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Abstract: Land Use and Land Cover (LULC) classification plays a crucial role in understanding and monitoring changes to Earth's 

landscapes, which are essential for urban planning, environmental management, agriculture, and biodiversity conservation. As human 

activities such as urbanization and deforestation continue to transform land cover, accurate and timely LULC classification becomes 

increasingly important. In recent years, optical Earth observation (EO) data from satellite missions like Landsat and Sentinel - 2 have 

provided high - resolution imagery that captures the dynamic changes in land surfaces. However, traditional methods for LULC 

classification, such as decision trees or support vector machines (SVMs), require extensive manual feature extraction and tend to struggle 

with large datasets and complex landscapes. This has led to the adoption of deep learning (DL) approaches, which are more effective at 

handling the complexities of EO data. Deep learning models, particularly convolutional neural networks (CNNs), have gained 

prominence in LULC classification because of their ability to automatically learn hierarchical spatial features directly from raw image 

data. CNNs excel at capturing intricate spatial patterns, allowing them to outperform traditional methods in terms of accuracy and 

automation. Additionally, other DL architectures, such as recurrent neural networks (RNNs) and hybrid models, have further improved 

classification performance, particularly for multi - temporal data, which is common in EO datasets. This review examines the current 

state of DL techniques for LULC classification, focusing on key algorithms, such as CNNs and RNNs, frequently used EO datasets, and 

the challenges researchers face, such as imbalanced data, high computational costs, and model interpretability. Finally, it highlights 

future research directions, including unsupervised learning, improving class imbalance, and enhancing the interpretability of DL models, 

which will further advance the field of LULC classification.  
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1. Introduction 
 

Land Use and Land Cover (LULC) classification is a critical 

process for monitoring and managing the Earth's natural and 

anthropogenic landscapes. Accurate LULC classification 

supports various applications, including urban planning, 

agricultural monitoring, biodiversity conservation, and 

climate change mitigation (Verburg et al., 2011). 

Traditionally, LULC classification relied on methods such as 

support vector machines (SVMs), decision trees (DTs), and 

random forests (RFs), which required manual feature 

extraction and were limited in their scalability and accuracy 

(Foody, 2002; Gislason et al., 2006). With the increasing 

availability of high - resolution optical Earth observation 

(EO) data from satellite missions like Landsat and Sentinel - 

2, the demand for more automated and robust classification 

techniques has grown (Wulder et al., 2019).  

 

In recent years, deep learning (DL) has emerged as a game - 

changing approach in the field of remote sensing, offering 

advanced capabilities for LULC classification. Deep learning 

models, particularly convolutional neural networks (CNNs), 

are highly effective in extracting hierarchical spatial features 

directly from raw satellite imagery, allowing for improved 

classification performance compared to traditional methods 

(LeCun et al., 2015; Zhu et al., 2017). In addition to CNNs, 

other DL architectures such as recurrent neural networks 

(RNNs) and hybrid models that combine spatial and temporal 

information have further enhanced classification accuracy, 

particularly for multi - temporal datasets (Mou et al., 2017; 

Rußwurm & Körner, 2018).  

Despite the advancements, challenges remain, including 

handling imbalanced datasets, high computational costs, and 

improving the interpretability of DL models (Srivastava et al., 

2020). This review provides a comprehensive examination of 

the current state of deep learning techniques for LULC 

classification based on optical EO data, discussing key 

methodologies, commonly used datasets, and future research 

directions.  

 

This paper reviews recent developments in deep learning 

techniques for LULC classification using optical data. It 

focuses on convolutional neural networks (CNNs), recurrent 

neural networks (RNNs), and hybrid approaches while 

discussing the advantages and challenges of these methods.  

 

2. Literature Review 
 

2.1. Importance of LULC Classification 

 

LULC classification has long been critical for urban planning, 

environmental monitoring, agriculture, and disaster 

management (Verburg et al., 2011). EO data provide spatial 

and temporal coverage for various LULC applications, with 

classification algorithms allowing the extraction of 

meaningful patterns (Gislason et al., 2006).  

 

2.2. Traditional Approaches to LULC Classification 

 

Before the advent of deep learning, techniques such as 

support vector machines (SVM), decision trees (DT), and 

random forests (RF) were popular for classifying LULC (Pal 
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& Mather, 2005). However, these methods often required 

manual feature extraction, which is both time - consuming 

and less adaptable to large datasets (Foody, 2002).  

