Figure 9 displays the scatter plot for Medicare 

estimates against life expectancy, which reveals an even 

weaker correlation (R - squared = 0.0102, p - value = 0.22). 

The near - zero R - squared value and non - significant p - 

value imply that Medicare estimates do not strongly correlate 

with life expectancy at the state level, further suggesting that 

Medicare's impact on longevity might be overshadowed by 

other variables.  

 

Finally, Figure 10 examines the percentage of uninsured 

residents against life expectancy. While this plot 

demonstrates a negative correlation (R - squared = 0.157, p - 

value = 5e - 07), the relationship is modest. This suggests that 

while higher rates of uninsured individuals might contribute 

to lower life expectancy, the impact is moderate and likely 

interacts with other social and economic factors.  

 

Overall, the scatter plots indicate that none of the examined 

variables alone have a sufficiently strong relationship with 

longevity, leading us to conclude that a more comprehensive 

approach, such as multiple regression modeling, is necessary 

to better capture the complex interplay of factors influencing 

life expectancy.  

 

Models 

Multiple Regression Model 
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Figure 11: Summary Statistics of Initial Multiple Regression Model 

 

To assess the relationship between longevity and various 

predictors, we employed a multiple linear regression model 

that incorporated all the variables listed in our dataset. The 

initial results, as displayed in the regression output (Figure 

11), highlight which factors are statistically significant in 

predicting life expectancy across different states.  

 

Our regression analysis indicates that several variables are 

significant predictors of longevity, as evidenced by their p - 

values (p < 0.05). These include the year, Medicaid, cost per 

capita (cost. pc), GDP, unemployment, poverty rate, 

graduation rate, income, and Gini index. The model yields an 

adjusted R - squared value of 0.791, suggesting that 

approximately 79.1% of the variance in life expectancy can 

be explained by these variables collectively. This robust R - 

squared value underscores the model's effectiveness in 

capturing the complex interactions that influence life 

expectancy.  

 

Assumptions Check 

 

 
Figure 12: Quantile - Quantile Plot of Residuals (of Longevity) 

 

 
Figure 13: Residuals vs Fitted Plot (Longevity) 
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To ensure the validity of our regression model, we examined 

the three key assumptions of linear regression: normality, 

homoscedasticity, and linearity. The quantile - quantile (Q - 

Q) plot of the residuals (Figure 12) indicates that the 

normality assumption is satisfied, as the residuals closely 

follow the 45 - degree line, with only minor deviations at the 

extremes. For homoscedasticity, the residuals vs. fitted values 

plot (Figure 13) shows that the variance of the residuals is 

constant, with no visible pattern in their spread. The same plot 

also confirms the linearity assumption, as there is no 

discernible curvature, indicating a linear relationship between 

the predictors and the dependent variable.  

 

Overall, the diagnostic plots confirm that our regression 

model meets the necessary assumptions, lending credibility to 

the results and supporting the use of this model for further 

analysis.  

 

 
Figure 14: Mean - Squared Error vs Log (λ) 

 

To refine our regression model, we employed the Least 

Absolute Shrinkage and Selection Operator (LASSO) 

technique, visualized in Figure 14. The graph depicts the 

relationship between the mean squared error (MSE) and the 

logarithm of the regularization parameter λ. From the plot, we 

determined that the minimum MSE corresponds to a log (λ) 

value of approximately - 5, which translates to a λ value of 

around 0.006.  

 

Interestingly, LASSO did not eliminate any variables from 

our model. This outcome can be attributed to using the cv. 

glmnet function, which performs cross - validation and may 

yield different results than using the glmnet function alone. 

Although LASSO typically simplifies the model by removing 

less significant variables, in this instance, it retained all the 

predictors, suggesting that they all contribute to the model in 

some capacity.  

The λ parameter in LASSO is a crucial component that 

controls the strength of the regularization applied to the 

model. Regularization is a technique used to prevent 

overfitting by penalizing the absolute size of the regression 

coefficients. The LASSO method specifically drives some 

coefficients to zero, effectively selecting a simpler model by 

eliminating less significant predictors.  

 

A smaller λ value, such as 0.006 in our case, implies that the 

regularization effect is relatively weak, allowing more 

predictors to remain in the model. Conversely, a larger λ 

would increase the penalty on the coefficients, potentially 

shrinking more of them to zero and simplifying the model 

further. The choice of λ balances the trade - off between 

model complexity and prediction accuracy.  

 
Figure 15: Summary Statistics after Zero Backwards Elimination Iteration 
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Given that LASSO did not reduce the number of variables, we 

decided to resort to backward selection for variable 

elimination to improve the model's statistical significance. In 

our first iteration of backward selection, we identified 

Medicare as the variable with the highest p - value (0.9973), 

as shown in Figure 15. At the 0.05 significance level, this p - 

value indicates that Medicare does not contribute 

meaningfully to the model. Therefore, we eliminated 

Medicare from the model and reran the regression to reassess 

the summary statistics, focusing on the p - values of the 

remaining variables to determine further steps for model 

refinement.  

