
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 9, September 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

A Two Stage Low Complexity Lossless Coding

Algorithm for Medical Images

Karthick Kumaran Ayyalluseshagiri Viswanathan

Member IEEE

Running Title: Tailored For Ultra Low Power Devices

Abstract: Nowadays a large number of various medical images are generated from hospitals and medical centers with sophisticated

image acquisition devices. This paper deals with the techniques to decrease the communication bandwidth and to save the transmitting

power in wireless medical devices. Digital image consumes huge memory and thus digital image data compression is necessary in order

to solve this problem. In medical applications such as disease diagnosis, the loss of information is unacceptable; hence medical images

should be compressed lossless. Wireless medical devices injected into the body are battery operated devices and hence the lifetime of the

battery should last for a long time. Complexity of the compression algorithm is directly related to the power consumption of the processor

and hence there is a need for simple compression algorithms. We proposed 2 simple algorithms which can be combined together or used

separately based on the necessity to address this requirement.

Keywords: Medical Image compression, Lossless compression, Wireless medical images, medical images, low power devices

1. Introduction

Medical imaging is a powerful and useful tool for radiologists

and consultants, allowing them to improve and facilitate their

diagnosis. Worldwide, X-ray images represents 60% of the

total amount of radiological images, the remaining consists of

more newly developed image modalities such as Computed

Tomography (CT), Magnetic Resonance Imaging (MRI),

Ultrasound (US), Positron Emission Tomography (PET),

Nuclear Medicine (NM) and Digital Subtraction

Angiography(DSA).

Image communication systems for medical images have

bandwidth and image size constraints that result in time

consuming transmission of uncompressed raw image data.

Thus, image compression is a key factor to improve

transmission speed and storage. It exploits common

characteristics of most images that are the neighboring picture

elements (pixels) are highly correlated. It means a typical still

image contains a large amount of spatial redundancy in plain

areas where adjacent pixels have almost the same values.

Compression is the process of storing or packing data in a

format that requires less space than the initial or original data.

Compression techniques can be classified into lossy and

lossless.

Lossy compression permits some signal degradation and

provide higher compression ratios in comparison with

lossless techniques. This is used in applications dealing with

speech and video signals where some loss of information can

be tolerated.

Lossless compression does not permit any loss of information

and allows the original signal to be recovered exactly. This is

used in a wide range of medical applications and under special

circumstances such as disease diagnostic. In such

applications, loss of information cannot be tolerated. Thus,

rather than lossy compression with relatively high

compression ratio, lossless compression methods are favored.

2. Existing Techniques/Algorithms

• Discrete Cosine Transform (DCT) based JPEG

• Discrete Wavelet Transform (DWT) based JPEG2000

• Lossless JPEG (JPEG-LS)

• Lossless JPEG 2000

First of these two algorithms are lossy compression

algorithms and the rest are lossless compression algorithms.

The weakness of these methods comes from its computational

load and complexity (encoding and decoding complexity).

Moreover, they have been tested only for non-medical

images.

3. Proposed Algorithm

We present a new coding algorithm for medical images. This

algorithm is absolutely lossless and based on pixel

redundancy reduction technique.

This algorithm comprises of 2 stages. First stage is based on

pixel redundancy reduction technique using only two

matrices for coding and decoding processes. Second stage

removes the redundancy present in the first stage.

1) Stage-1 Compression Algorithm

Stage-1 is based on only two matrices, binary matrix and

grayscale matrix. Stage-1 compression is performed based on

the following steps.

a) Read the original image matrix, OR

b) Construct the Binary Matrix, BM

Paper ID: SR24918114635 DOI: https://dx.doi.org/10.21275/SR24918114635 1070

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 9, September 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

• First element in the BM is set to 1. Rest all are set as

follows:

• [BM]i,j = 0, [OR]i,j = [OR]i,j-1

• 1, [OR]i,j ≠ [OR]i,j-1

c) Construct the Grayscale Matrix, GSM

• First element in the GSM is set to the first value in

the original matrix OR. The remaining elements of

GSM are calculated as follows:

• [GSM]k = NULL, [OR]i,j = [OR]i,j-1

• [OR]i,j, [OR]i,j ≠ [OR]i,j-1

d) Compressed bit-stream is the combination of both the

matrices.

e) Binary matrix consists only of 0’s and 1’s. So 1-bit is

enough to store each element of Binary matrix. A byte is

formed by combining consecutive 8 bits in the Binary

matrix. So Binary matrix will always takes memory

footprint of (width * height) bits = (width * height / 8)

bytes.

f) Grayscale matrix elements can have any value between 0

and 255. So, each element in grayscale matrix requires 1-

byte.

Figure 1: Original Pixels Comparison

Let us take an example to demonstrate this.

Original Matrix [OR]:
10 10 10 10

20 20 20 20

30 30 30 30

30 30 30 30

The pixel value varies from 0 to 255 and it takes one byte for

each pixel. So above matrix takes 16 bytes.

Binary Matrix [BM]:
1 0 0 0

1 0 0 0

1 0 0 0

0 0 0 0

Each element of the Binary matrix takes only 1-bit and so the

above matrix takes 16 bits which is 2 bytes.

From the above matrix, combine consecutive 8-bits to form

byte values. With the above available 16 bits, byte values are

formed as follows:

[10001000, 10000000] => [136, 128]

Grayscale Matrix [GSM]:

[10 20 30]

As the elements of Grayscale matrix takes 1-byte, the above

matrix takes 3 bytes.

Compressed Bitstream:

It is a combination of GSM & BM. So it takes 2 + 3 = 5 bytes

of memory footprint as follows:

[136, 128, 10, 20, 30]

2) Stage-2 Compression Algorithm

Pixel Code String Algorithm

0000 0001

To 1111 1111

One pixel in color 1

To One pixel in color 255

0000 0000

0LLL LLLL
L pixels (1 – 127) in color 0

0000 0000

1LLL LLLL

CCCC CCCC

L pixels (3 – 127) in color C

(L > 2)

• Above table is constructed based on prefix codes

• No codeword will be the prefix for any other code.

• Designed to compress Binary matrix of Stage-1

• Binary matrix will have more number of zeroes (0’s) for

medical images. So the probability of zero is more for

Binary Matrix

• Hence a separate codeword is designed in the above table

for the symbol 0 (color 0)

• And at last the table is tailored specially for Binary Matrix

constructed with medical images.

• Count consecutive same byte values, C, in the Binary

matrix and assign it to L.

• Let us take an example to demonstrate this. If the output

of the Binary matrix is

[0, 0, 0, 0, 0, 0, 0, 0, 1, 255, 1, 1, 1, 1, 1, 1, 1, 1, 255, 255, 255,

255, 255, 255, 255, 255, 255]

Input has 27 byte values.

Let us form the L and C for each of the consecutive byte value.

[0, 0, 0, 0, 0, 0, 0, 0] => L = 8, C = 0

[1] => L = 1, C = 1

[255] => L = 1, C = 255

[1, 1, 1, 1, 1, 1, 1, 1] => L = 8, C = 1

[255,255,255,255,255,255,255,255,255] => L = 9, C = 255

Let us form the pixel code string with the above L and C values

(Refer the pixel code string table to form this).
L C Pixel Code String Pixel Code String (Decimal)

8 0
0000 0000

0000 1000

0

8

1 1 0000 0001 1

1 255 1111 1111 255

8 1

0000 0000

1000 1000

0000 0001

0

136

1

9 255

0000 0000

1000 1001

1111 1111

0

137

255

Output of pixel code string has 80 bits which is equal to 10

bytes where as the input has 27 bytes.

[0, 8, 1, 255, 0, 136, 1, 0, 137, 255]

Paper ID: SR24918114635 DOI: https://dx.doi.org/10.21275/SR24918114635 1071

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 9, September 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

3) Stage-2 Decompression Algorithm

• Read the compressed Bitstream

• Convert the decimal values to 8-bit Binary values

• Read 8-bits of data from the compressed Bitstream

• If they are not equal to ‘0000 0000’ then copy that to

output (decompressed).