 

2.3. The Rise of Deep Learning 

 

Deep learning, particularly CNNs, has revolutionized image 

classification due to their ability to automatically learn 

complex patterns (LeCun et al., 2015). In LULC 

classification, CNNs have outperformed traditional methods 

by learning hierarchical features directly from EO data (Zhu 

et al., 2017). Other architectures, such as RNNs and hybrid 

models, have further improved classification performance by 

capturing temporal dependencies and spatial relationships 

(Benedetti et al., 2018).  

 

3. Methodologies 
 

3.1. Convolutional Neural Networks (CNNs)  

 

CNNs have been the primary tool for LULC classification due 

to their effectiveness in image - based tasks. The architecture 

typically involves multiple layers of convolution, pooling, 

and fully connected layers. CNNs automatically learn spatial 

hierarchies from input EO images (Zhao et al., 2019). Several 

studies have demonstrated the superiority of CNNs over 

traditional methods in extracting LULC features from optical 

data (Chen et al., 2020).  

 

3.2. Recurrent Neural Networks (RNNs)  

 

While CNNs excel at spatial feature extraction, RNNs are 

particularly useful in temporal analysis. Many LULC datasets 

contain time - series data (such as seasonal crop monitoring), 

making RNNs, especially long short - term memory (LSTM) 

networks, suitable for classification tasks (Mou et al., 2017). 

By capturing both spatial and temporal relationships, RNNs 

provide a more comprehensive analysis of LULC patterns 

(Kussul et al., 2017).  

 

3.3. Hybrid Approaches 

 

Hybrid models that combine CNNs with RNNs or other deep 

learning architectures have shown great promise in LULC 

classification. These models leverage the strengths of both 

CNNs (for spatial features) and RNNs (for temporal 

dynamics), resulting in improved classification performance 

(Rußwurm & Körner, 2018). Recent work by Ma et al. (2019) 

demonstrates the effectiveness of these models in multi - 

temporal optical data analysis.  

 

4. Datasets and Challenges 
 

4.1. Commonly Used Datasets 

 

Several datasets are commonly used for LULC classification 

tasks, including:  

• Landsat: Providing decades of optical data with 30m 

resolution (Wulder et al., 2019).  

• Sentinel - 2: Offering high - resolution (10m) multi - 

spectral optical imagery (Drusch et al., 2012).  

• UC Merced LULC Dataset: A smaller, benchmark dataset 

used for LULC classification research (Yang & Newsam, 

2010).  

 

4.2. Challenges in LULC Classification Using Deep 

Learning 

 

• Data Complexity: High intra - class variability and low 

inter - class separability are common in LULC 

classification, making it challenging for deep learning 

models to accurately distinguish between classes 

(Srivastava et al., 2020).  

• Imbalanced Data: EO datasets often contain imbalanced 

class distributions, which can bias models toward more 

frequent classes (Zhu & Woodcock, 2012).  

• Computational Requirements: Deep learning models 

require substantial computational resources for training and 

processing large EO datasets, posing a challenge for 

researchers with limited access to hardware (Ma et al., 

2019).  

 

5. Discussion 
 

5.1 Advantages of Deep Learning for LULC Classification 

 

1) Automatic Feature Learning 

One of the most transformative aspects of deep learning (DL) 

in Land Use and Land Cover (LULC) classification is 

automatic feature learning. Traditional methods such as 

Support Vector Machines (SVM), decision trees (DT), and 

Random Forests (RF) rely heavily on manual feature 

extraction, where human experts must identify the 

characteristics of the data that are likely to be useful for 

classification (Foody, 2002). This manual process is both time 

- consuming and prone to bias, as it depends on the expertise 

of the analyst and the specific characteristics of the dataset.  

 

In contrast, deep learning models—particularly 

Convolutional Neural Networks (CNNs) —automatically 

learn the relevant features from raw data, without requiring 

explicit instructions on which features to focus on (LeCun et 

al., 2015). CNNs are designed to recognize patterns in images 

by using multiple layers of filters to progressively detect 

higher - level features, such as edges, shapes, textures, and 

more complex structures. This automatic feature learning 

capability is especially useful when working with complex, 

high - dimensional data, such as optical satellite imagery.  

