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Abstract: Reusing waste in space can significantly increase the longevity of missions in space. Traditional methods used aboard the 

International Space Station (ISS), such as returning waste to Earth or incinerating it in the atmosphere, are unsustainable for deep-space 

exploration. This experiment explores an innovative solution: leveraging the polyurethane-decomposing fungus Pestalotiopsis microspora for 

bioremediation in microgravity environments. With its unique ability to degrade polyurethane aerobically and anaerobically, P. microspora 

offers significant potential for recycling plastic waste into usable byproducts, aligning with NASA’s sustainability objectives. This study 

involved the design of a custom-built experimental capsule to observe fungal degradation in microgravity conditions on the International Space 

Station. The capsule integrates a liquid pump system, a microspora chamber equipped with polyurethane samples, and a camera with LED 

lighting for real-time monitoring. Critical design considerations, such as microgravity-adapted bioreactors and contamination control, were 

addressed. Experimental methods included cultivating P. microspora on polyurethane foam and assessing decomposition efficiency through 

visual and biochemical analysis. Findings from this study could advance waste management strategies for long-term missions and contribute 

to closed-loop ecosystems essential for sustainable space colonization. By demonstrating the feasibility of cultivating P. microspora in space, 

this research lays the groundwork for integrating fungal bioremediation into future extraterrestrial habitats. 
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1. Introduction 
 

In recent years, there have been efforts to promote sustainable 

living in space. Current means of waste disposal on the ISS 

require astronauts to manually process trash by collecting 

their waste in bags and storing them short term before either 

returning the trash to Earth or letting it burn in the 

atmosphere-- for missions beyond low-Earth orbit, this 

disposal method will not be sufficient. For this reason, NASA 

has started sustainability and recycling initiatives regarding 

spaceflight. (Lockhart 2018) In this context, it’s clear that 

living sustainably in space is a challenge, but one that must be 

faced to ensure space travel runs smoothly. 

 

Meanwhile, current research on Earth has paved the way for 

further advancements in this field. One breakthrough of note 

is the discovery of polyurethane decomposition by mushroom 

 
1 Edwards, L. (2012). Amazon fungi found that eat polyurethane, even 

without oxygen. Retrieved from https://phys.org/news/2012-02-

amazon-fungi-polyurethane-

oxygen.html#:~:text=The%20authors%20suggest%20endophytic%20

fungi,a%20process%20known%20as%20bioremediation.&text=Bior

emediation%20is%20an%20important%20approach,down%20a%20v

ariety%20of%20pollutants. 

species1. Given that polyurethanes are one of the most used 

polymers on Earth,2 having identified a novel way to 

biodegrade a common polymer has immense implications.  

 

This experiment aims to understand the applicability and 

feasibility of cultivating polymer-decomposing fungi in 

microgravity environments. Specifically, the experiment will 

offer insights into how Pestalotiopsis microspora can 

decompose polyurethane sustainably in space, or 

microgravity. By looking at the results, further advancements 

in current biodegradation methods, particularly in 

polyurethane decomposition by fungi, could be achieved. 

 

2. Literature Review 
 

The accumulation of plastic waste is a critical environmental 

issue, both on Earth and in extraterrestrial environments, such 

2 Rey-Ting Guo, Xian Li, Yu Yang, Jian-Wen Huang, Panpan Shen, 

Rock Keey Liew, and Chun-Chi Chen, “Natural and Engineered 

Enzymes for Polyester Degradation: A Review,” Environmental 

Chemistry Letters, vol. 22, no. 3 (2024): 1–22, 

https://doi.org/10.1007/s10311-024-01714-6. 
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as spacecraft or future space colonies. Recent research 

demonstrates the potential of bioremediation—a process that 

utilizes biological agents like fungi—to address this issue. 

Among the most promising organisms for plastic degradation is 

Pestalotiopsis microspora, a species capable of metabolizing 

polyurethane (PUR). This review synthesizes findings from 

several key studies to address why cultivating plastic-degrading 

P. microspora in space could play a vital role in reducing waste, 

ensuring environmental sustainability, and supporting long-

term human survival in extraterrestrial environments. 

 

Bioremediation and Metabolic Diversity 

Bioremediation offers an eco-friendly solution to reducing 

waste by exploiting the metabolic diversity of microorganisms. 