• If it equals ‘0000 0000’ then read the next 8 bits.

• Split the 1st bit and form ‘L’ with the next 7 bits.

• If the 1st bit equals ‘0’ then store ‘L’ times 0 (decimal) to

the output (decompressed).

• If the 1st bit equals ‘1’ then read the next 8 bits and form

‘C’. Store ‘L’ times the value ‘C’ to the output

(decompressed).

• Goto step 3 till we reach the end of the compressed

bitstream.

Pixel Code String Algorithm

0000 0001

to

1111 1111

One pixel in color 1

to

One pixel in color 255

0000 0000

0LLL LLLL

L pixels (1 – 127) in color 0

0000 0000

1LLL LLLL

CCCC CCCC

L pixels (3 – 127) in color C

(L > 2)

Example:

[0, 8, 1, 255, 0, 136, 1, 0, 137, 255]

Pixel Code String

(Decimal)

Pixel Code String

(Binary)
L C

0 0000 0000
8 0

8 0000 1000

1 0000 0001 1 1

255 1111 1111 1 255

0 0000 0000

8

1
136 1000 1000

1 0000 0001

0 0000 0000

9

255
137 1000 1001

255 1111 1111

L = 8, C = 0 => [0, 0, 0, 0, 0, 0, 0, 0]

L = 1, C = 1 => [1]

L = 1, C = 255 => [255]

L = 8, C = 1 => [1, 1, 1, 1, 1, 1, 1, 1]

L = 9, C = 255 => [255,255,255,255,255,255,255,255,255]

So the decompressed output is as follows:

[0, 0, 0, 0, 0, 0, 0, 0, 1, 255, 1, 1, 1, 1, 1, 1, 1, 1, 255, 255, 255,

255, 255, 255, 255, 255, 255]

A. Stage-1 Decompression Algorithm

1) Get the 2 matrices, GSM and BM.

2) Expand the Binary Matrix – Convert to Binary values

3) Read one element from GSM and assign to VAL.

4) Read one bit of BM

5) Copy the VAL to the output (decompressed)

6) Read the next bit of BM

7) If the bit equals ‘0’ copy the VAL to the output

8) If the bit equals ‘1’ read the next element from GSM

9) Repeat from Step 6 till the end of the BM.

Example:

Let the compressed bitstream be [136, 128, 10, 20, 30] with

BM = [136, 128] and GSM = [10, 20, 30]

Expand the Binary Matrix:
BM Decimal Value BM (8-bit Binary representation)

136 1000 1000

128 1000 0000

BM bit Output (Decompressed) Description

1 10 **

0 10 ##

0 10 ##

0 10 ##

1 20 $$

0 20 ##

0 20 ##

0 20 ##

1 30 $$

0 30 ##

0 30 ##

0 30 ##

0 30 ##

0 30 ##

0 30 ##

0 30 ##

** - Read the first element from GSM and store to output

- Copy the previous value from GSM to output

$$ - Read the next element from GSM and store to output

4. Implementation

The above mentioned algorithms were implemented in C

under Ubuntu Linux 12.04 because we want to publish our

work to the open source community. Also it is very easy to

write a shell script under Linux to run the same algorithm

multiple times. We developed a shell script, regression.sh, to

automate the algorithm. We have chosen C language because

the code written in C can be ported to any hardware/processor.

The medical devices will have an embedded microcontroller

inside it. So the code can be easily ported to that

microcontroller using its associated development tools. The

above algorithms were tested with 230 images of different

resolutions and different types.

a) Regression setup

A shell script was written named regression.sh to run the

same algorithm with different images. The script reads each

image from the image database and calls the C written

algorithm by passing the image through command line

arguments. Our image database consists of 230 images with

different resolutions and different categories namely CT,

MRI, lung, X-Ray etc.,

A snapshot of our regression setup is shown below.