 

Optical Earth Observation (EO) data is highly varied, 

containing information across multiple spectral bands and 

often representing diverse landscapes such as forests, water 

bodies, urban areas, and agricultural fields. The manual 

extraction of features that are important for distinguishing 

between these land cover types can be extremely difficult, as 

there is often significant overlap between the spectral 

signatures of different land cover classes. For example, urban 

areas and barren land may have similar reflectance in certain 

spectral bands, making it challenging to separate them using 

traditional methods.  

 

CNNs automatically learn to extract hierarchical features—

starting from basic textures and patterns in the early layers, 

and progressing to more abstract and context - aware features 
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in the deeper layers. This means that the model can 

automatically differentiate between classes based on the 

subtle differences in the spectral and spatial patterns present 

in the data. As a result, CNNs are able to discover and utilize 

patterns that are not immediately obvious to human experts, 

leading to better classification results (Zhu et al., 2017).  

 

Moreover, deep learning models can handle multi - source 

and multi - temporal data more efficiently than traditional 

methods. For instance, they can learn complex relationships 

between different spectral bands in optical data, or between 

multiple observations taken at different times. This ability is 

especially valuable for LULC classification, where land cover 

types often exhibit strong temporal patterns (e. g., seasonal 

crops or urban growth). Traditional methods struggle to 

capture such temporal dynamics without extensive 

preprocessing, but deep learning models can incorporate 

temporal information directly into the feature learning 

process (Mou et al., 2017).  

 

2) Improved Accuracy 

Improved accuracy is one of the most well - documented 

advantages of deep learning in LULC classification. 

Numerous studies have shown that deep learning models, 

particularly CNNs and hybrid approaches (e. g., combining 

CNNs with Recurrent Neural Networks (RNNs) or other 

architectures), consistently outperform traditional 

classification algorithms such as SVM, RF, and decision trees 

(Chen et al., 2020).  

 

One of the reasons for this improved accuracy is the deep 

hierarchical structure of CNNs. Unlike traditional classifiers, 

which typically rely on shallow architectures with only a few 

layers, CNNs are composed of multiple layers that allow the 

model to learn progressively more complex features. Each 

layer in a CNN captures different aspects of the data, from 

simple patterns like edges and textures in the early layers to 

more abstract and high - level representations in the deeper 

layers. This multi - layered approach enables CNNs to learn 

highly discriminative features that are crucial for 

distinguishing between LULC classes.  

 

For example, in EO data, built - up areas (e. g., cities) may 

have similar spectral characteristics to barren land or bare 

soil. However, CNNs can learn to differentiate these classes 

by analyzing their spatial patterns, such as the arrangement of 

buildings or the presence of roads and other infrastructure. 

Similarly, CNNs can identify subtle differences between 

forest types or between different stages of vegetation growth, 

leading to more accurate classification results (Zhao et al., 

2019).  

 

In addition to spatial feature extraction, CNNs are highly 

effective at capturing the spectral characteristics of EO data. 

Traditional methods typically use handcrafted features, such 

as vegetation indices (e. g., NDVI) or texture metrics, which 

are designed to highlight specific aspects of the data. 

However, these features are often limited in their ability to 

capture the full complexity of the data. CNNs, on the other 

hand, learn a broader range of features directly from the data, 

allowing them to extract more relevant information for 

classification.  

 

Furthermore, hybrid models that combine CNNs with other 

deep learning architectures, such as RNNs, have shown even 

greater improvements in accuracy. RNNs, particularly Long 

Short - Term Memory (LSTM) networks, are designed to 

handle temporal dependencies in data. In LULC 

classification, this capability is particularly valuable when 

working with time - series EO data, where land cover types 

may change over time (Rußwurm & Körner, 2018). By 

combining the spatial feature extraction capabilities of CNNs 

with the temporal modeling capabilities of RNNs, hybrid 

models can achieve higher accuracy in multi - temporal 

LULC classification tasks.  

 

Moreover, data augmentation and transfer learning have 

further enhanced the accuracy of deep learning models. Data 

augmentation techniques, such as rotation, scaling, and 

flipping, are used to artificially increase the size of the 

training dataset, allowing the model to generalize better and 

avoid overfitting. Transfer learning, where a pre - trained 

model is fine - tuned on a new dataset, has proven particularly 

useful for LULC classification, as it allows researchers to 

leverage models trained on large datasets (e. g., ImageNet) 

and adapt them to EO data (Chen et al., 2020).  

 

Overall, deep learning models have demonstrated superior 

accuracy in LULC classification tasks compared to traditional 

methods, making them the preferred choice for researchers 

and practitioners working with EO data.  