 

 
Figure 16: Summary Statistics after One Backwards Elimination Iterations 

 

Continuing with our backward selection process, we observed 

that after removing the Medicare variable, there were still 

statistically insignificant p - values present in the model, as 

shown in Figure 16. The variable with the highest p - value 

was now 'income, ' with a p - value of 0.25862. Given that this 

exceeds our significance level of 0.05, we eliminated the 

income variable and reran the regression model, marking this 

as our second iteration.  

 
Figure 17: Summary Statistics after Two Backwards Elimination Iterations 

 

After the removal of income, the highest remaining p - value 

belonged to the variable 'uninsured, ' which had a p - value of 

0.05089, as shown in Figure 17. Though this p - value is just 

above our significance threshold, it still indicates that 

'uninsured' is not statistically significant at the 0.05 level. 

Consequently, we removed the 'uninsured' variable and reran 

the regression model.  

With the removal of 'Medicare, ' 'income, ' and 'uninsured, ' 

our final multiple regression model showed that all remaining 

variables had p - values below the 0.05 significance level. 

This refinement process successfully led us to a statistically 

significant model, ensuring that all included variables 

contribute meaningfully to predicting longevity.  
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Figure 18: Summary Statistics after Three Backwards Elimination Iterations 

 

 
Figure 19: Summary Statistics after Three Backwards Elimination Iterations 

 

To ensure the validity of this final regression model, we 

revisited the model diagnostics. The assumptions of 

normality, homoscedasticity, and linearity were checked once 

again with the new figures. The quantile - quantile (Q - Q) 

plot of the residuals still indicated that the normality 

assumption was satisfied, as the residuals closely followed the 

45 - degree line, with only minor deviations at the extremes. 

The residuals vs. fitted values plot continued to show that the 

variance of the residuals was constant (homoscedasticity) and 

that there was no discernible curvature (linearity), confirming 

that these assumptions were also met.  

 
Figure 20: Summary Statistics after Three Backwards Elimination Iterations 

 

In summary, through backward selection, we eliminated the 

variables 'Medicare, ' 'income, ' and 'uninsured, ' resulting in 

a final multiple regression model where all variables are 

statistically significant, as shown in Figure 20. Our model 

diagnostics confirm that the necessary assumptions hold 

true, lending credibility to the model's results and supporting 

its use for further analysis.  

 

Random Forest Model 

In the next of our analysis, we employed a Random Forest 

model to delve deeper into the relationships within our 

dataset. The Random Forest is an ensemble learning 

technique that aggregates the predictions of multiple 

decision trees, aiming to enhance accuracy and stability in 

the model's predictions.  
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Figure 21: Bagging Graph for Random Forest Model 

 

 
Figure 22: Error Rate for Fine - Tuned Random Forest Model 

 

The two graphs depicted above illustrate the error rate in 

relation to the number of trees used in the Random Forest 

model. The first graph corresponds to the initial bagging 

model (fit. bagging), while the second graph represents the 

error rate for the final tuned Random Forest model (fit. rf. 

final). In both graphs, the x - axis denotes the number of trees, 

and the y - axis indicates the corresponding error rate.  

 

The initial bagging model's error rate decreases sharply as the 

number of trees increases, with a noticeable plateau occurring 

around 120 trees. This suggests that the model's accuracy 

improves considerably with the addition of trees up to this 

point, after which further trees contribute minimal 

improvements to the model's predictive power. Similarly, in 

the final Random Forest model, the error rate decreases and 

stabilizes at approximately 120 trees. Beyond this threshold, 

the error rate remains constant, indicating that additional trees 

do not significantly enhance the model's performance.  

 

Considering the analysis of these graphs, we determined that 

the optimal number of trees for our Random Forest model 

falls between 120 and 150. This range captures the point 

where the model's accuracy stabilizes, and additional trees 

would not provide substantial improvements while potentially 

increasing computational complexity. Consequently, we 

tuned the model to utilize 150 trees, ensuring a balance 

between model complexity and predictive accuracy.  

 

By configuring the Random Forest model with 150 trees, we 

effectively capture the underlying patterns in the data without 

incurring the risks of overfitting or unnecessary 

computational costs. This refined model serves as a robust 

and reliable method for predicting longevity based on the 

available predictors, offering a strong foundation for further 

analysis and interpretation.  