Paper ID: SR24918114635 DOI: https://dx.doi.org/10.21275/SR24918114635 1072

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 9, September 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

b) Regression Results

We collected the results of our algorithm in a spread sheet

format to compute the compression ratio of each stage. A

snapshot of that is shown in the below table.
Image Input

Size

Stage-1

compress

size

Stage-2

compress

size

Stage-1

comp

ratio

Stage-2

comp

ratio

1.bmp 169974 36581 28592 4.65 5.94

2.bmp 544942 117729 101858 4.63 5.35

3.bmp 405326 74217 41325 5.46 9.81

4.bmp 42694 9411 7734 4.53 5.52

5.bmp 189238 43489 37202 4.35 5.09

6.bmp 207958 43549 36213 4.78 5.74

7.bmp 186358 40144 32032 4.64 5.81

8.bmp 255094 59486 44909 4.29 5.68

c) Medical Image Database snapshot

d) Lossless compression

An algorithm is said to be lossless if the decompressed image

exactly bit-matches with the input image of the compression

algorithm. Hence we wrote the equivalent decompression

algorithm in C. We bit-matched all the 230 images in the

database with the reconstructed images generated from the

decompression algorithms. We used the Beyond compare

software freely available in the Internet to compare the input

image and the reconstructed image.

e) Porting on Embedded Processor

These types of low complexity algorithms are required for the

implementation in low power embedded processors. So we

ported the C written algorithms (both Stage-1 and Stage-2) on

a low power DSP processor DM642 for measuring the code

size and for validating the algorithms. We also verified that

the algorithms are lossless by decompressing the compressed

bit-stream with the help of the equivalent decompression

algorithms which were also written in C.

A snapshot of the Code Composer Studio IDE is shown

below.

5. Performance Comparison

a) Compression Ratio

The results are obtained from testing of the 230 images

available in the image database. The performance of the

proposed algorithm is compared with other research results.

The result comparisons are shown below.

Method Technique Performance (Avg)

Lurawave sw Wavelets-LS 2.7

JPEG Encoder JPEG-LS 2.9

Proposed Algorithm Stage-1 4.3

Proposed Algorithm Stage-2 5.9

From the above table, it is clear that the stage-2 proposed

compression algorithm gives the best compression ratio.

b) Memory code size on DM642 DSP Processor

The memory required to fit the code in memory is computed

using Code Composer Studio IDE for DM642 DSP processor

and is shown below

Algorithm Code Memory size in bytes

Stage-1 compression 928

Stage-2 compression 1312

Stage-1 Decompression 672

Stage-2 Decompression 1056

JPEG-LS 175424

Paper ID: SR24918114635 DOI: https://dx.doi.org/10.21275/SR24918114635 1073

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 9, September 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

So, the proposed algorithm consumes less memory when

compared to the standard JPEG-LS compression algorithm

and can be implemented even in a microcontroller with

limited memory attached to it.

6. Conclusion

In this paper an efficient, simple lossless image compression

technique is proposed with a remarkable compression ratio

and greatly reduced computation load while keeping low

complexity compared with other methods. Algorithm

complexity is directly related to the power consumption of the

processor. As the medical devices injected into the body are

battery powered devices and the power consumption should

be kept as low as possible to increase the lifetime of the

battery. Mainly these kinds of algorithms are targeted in

applications involving medical devices powered with ultra

low power processors like MSP430.

Moreover, it is not necessary to compress the images using

both the stages. We can turn off stage-2 compression if the

battery is low which in turn reduces the complexity of the

algorithm to slightly increase the lifetime.

References

[1] S.E.Ghrare, M.A. Mohd. Ali, K. Jumari and M. Ismail,

An Efficient Low Complexity Lossless Coding

Algorithm for Medical Images, 2009 American Journal

of Applied Sciences

Paper ID: SR24918114635 DOI: https://dx.doi.org/10.21275/SR24918114635 1074

https://www.ijsr.net/