 

3) Scalability 

Another major advantage of deep learning models in LULC 

classification is their scalability. Scalability refers to the 

ability of a model to maintain or improve its performance as 

the size of the dataset increases. Deep learning models are 

inherently scalable, making them well - suited for large - scale 

LULC classification tasks that involve high - resolution 

optical data (Zhao et al., 2019).  

 

Traditional classification methods often struggle to scale 

effectively when applied to large EO datasets. These methods 

typically require extensive feature engineering, manual 

tuning of parameters, and separate models for different 

regions or time periods. As the size of the dataset grows, the 

computational complexity of these methods increases, 

leading to longer training times and reduced accuracy.  

 

In contrast, deep learning models, particularly CNNs, are 

designed to handle large, high - dimensional datasets with 

millions of parameters. CNNs can process large amounts of 

data in parallel using modern Graphics Processing Units 

(GPUs), allowing them to scale efficiently with the size of the 

dataset. This makes deep learning models particularly well - 

suited for applications that involve high - resolution optical 

imagery, such as LULC classification at the national or global 

scale (Wulder et al., 2019).  

 

One of the key factors contributing to the scalability of deep 

learning models is their ability to perform end - to - end 

learning. Unlike traditional methods, which often require 

multiple steps for feature extraction, classification, and post - 

processing, deep learning models can perform all of these 

tasks in a single pipeline. This reduces the need for manual 

intervention and allows the model to learn directly from the 
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raw data, making it easier to scale to larger datasets (Zhu et 

al., 2017).  

 

Moreover, deep learning models can be trained on distributed 

systems, where large datasets are split across multiple 

machines or GPUs. This enables researchers to train models 

on massive datasets, such as global EO data from satellites 

like Landsat or Sentinel, without sacrificing performance. 

Once trained, these models can be deployed on cloud - based 

platforms, where they can be used to classify LULC data at 

scale in near real - time (Zhao et al., 2019).  

 

In addition to their scalability in terms of data size, deep 

learning models are also scalable across different regions and 

land cover types. Because deep learning models learn features 

automatically from the data, they can be applied to a wide 

range of LULC classification tasks without requiring 

extensive customization for each region. This makes them 

ideal for global - scale applications, where the goal is to 

classify land cover across diverse landscapes and ecosystems.  

 

Finally, deep learning models are highly scalable in terms of 

future advancements. As new datasets, architectures, and 

hardware become available, deep learning models can be 

easily adapted and retrained to take advantage of these 

advancements. This ensures that deep learning models will 

continue to scale and improve over time, making them a 

robust solution for long - term LULC classification tasks.  

 

In conclusion, the scalability of deep learning models is one 

of their most significant advantages, allowing them to handle 

large - scale LULC classification tasks efficiently and 

effectively.5.2. Limitations and Future Directions 

 

Despite their advantages, deep learning models face 

challenges such as interpretability and computational 

expense. Future research should focus on improving model 

explainability, addressing class imbalances, and exploring 

unsupervised or semi - supervised learning techniques to 

reduce the need for labeled data (Rußwurm & Körner, 2018).  

 

6. Conclusion 
 

Deep learning has revolutionized Land Use and Land Cover 

(LULC) classification by offering a more accurate and 

automated approach to analyzing optical Earth Observation 

(EO) data. Unlike traditional methods that rely heavily on 

manual feature extraction, deep learning models, especially 

Convolutional Neural Networks (CNNs), automatically learn 

spatial hierarchies from EO imagery. This has significantly 

improved the precision of LULC classification. Recurrent 

Neural Networks (RNNs) further enhance classification by 

capturing temporal relationships in time - series data, making 

them ideal for applications like crop monitoring or urban 

expansion. Hybrid models, combining CNNs and RNNs, 

offer even more comprehensive analyses by leveraging both 

spatial and temporal features.  

 

Despite these advancements, several challenges remain. Deep 

learning models often require vast amounts of labeled data 

and high computational resources, limiting accessibility for 

some researchers. Additionally, model interpretability is a 

major concern, as the "black - box" nature of deep learning 

can make it difficult to understand how decisions are made. 

Class imbalance, where certain land cover types dominate the 

dataset, can also skew results. As the field progresses, future 

research should focus on developing more efficient models, 

addressing data limitations, and improving model 

transparency. These advancements will further enhance the 

potential of deep learning in environmental monitoring and 

sustainable land management.  
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