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Abstract: Stochastic processes are widely used in describing time dependent sequences of random changes in both physical and social 

phenomena, including, relevantly to this paper, random market movements of stock prices. Optimization techniques are applied in finance, 

for example, in Banking processes such as minimizing losses from credit risks and changes of the value of collateral assets, and 

in trading - such as assessing optimal position sizes and buy/sell times. This study explores heuristic and metaheuristic optimization 

methods for financial modeling in pair trading. Using Genetic Algorithm and Simulated Annealing, the study aims to optimize parameters 

of the Ornstein-Uhlenbeck process, a stochastic model used in trading decisions. Performance is evaluated on simpler test cases before 

applying these methods to minimize the log-likelihood function of the process. Results show the effectiveness of these algorithms in 

enhancing trading strategies, providing robust insights for financial optimization. 
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1. Introduction 
 

We cover the application of two different mathematical 

optimization methods, both of which belong to the 

heuristic/metaheuristic class of optimization methods, 

Genetic Algorithm and Simulated Annealing. Heuristic 

optimization algorithms handle high-dimensional spaces 

effectively and do not rely on gradients, which are difficult to 

compute in high dimensions. They often apply conceptually 

similar procedures, inspired by real-life occurrences such as 

crossover and mutation (in genetic algorithms) or annealing in 

metallurgy. 

 

This paper explores the application of these two optimization 

methods in financial modeling. First, we evaluate their 

performance on two basic test functions, where we can 

easily compare the results with our expectations: the 

minimization of the lower half of a sphere centered at zero 

and the minimization of the Rosenbrock function. These 

algorithms are then applied to the Ornstein-Uhlenbeck process, 

a stochastic process that is both a stationary Gauss-Markov 

process, meaning it is Gaussian, Markovian, and temporally 

homogeneous. 

 

The purpose of this study is to evaluate the effectiveness of 

Genetic Algorithm and Simulated Annealing in optimizing the 

Ornstein-Uhlenbeck process parameters for financial trading 

strategies. This study contributes to financial modeling by 

demonstrating the applicability of heuristic and metaheuristic 

optimization techniques to enhance trading strategies, 

addressing challenges in stochastic parameter estimation. 

 

 

2. Application 
 

For this model, we have selected two similar companies in 

the same city (NYC) and industry (real estate), Blackstone 

Mortgage Trust (BXMT)[9] and Appolo Commercial Real 

Estate Inc. (ARI)[10]. Their clientele has similar demographic 

composition and they are subject to similar macroeconomic 

effects. Their businesses are fairly similar and react similarly 

to the changes in their environments - so there is a correlation 

between statistical metrics of their performance (such as 

earnings, price-to-earnings ratio, EV/EBITDA, etc.) and 

changes over time, and similarly there is correlation between 

their stock prices [9][10]. 

 

We detect the correlation break by expressing the long-term 

relationship between the two stock prices and tracking 

significant spikes in their volatility. We define the target 

variable as the ratio of the two prices, adjusted by a factor that 

represents the moving average of the same ratio, and then 

model the adjusted ratio using the Ornstein-Uhlenbeck 

process [14]. 
 

dXt = θ(µ − Xt)Xtdt + σdWt 
where: 

• Xt = the current price of the stock. 

• θ = a mean reversion constant (how fast is the 

stock usually returning to the mean). 

• µ = the mean historical price of the stock. 

• σ = a constant volatility. 

• Wt = a Wiener process (Brownian motion). 
 

Assuming Xt and Wt are unit normal random variables (N 
(0, 1)) and are mutually independent. 

 

Paper ID: SR241210002715 DOI: https://dx.doi.org/10.21275/SR241210002715 93 

https://www.ijsr.net/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

Impact Factor 2024: 2.102 

Volume 14 Issue 1, January 2025 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

3. Problem 
 

The desired ability of an investor is to predict future events 

accurately - specifically, to predict ’big’ consequential 

movements in the market. The basic strategy is to buy low and 

sell high, with buying at the lowest possible price (the bottom) 

and selling at the highest price possible (the top) being the 

optimal scenario for a trader [4]. The statistical strategy 

outlined above makes sense taking into consideration several 

caveats; one, short-selling - buying high - selling low can be 

profitable (in a certain context) and two, the future is 

unpredictable, but there are patterns that may be exploited 

(especially by risk averse institutions such as Banks or shadow 

Banks, which trade large volumes of financial derivatives at 

low risk), such as the correlation of stock prices of similar 

companies and their mean reverting behavior [2][11]. 