Screening for organisms capable of degrading plastics has 

revealed that P. microspora stands out for its unique ability to 

break down PUR, a synthetic polymer widely used in foams, 

coatings, and adhesives. Importantly, P. microspora not only 

degrades PUR under aerobic conditions but also exhibits 

anaerobic degradation—a rare and unprecedented trait among 

fungi. This capability suggests the potential for bioremediation 

in low-oxygen environments, such as sealed spacecraft or 

planetary habitats, making P. microspora a promising candidate 

for space applications.3 

 

The Role of Fungal Biodiversity 

A broad survey of fungal biodiversity highlights P. microspora 

as a particularly effective agent for degrading PUR. Studies 

have identified other fungi, such as Pleurostoma richardsiae 

and Coniochaeta ligniaria, with varying abilities to metabolize 

plastics. However, the exceptional efficiency of P. microspora 

in utilizing PUR as its sole carbon source underscores its unique 

suitability for space bioremediation systems. Additionally, the 

serine hydrolase enzyme involved in this degradation 

demonstrates a molecular mechanism that could be further 

optimized through genetic engineering to enhance plastic 

degradation rates in extraterrestrial conditions4. 

 

Applications in Space Environments 

Space missions generate considerable plastic waste, including 

packaging materials, equipment components, and personal 

items. In closed environments like the International Space 

Station or future Mars habitats, managing waste is a logistical 

and environmental challenge. Traditional waste management 

systems rely on storage or incineration, both of which are 

resource-intensive and impractical for long-term missions. The 

ability of P. microspora to degrade PUR under anaerobic 

conditions offers an innovative alternative for waste recycling, 

 
3 Jonathan R. Russell, Jeffrey Huang, Pria Anand, Kaury Kucera, 

Amanda G. Sandoval, Kathleen W. Dantzler, and DaShawn Hickman, 

“Biodegradation of Polyester Polyurethane by Endophytic Fungi,” 

PubMed, 15 July 2011, https://pubmed.ncbi.nlm.nih.gov/21764951/. 
4 Saurabh Singh, Srikrishna Subramanian, Neha Gupta, Abhay Bajaj, 

Natesan Manickam, 

Genomic insights on gene clusters and pathways for the biodegradation 

of plastic compounds: Unravelling the metabolic versatility in a 

Dietzia kunjamensis IITR165, Current Research in Biotechnology, 

Volume 8, 2024, 100258,ISSN 2590-2628, 

reducing dependence on Earth resupply missions and mitigating 

waste accumulation. 

 

Environmental and Resource Sustainability 

Cultivating P. microspora in space could contribute to a closed-

loop ecosystem by recycling plastic waste into usable biomass 

or other byproducts. This aligns with principles of circular 

economy and sustainability, which are critical for long-term 

extraterrestrial habitation. Moreover, the adaptability of P. 

microspora to different environmental conditions suggests that 

it could be integrated into bioreactors designed for microgravity 

or Martian gravity. These systems could transform waste 

plastics into materials that support life, such as carbon-based 

nutrients, creating a self-sustaining ecosystem for future 

colonists5. 

 

Limitations and Future Research 

Despite its potential, the application of P. microspora in space 

requires further research. Studies are needed to understand its 

growth kinetics in microgravity, optimize its enzymatic 

pathways, and ensure its compatibility with bioreactors. 

Additionally, the potential for contamination or unintended 

ecological impacts must be carefully evaluated. Exploring the 

use of synthetic biology to enhance the metabolic efficiency of 

P. microspora could further improve its utility in space 

applications.  

 

Farming and curating Pestalotiopsis microspora for use in 

space bioremediation systems addresses both the immediate 

challenge of plastic waste management and the long-term goal 

of sustainable extraterrestrial living. Its ability to degrade PUR 

under anaerobic conditions, coupled with its potential 

integration into closed-loop life-support systems, makes it a 

critical tool for future space exploration and colonization. By 

harnessing the unique properties of this fungus, humanity can 

take a significant step toward achieving sustainability beyond 

Earth. 

 

3. Research and Experimentation Methods 
 

The first step of the experiment involved consulting mycology 

professors from local universities, particularly the National 

University of Singapore. Dr. Choong, an expert in fungal 

degradation of waste and plastics, recommended using 

Pestalotiopsis microspora, a fungal species known for its 

ability to decompose polyurethane, a common polymer plastic. 