 

Neural Network Model 

In addition to the Random Forest model, we implemented a 

Neural Network model to further explore the relationships 

between our predictors and longevity. The neural network 

architecture, as detailed in the code snippet, consisted of three 

dense layers with ReLU activation functions, along with 

dropout layers to prevent overfitting. We trained the model 

over 30 epochs, with a batch size of 32, and used 20% of the 

data for validation.  
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Figure 23: Loss and Validation During Training (Top Graph); Mean Absolute Error (MAE) and Validation Mean Absolute 

 

Error (Val_MAE) During Training (Bottom Graph) 

The graphs above display the performance of the neural 

network during training. The first graph shows the loss (blue 

line) and validation loss (green line) as functions of the 

number of epochs. Both loss and validation loss decrease over 

time, which indicates that the model is learning from the data. 

However, the gap between the training loss and validation 

loss suggests that the model may not be generalizing well to 

unseen data, a common issue with small datasets in neural 

network training.  

 

The second graph presents the mean absolute error (MAE) 

and validation mean absolute error (val_MAE) across the 

epochs. Similar to the loss graph, the MAE decreases as the 

epochs progress, indicating improvement in the model's 

accuracy. Nevertheless, the persistent gap between the 

training and validation MAE further points to potential 

overfitting, where the model performs well on the training 

data but struggles with the validation data.  

 

The suboptimal performance of our neural network model can 

be attributed largely to the limited size of our dataset. Neural 

networks typically require large amounts of data to achieve 

high accuracy and generalization. With our smaller dataset, 

the model is more prone to overfitting, as evidenced by the 

divergence between the training and validation metrics. 

Despite these challenges, the neural network provides an 

additional perspective on the data and may still offer insights 

when combined with other models in an ensemble approach. 

However, to fully leverage the potential of neural networks, a 

larger dataset would be necessary to improve the model's 

reliability and reduce the error rates.  

 

 

 

Model Comparison 

 

 
Figure 24: Comparison of Mean - Squared Errors of 

Differing Models 

 

In order to evaluate the effectiveness of the various predictive 

models developed in this study, we calculated and compared 

the Mean Squared Error (MSE) for each model. The MSE 

serves as a critical metric in assessing model performance, as 

it quantifies the average squared difference between the 

observed actual values and the model's predicted values. This 

comparison allows us to determine which model most 

accurately captures the underlying patterns in the data.  

 

The initial multiple regression model produced an MSE of 

1.34. This baseline result indicates the level of prediction 

error when using all variables without any form of 

regularization or adjustment. When we applied regularization 

to refine the multiple regression model, the MSE slightly 

increased to 1.71. This increase suggests that while 

regularization can prevent overfitting by penalizing overly 

complex models, it may also lead to a small loss in predictive 

accuracy if the model is not overfitted to begin with.  

 

The random forest model significantly outperformed both 

regression models, achieving an MSE of 0.624. This notable 

reduction in error highlights the random forest model's 

capability to handle complex relationships between variables 

and capture nonlinear interactions more effectively than 

traditional regression models. The ensemble nature of random 
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forests, which aggregates the predictions of multiple decision 

trees, likely contributed to its superior performance.  

 

In contrast, the neural network model yielded a considerably 

higher MSE of 588. This result indicates poor predictive 

accuracy, likely due to the small size of the dataset used in 

this study. Neural networks typically require large amounts of 

data to effectively learn and generalize from patterns, and 

with limited data, they may struggle to produce reliable 

predictions. The high MSE of the neural network model 

underscores the challenges of using complex models with 

insufficient data, leading to overfitting and a lack of 

generalization.  

 

In summary, the model comparison reveals that the random 

forest model was the most effective in predicting longevity, 

given the data available. While regularization provided some 

refinement to the multiple regression model, it did not 

improve accuracy. The neural network model's poor 

performance further emphasizes the need for sufficient data 

when employing more complex predictive techniques. These 

findings underscore the importance of selecting the 

appropriate model based on the nature of the dataset and the 

specific analytical goals.  

 

Binary Models 

 

 
Figure 25: Confusion Matrix of Binary Logistic Regression Model 

 

The analysis of our model extends to the comparison of 

Logistic Regression and Random Forest approaches, 

visualized through confusion matrices. The confusion matrix 

(Figure 25) represents the results of the Logistic Regression 

model, where the binary outcome is defined as whether a 

state’s life expectancy is higher than the national average 

("yes") or lower ("no"). In this matrix, the Logistic Regression 

model correctly identified 12 states with life expectancy 

above the average (True Positives) and 21 states below the 

average (True Negatives). However, it incorrectly classified 

17 states that actually have life expectancy below the average 

as above it (False Negatives). This model achieved a precision 

of 1, meaning it perfectly classified the positive class, but had 

a recall of only 0.414, indicating that it failed to identify a 

large portion of the actual positives. The F1 score, which 

balances precision and recall, was 0.585, reflecting the 

model's overall performance.  