 

Short selling is the action where an investor or a trader bets 

against the price of an asset. If the trader believes that BXMT 

will depreciate in value over the following week, the trader 

may borrow 100 BXMT stocks worth $10,000 from a lender, 

at an interest rate or a fee (as a fixed amount) and sell the 

borrowed stock to another trader for the same $10,000. If the 

trader has correctly assessed the near future of BXMT, and the 

price of BXMT depreciates approximately 40% of its contract 

value, each stock is now worth $60. Before the week ends, 

according to the terms of the contract, the trader is obliged 

to return the borrowed stock to the lender, so the trader buys 

back the same stock from the market at $60 a stock, which 

amounts to $6,000. The trader has earned $4,000, minus the 

fixed coupon she may have paid to the lender upfront. 

 

If only exploiting mean reversion, the trader would only make 

profit after an increase of the volatility of a single stock [5]. 

Big movements of the stock price in one direction are 

followed by big movements in the opposite direction, and 

small movements in the stock price in one direction are 

followed by small movements in the opposite direction [6][7]. 

This, coupled with mean reversion, increases the 

predictability of future movements and simplifies the trader’s 

decision-making process, but what if the whole market 

crashes and there are no ’movements in the opposite 

direction’[2][5]? 

 

An even safer bet is statistical arbitrage/ pair trading, where 

the trader makes more money if both stocks perform as she 

predicted, or if one doesn’t - she has hedged against that 

risk by covering the losses from one of the stocks, with the 

gains from the other. So statistical arbitrage represents a two 

sided bet, and it exploits the correlation between the prices 

of similar stocks and their mean reverting behavior. With this 

model, the mean reversion component and the volatility are 

taken into consideration, by using the O-U process not only 

to model the price movements of a single stock or each of 

the stocks, individually, but by modeling their relationship 

[14]. This is done by using strong increases in the volatility of 

the relationship between the prices as an indicator of a 

correlation break (and a threshold for buy/sell orders), and the 

mean reversion component as a hedging strategy [5][6][7]. 

 

We are trying to use the two aforementioned optimization 

techniques to find the optimal parameters which best simulate 

the movements of the ratio between the stock prices. We use 

the historical data and the derived Ornstein-Uhlenbeck mean, 

standard deviation and mean reversion parameter to find the 

Gaussian distribution with the appropriate parameters, and 

then we minimize the its log-likelihood to find the optimal 

parameters of the O-U process which models the ratio [15]. In 

statistical arbitrage, the optimized volatility defines the upper 

and lower thresholds for trading: when the ratio exceeds the 

threshold above the mean, we buy stock A and sell stock B; 

when it drops below the threshold, we buy B and sell A. The 

optimized mean reversion rate determines how quickly we 

adjust our positions [4]. 

 

4. Objective Functions  
 

Three objective functions are used as test cases for the 

optimization methods. The first two functions are relatively 

straightforward, allowing us to easily verify whether the 

optimization algorithm successfully converges to the correct 

minima. 

• The lower half of a sphere with a radius of 2: 𝑓(𝑥, 𝑦) =

−√4 − 𝑥2 − 𝑦2  

• The Rosenbrock function:𝑓(𝑥, 𝑦) = (𝑎 − 𝑥)2 + 𝑏(𝑦 −
𝑥2)2, where 𝑎 = 1 and 𝑏 = 100. These parameters are 

standard in the optimization literature as they create a 

steep, narrow ”valley,” posing a challenge for optimization 

algorithms in locating the global minimum. 

 

The third function, designed for our optimization process, is 

the log-likelihood function of the Ornstein-Uhlenbeck process. 

Its purpose is to estimate the parameters that maximize the 

joint probability of the observed data. A straightforward 

approach involves using maximum likelihood estimation 

(MLE) to identify the parameter values that enable the 

simulated O-U process to best replicate the observed data’s 

dynamics [8]. 