Following this advice, a syringe of Pestalotiopsis microspora 

hyphae was procured from Mycelium Emporium. To cultivate 

the hyphae into mycelium, potato dextrose agar (PDA) was 

https://doi.org/10.1016/j.crbiot.2024.100258.(https://www.sciencedir

ect.com/science/article/pii/S2590262824000844) 

 
5 Marra D, Karapantsios T, Caserta S, Secchi E, Holynska M, Labarthe 

S, Polizzi B, Ortega S, Kostoglou M, Lasseur C, Karapanagiotis I, 

Lecuyer S, Bridier A, Noirot-Gros MF, Briandet R. Migration of 

surface-associated microbial communities in spaceflight habitats. 

Biofilm. 2023 Feb 24;5:100109. doi: 10.1016/j.bioflm.2023.100109. 

PMID: 36909662; PMCID: PMC9999172. 
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prepared as the growth medium. Each batch of PDA was 

autoclaved before inoculation to eliminate contamination risks. 

The hyphae were then gently applied to the sterilized agar using 

the syringe under aseptic conditions. 

 

To ensure the fungi could survive the journey to the 

International Space Station (ISS) without prematurely 

degrading plastic or dying en route, we lyophilized the 

Pestalotiopsis microspora. Lyophilization (freeze-drying) 

involved removing water from the mycelium while maintaining 

its viability. This process kept the fungi dormant during 

transport, ensuring they only became active when rehydrated 

with water on the ISS. On Earth, we conducted extensive tests 

on reactivating lyophilized fungi by introducing water under 

controlled conditions. These tests confirmed that the rehydrated 

fungi retained their ability to break down polyurethane 

polymers, as evidenced by visible degradation of foam samples. 

 

To prevent contamination during the growth process, samples 

were kept in a biosafety cabinet, and lab equipment was 

sterilized meticulously. Since pure polyurethane samples were 

unavailable, a foam mixture containing polyurethane was 

selected to replicate real-world waste conditions. Various 

inoculation methods were tested, such as placing agar pieces 

containing mycelium directly onto foam, which proved 

successful. This approach not only enabled fungal colonization 

but also demonstrated consistent polymer breakdown, 

validating the potential of Pestalotiopsis microspora for waste 

management applications in extreme environments like space. 

 

These systematic steps allowed us to ensure the feasibility of 

the fungi’s activation and decomposition capabilities, laying the 

groundwork for a novel approach to sustainability in 

extraterrestrial settings. 

 

Capsule and Electronics Setup and Design 

The capsule design consists of the following components: the 

outside container, the liquid pump system, the microspora 

chamber and carbon-dioxide sensor, the camera and LED 

lighting setup, and the electronic section panels. 

 

The design for the outer shell of the capsule was provided to fit 

the given dimensions which we are permitted to use for our 

experiment. These dimensions were based on the precise fitting 

of the capsule shell into the McMek (the system which runs the 

experiment) and on the rocket and ISS. The shell is a 

rectangular-like prism with chamfered edges to produce an 

irregular octagon base. On each of these chamfered edges is 

also a screw hole to secure the lid to the shell. Furthermore, to 

ensure that the components are fixed securely, the shell has 

components stacked with no dead-space, and all components 

are near-perfect fits to the interior of the container. 

Additionally, foam layers were placed under the lid to compress 

and secure the components even more tightly. To meet strength 

requirements and ensure that future edits could be made while 

staying within a reasonable budget, the container was 3D 

printed with standard PLA filament. 

 

The liquid pump system is a novel design introduced to activate 

the freeze dried microspora. A pump system was needed to 

introduce fluids to the microspora, activate it, and grow it. A 

solid option for a pump on the market is the Aquatech RP-Q1 

Micro Ring Pump. It can easily fit within the capsule while 

providing enough torque to pump liquids more viscous than 

water. To secure the pump to the outer container, a 3D-printed 

cage was designed, and the pump was fitted in the middle. 

Multiple holes were also designed to allow for the pump’s tubes 

to start from the liquid chamber, run through the cage and reach 

the microspora. The liquid chamber is made from medical-

grade nitrile and secured by sliding a ring and epoxy. 