 
Figure 26: Confusion Matrix of Binary Random Forest Model 

 

In contrast, the other confusion matrix (Figure 26) shows the 

results of the Random Forest model applied to the same 

binary classification problem. This model significantly 

outperformed the Logistic Regression model. It correctly 

classified 27 states with life expectancy above the average 

(True Positives) and 21 states below the average (True 

Negatives), with only two misclassifications (False 

Negatives). The precision remained at 1, similar to the 

Logistic Regression model, but the recall improved 

dramatically to 0.931. The F1 score for the Random Forest 

model was 0.964, demonstrating a much stronger balance 

between precision and recall.  
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This comparison highlights the effectiveness of the Random 

Forest model in binary classification tasks within our study. 

By utilizing this binary approach, which was a unique test 

within our broader analysis, we were able to demonstrate that 

the Random Forest model can more accurately and reliably 

predict whether a state’s life expectancy is above or below the 

national average when compared to the Logistic Regression 

model. This finding underscores the robustness of the 

Random Forest model, particularly in scenarios where 

distinguishing between binary outcomes is crucial.  

 

3. Conclusion 
 

In our comprehensive analysis, we sought to identify the most 

significant socioeconomic factors that influence healthcare 

quality across the United States, using life expectancy by state 

as a proxy measure. Beginning with a broad multiple 

regression model, we methodically refined our approach 

through the application of LASSO (Least Absolute Shrinkage 

and Selection Operator) to penalize and reduce the impact of 

less significant variables, followed by backward elimination 

to systematically remove variables with the highest p - values. 

This process allowed us to develop a more parsimonious and 

robust model. Ultimately, the most significant factors 

identified were [list most significant factors], which 

consistently demonstrated strong statistical significance in 

relation to life expectancy across various iterations.  

 

One of the pivotal aspects of our analysis was the application 

of the Random Forest model. This model emerged as the most 

effective predictive tool, excelling not only in predicting 

continuous outcomes, such as the exact life expectancy by 

state, but also in binary classification tasks that determined 

whether a state's life expectancy was above or below the 

national average. The Random Forest model's superior 

predictive accuracy, evidenced by its lower error rates and 

higher F1 score, surpassed that of the Logistic Regression 

model. This was particularly evident in the confusion matrix 

comparisons, where the Random Forest model showcased 

exceptional precision and recall, reflecting its robustness in 

handling both continuous and binary outcome predictions.  

 

The significance of our findings lies in the practical 

implications of these models. The Random Forest model's 

ability to capture complex, non - linear relationships between 

predictors and outcomes, while also demonstrating resilience 

against overfitting, positions it as a powerful tool for 

healthcare policy analysis. By identifying and focusing on the 

most impactful socioeconomic variables, our model provides 

actionable insights that can guide policymakers and 

healthcare providers in their efforts to improve healthcare 

quality across the United States.  

 

Moreover, the identification of [list most significant factors] 

as key determinants of healthcare quality offers a clear 

directive for resource allocation and policy intervention. 

Understanding the relative importance of these factors allows 

for more targeted strategies to reduce healthcare disparities, 

optimize services, and improve overall life expectancy. For 

instance, our analysis suggests that focusing on individuals in 

poverty may be more effective in improving life expectancy 

than targeting those who are uninsured, highlighting the need 

for nuanced policy decisions that prioritize the most impactful 

factors.  

 

Our model also underscores the importance of data - driven 

decision - making in healthcare. By categorizing variables 

into high - impact factors, the model provides a framework 

for designing targeted interventions aimed at achieving health 

equity across states and demographic groups. This approach 

is not only theoretically sound but also has significant 

practical implications, enabling healthcare providers to 

optimize their services and be better prepared for future 

challenges.  

 

In conclusion, our study highlights the critical socioeconomic 

factors that most significantly impact healthcare quality in the 

United States, with the Random Forest model standing out as 

the best predictive tool for forecasting healthcare outcomes. 

This research not only advances our understanding of the 

socioeconomic underpinnings of healthcare quality but also 

provides a robust methodological framework for future 

studies. The insights gained from this analysis are invaluable 

for policymakers, healthcare providers, and researchers 

striving to improve life expectancy and healthcare quality 

across the nation. By leveraging these findings, we can take 

significant steps towards reducing healthcare disparities and 

achieving better health outcomes for all Americans.  

 

References 
 

[1] U. S. Census Bureau. (2024). Economic Data. Retrieved 

from U. S. Census Bureau 

[2] CMS. gov. (2024). Medicare and Medicaid Statistical 

Reports. Retrieved from CMS. gov 

[3] Kaiser Family Foundation. (2024). State Health Facts. 

Retrieved from KFF First 3 authors contributed equally 

to this research project/paper.  

Paper ID: SR24903112649 DOI: https://dx.doi.org/10.21275/SR24903112649 385 

https://www.ijsr.net/