 

For independent and identically distributed random variables, 

the joint density function 𝑓(𝑋|𝜃, 𝜇, 𝜎) is the product of 

univariate density functions:[2][13] 

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛|𝜃, 𝜇, 𝜎) = 𝑓(𝑥1|𝜃, 𝜇, 𝜎) … 𝑓(𝑥𝑛|𝜃, 𝜇, 𝜎)

= ∏ 𝑓(𝑥𝑖|𝜃, 𝜇, 𝜎)

𝑛

𝑖=1

 

(1) 

where 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛). For convenience, we typically take 

the natural logarithm of the likelihood function:[13] 

 

𝑙(𝜃, 𝜇, 𝜎) = ∑ 𝑙𝑛𝑓(𝑥𝑡𝑖
|𝜃, 𝜇, 𝜎)𝑛

𝑖=1            (2)  

 

This function, known as the log-likelihood function, serves as 

the objective for our optimization process, where we seek the 

parameter values that minimize this function:[13] 

�̂�(𝑥) =
𝑎𝑟𝑔𝑚𝑖𝑛
𝜃, 𝜇, 𝜎

𝑙(𝜃, 𝜇, 𝜎|𝑥)     (3) 

 

The closed-form solution for the Ornstein-Uhlenbeck 

process is given by:[2][8][12][15][16] 

 

𝑋𝑡+Δ𝑡 = 𝑋𝑡𝑒−𝜃𝑡 + μ(1 − 𝑒−𝜃𝑡) + σ√1−𝑒−2𝜃𝑡

2𝜃
       (4) 
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Consequently, the distribution of the Ornstein-Uhlenbeck 

process follows a Gaussian distribution, characterized by the 

parameters derived from the closed-form solution to the O-U 

stochastic differential equation: [2][8][12][15][16] 

𝑓(𝑥𝑡|𝜃, 𝜇, 𝜎) = √
1

2𝜋𝜎2 exp (−
(𝑥𝑡−(𝑥0𝑒−𝜃𝑡+𝜇(1−𝑒−𝜃𝑡)))

2

2(
𝜎2

2𝜃
(1−𝑒−2𝜃𝑡))

) (5) 

 

5. Algorithms 
 

For the purposes of simplicity, we use simpler functions (the 

aforementioned lower half of a sphere with radius of 2, 

centered at 0 and the Rosenbrock function) to demonstrate the 

performance of these algorithms. Then we apply these 

algorithms in the actual code simulating the O-U process of 

the model [2][8]. 

 

5.1 Genetic Algorithms 

 

Genetic Algorithms (GA) are optimization techniques 

inspired by processes involving genetics and inheritance in 

natural selection. It's a metaheuristic method of optimization 

and belongs to a wider class of evolutionary algorithms (EA). 

Genetic Algorithms incorporate randomness (in the selection 

of individuals as parents from the population, the selection of 

genes inherited in each child, from each parent, random 

mutations occurring each generation), which reflects the 

random nature of survival, crossover, inheritance, mutations 

and other such processes in natural selection [17][19][20]. 

 

1) Fitness Calculation: 

Define a function that calculates the fitness of an individual. 

We are using the Sphere function, the Rosenbrock function, 

or the Log-Likelihood of the Gaussian function. Since we are 

looking for the local minimum, the fitness function is 

formulated appropriately for the guesses to be lower and 

lower. 

 

2) Generate Initial Population: 

We choose a somewhat arbitrary set of boundaries, mostly 

informed by expert opinion [0.001, 3.0] where we expect the 

initial guesses to be made. The population is made of decimal 

numbers between 0.001 and 3 (in a uniformly distributed 

manner - equal probability for each decimal between the 

bounds) and has a defined size of 100, which is large enough 

to provide genetic diversity and prevent premature 

convergence, yet small enough to be computationally 

manageable. The number of genes should be the number of 

parameters of the function we are trying to optimize. So in the 

case of the lower half of the sphere and Rosenbrock function, 

we have 2 functions since both of these functions are two-

dimensional. In the case of the log likelihood of the Gaussian 

distribution, however, we are using 3 parameters (the 

estimated optimal mean, standard deviation, and mean 

reverting rate), so each individual will have 3 genes. 

 

3) Select Individuals Based on Fitness: 

We make a list of all the individuals in the population at stage 

i (in the form of a dataframe for convenience). We evaluate 

each individual according to the fitness function. We then sort 

them in ascending order because we treat those with the lowest 

scores as the best candidates (because we are looking for a 

minimum). After we have sorted the table according to the 

scores of the individuals, in ascending order, we split the 

population in half, only taking the upper half (with the lowest 

scores). 

 

4) Crossover Function: 

In the case of the sphere and the Rosenbrock function, the 

crossover function is simple. Initially, the children are taken 

as copies of their parents, but different from each other. When 

we construct an original new population, the children will 

combine one gene from the first parent and another from the 

other parent. They have to inherit different genes. For the log-

likelihood of the Normal distribution, the simplest way is to 

take half of the genes from one parent with half of the genes 

from the other, but in order for the gene selection to be 

unbiased, the index of the gene inherited in one child is 

randomly selected from the number of genes in each 

individual. 

 

5) Mutation Function: 

We define some mutation rate. Then we pick a decimal point 

between 0.001 and the value of each gene in an individual and 

we subtract these values from the genes of the individuals in 

the original population. With this, we ensure that we properly 

direct the mutation, while also maintaining that the change of 

the mutation is still smaller than the value of the gene which 

is being mutated. Since we only mutate if a randomly chosen 

decimal point is smaller than the mutation rate, not all 

individuals have their genes mutated. It means we have 

individuals mutate at the mutation rate - meaning the mutation 

rate is the percentage of mutating iterations. 

 

6) Select Parents for Crossover:  

We simply select two random individuals to be the parents in 

the current iteration 

 

7) Generate New Population: 

We use the previous functions to define a new population. For 

each individual, we pick two parents, we use the crossover 

function to come up with children with an original set of 

genes and then we apply mutation to the genes to some of 

them, further increasing the diversity of the population in the 

direction of the optimal solution. 

 

8) Main Genetic Algorithm Function: 

a) We initialize 500 maximum iterations for balance 

between computational efficiency and convergence, 

providing sufficient exploration space for all the objective 

functions. 

b) We initialize mutation rate of 0.01 which maintains 

diversity, preventing premature convergence while 

preserving the trend of the solutions towards the 

minimum. 

c) Initialize the population at 100. 

d) Initialize the best solution and its score at 0. 

e) Initialize a list to store the convergence history and 

guesses. 

f) Main optimization loop: 

• Evaluate fitness scores for each individual in the 

population. 

• Sort individuals based on their fitness scores. 

• Select the best individual and its score. 

• Update the best solution and its score if a better one is 

found. 
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• Append the best score to the convergence history. 

• Append the current guesses to the guesses list. 

• Select top individuals for reproduction. 

• Generate a new population by crossover and 

mutation. 

g) Return the best solution, its score, and the guesses. 

 

The visualization of the guesses made by the Genetic 

algorithm for finding the optimum of the sphere and the 

Rosenbrock function are displayed on the below. 

 

 
 

5.2 Simulated Annealing 

 

Simulated annealing (SA) is a probabilistic technique and a 

heuristic optimization based on the annealing process in 

metallurgy which involves heating a material above a certain 

temperature threshold, maintaining a suitable temperature for 

an appropriate amount of time and then cooling. The 

acceptance criterion for the Simulated Annealing algorithm is 

constructed in such way as to allow for worse solutions to be 

accepted at some frequency (rate determined by set 

probability). This helps SA escape local optima although the 

method decreases the probability of accepting worse guesses 

as the number of iterations increases - which directs the 

algorithm towards the global optimum. It is often more 

effective to use Simulated annealing to find precise optima in 

a finite period of time, rather than using something like 

Gradient Descent which approximates optimal solutions 

[18][21]. 

 

1) Define the Objective function: 

Objective (x, y) calculates the value of the function 

−√4 − 𝑥2 − 𝑦2, representing a negative half-sphere, or the 

Rosenbrock function  (𝑎 − 𝑥)2 + 𝑏(𝑦 − 𝑥2)2 or the log-

likelihood of the Standard Normal distribution. 

 

2) Simulated Annealing: 

simulated_annealing(objective, step_size, initial_temperature, 

n_iterations, initial_guess) implements the simulated 

annealing algorithm. 

a) Initialization: Sets initial parameters, solutions, and 

temperature. It initializes the solutions by evaluating the 

objective function (the sphere, Rosenbrock, or log-

likelihood of Gaussian function) at the current guess 

(which at iteration 0 is the guess for the initial 

parameters). The Simulated Annealing algorithm uses a 

step size of 0.1, an initial temperature of 10, and 10,000 

iterations to optimize the negative half-sphere objective 

function. The step size (0.1) ensures small perturbations to 

explore the solution space locally, balancing exploration 

and exploitation. The initial temperature (10) provides a 

sufficiently high probability to accept worse solutions 

early, preventing the algorithm from being trapped in local 

minima. 

b) Main Loop: Iterates over the specified number of 

iterations which in this case is 10000. 

• Generates new parameters by adding a random 

perturbation to the current parameters. This is done by 

picking a random number from the current parameters and 

multiplying by some (small) number for the step size and 

then adding it to the current parameters. This is done in the 

line: 

• new_params = current_params + 

randn(len(current_params)) * step_size 

• Evaluates the objective function for current and new 

parameters. 

• new_cost < best_solution: checks if the new guess is actually 

better than the last one (is it smaller). 

• Acceptance Criterion: In simulated annealing, there are 

two options as conditions for acceptance: 1. if the new 

proposal follows the trend towards the extreme point or 

if it satisfies some rule (such as the Metropolis criterion) 

where it accepts the new parameters if they improve 

the solution. If not, it may still accept them based on a 

probability that decreases with temperature. So, given δ 

= costi-costi−1 (change between the new and the current 

cost) we define a threshold for acceptable probability 

Pacceptable = e−δ/t (Metropolis criterion) we pick a random 

number from a uniformly distributed set between 0 and 1 

and we check if it is smaller than the acceptable probability 

𝒩(0, 1) < Pacceptable Updates the temperature to gradually 

reduce (cooling) ti = t0/(1 + Niter). 

• Records the best solution found so far. 

 

3) Parameters: 

Defines the parameters for the simulated annealing algorithm: 

n_iterations, step_size, and temp. 

 

4) Call Simulated Annealing Function:  

Executes the simulated annealing algorithm and stores the best 

parameters and score found. 

 

The visualization of the guesses made by the Simulated 

Annealing algorithm for finding the optimum of the sphere 

and the Rosenbrock function are displayed below. 
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6. Results 
 

After successfully applying the algorithms to find the optimal 

points for simpler functions like the sphere and Rosenbrock, 

we proceed to the more complex task of optimizing the 

Ornstein-Uhlenbeck process by minimizing the log-likelihood 

of the Gaussian distribution, with parameters derived from the 

O-U process. 

 

As mentioned in the process of describing the algorithms, 

most of the parameters are tuned by incorporating expert 

judgment and manual search, guided by our expectations for 

the minima. The expert judgment is meant to combine 

reasonable starting point given the objective functions and 

computational efficiency. For the purpose of validation, we 

establish a benchmark threshold for the optimized parameters 

using the function 

scipy.optimize.minimize(fun=log_likelihood_OU, x0=theta0, 

args=(vol,), constraints=cons_set). The results yield a mean 

close to the mean of the modified ratio in the historical data at 

1.001, a mean reversion parameter of 0.106 and a standard 

deviation of 0.024. The minimum log-likelihood value at these 

parameters is -2369.111. 

 

The optimized parameters using the Genetic Algorithm are as 

follows: 0.9979 for the mean, 0.1102 for mean reversion 

parameter and 0.0247 for the standard deviation. The 

minimum log-likelihood of the Gaussian is -2368.700. 

 

The optimized parameters using the Simulated Annealing 

method are as follows: 1.000 for the mean, 0.10342319 for 

mean reversion parameter and 0.02465 for the standard 

deviation. The minimum log-likelihood of the Gaussian is - 

2368.865. 

 

7. Conclusions 
 

Optimization techniques are widely used in finance, such as 

in banking to minimize losses from credit risks and 

fluctuations in the value of collateral assets, and in trading to 

determine optimal position sizes and timing of buy/sell 

decisions. In this paper, we explore two 

heuristic/metaheuristic optimization algorithms—Genetic 

Algorithm and Simulated Annealing—aimed at maximizing 

profit in a pair trading or statistical arbitrage strategy. We 

begin by testing these algorithms on simpler cases, where the 

success can be easily verified and then apply them to minimize 

the log-likelihood function of the Ornstein-Uhlenbeck (O-U) 

process, which yields the optimal volatility and mean 

reversion parameters for informing buy/sell decisions. 

 

This research demonstrates the effectiveness of genetic 

algorithm and simulation in optimizing Ornstein-Uhlenbeck 

process parameters for financial trading strategies. By 

applying these methods to stochastic modeling, the study 

provides a robust framework for traders to enhance decision-

making and profit margins, contributing valuable insights into 

financial optimization. 
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