 

The microspora chamber is a half-acrylic, half-PLA design that 

contains the mycelium. The acrylic cover was laser-cut to exact 

specifications and fit exactly to the outer container’s square-like 

face dimensions. Due to the transparency of acrylic, the cover 

allows for the camera setup to observe changes within the 

chamber. The 3D-printed PLA half was also fit to these 

specifications. These two pieces were secured together with 2 

separate layers of epoxy resin. Additionally, a small hole is 

designed into the back of the chamber to fit a tube connected to 

the pump. Through this tube, water is directly pumped into the 

chamber. Inside of the chamber, two individual layers of 

polyurethane are placed. The base layer being a flat sheet to fit 

the chamber, and the second layer being the same but with two 

holes. One hole is suited to fit the microspora pellet, and the 

other for the tube to reach the pellet. This water was used to 

delyophilise the pellet so that we could reliably control when 

the experiment would begin. Furthermore, a small extension 

was attached to the back of the chamber to house the carbon-

dioxide sensor. The sensor was covered by a tape specially 

designed to only allow gasses (such as CO2) to permeate it. 

 

The camera and LED setup was designed around the 

microspora chamber. Due to the acrylic cutout being clear, the 

camera was placed directly facing the piece, allowing for it to 

capture any changes taking place inside the chamber. However, 

the camera had a 65° FOV, so spacing was important to ensure 

that the camera captured the entirety of the chamber. To help 

with this, 3D printed PLA standoffs were initially printed with 

M2 screw holes on each side so they could easily be attached to 

both the microspora chamber and the side of the camera insert. 

However, after testing, the PLA standoffs tended to be too 

flimsy and broke easily. Additionally, the nozzle size of the 3D 

printer used was too large to accurately print the screw holes, 

causing the standoffs to shift around when attached to the 

chamber and the camera insert. Therefore, wooden skewers cut 

to the specific length of the spacer were used as replacement. 

The design of the skewer inserts on the camera insert were also 

changed from screwholes to slots that fit the chopstick diameter. 

Finally, these chopsticks were secured to the slots through a 

layer of superglue. Furthermore, because of the limited amounts 

of light within the capsule, LED lights needed to be placed on 

either side of the camera insert to allow it to clearly capture the 

experiment. 

 

The design underwent many iterations across versions. We first 

began with a design where the capsule was kept horizontal and 
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the camera faced down from the top panel of the capsule. 

Nevertheless, we moved on from this idea since this would 

greatly prohibit increasing the distance between the camera lens 

and the microspora chamber. Therefore, the camera looks 

“down the barrel” of the capsule instead. Furthermore, this 

design allows for an easier process of assembly since all of the 

components can be stacked in the capsule, instead of them being 

glued in specific places, which would prove very arduous 

considering the size of the capsule. In the end, we went with the 

most simplistic design which we could come up with to 

decrease possibilities of error with more complicated 

mechanical designs. That being said, the mechanical design 

which we employed achieves our goal of being able to 

effectively pump water into the microspora container, while 

also being able to reliably view it with the camera.  

 

The electronic components of the capsules consisted of a pump, 

carbon dioxide sensor, LED lights, and a camera. To fit the 

electronic components onto the PCB we were given, we had to 

take into account the proposed mechanical design.  

 

We used a SCD4x sensor, sourced from Digikey. This sensor 

measures carbon dioxide in Parts per Million, meaning that it 

measures the concentration of carbon dioxide in regards to one 

million (e.g. CO2 levels of 1670 PPM would mean 1670 parts 

out of 1 million in the given environment are CO2). The code 

was set up to read CO2 levels every 15 minutes. 

 

We used an electronic pump. This allowed us to activate the 

lyophilized mycelium pellet, by pumping in 10 milliliters of 

distilled water when the experiment started running. This would 

also create a moist environment for the mycelium to grow. The 

code was set up to ensure that the pellet activated when the 

command was to start the 30-day timer. The tubes were 

sterilized using ethanol and water. As the pump required more 

voltage than any of the other components, we had to solder a 

small connection to another IO pin to ensure enough voltage 

was going through. Two wires were soldered onto each small 

bump at the bottom (find the proper name) of the pump, which 

was then soldered to an appropriate place on the PCB which fit 

the mechanical design. Connections were then soldered to the 

IO pins.  

 

 

 

 

 

 

Software 

 

Overview of Software Structure 

The software for the experiment is divided into two distinct 

sections: Quest CLI and Quest Flight. Both components are 

written in C for Arduino. Quest CLI serves to define functions 

and provides a simple methodology for testing individual 

components for functionality. Quest Flight, on the other hand, 

executes functions at specific intervals required throughout the 

experiment. These two sections work together to streamline 

troubleshooting and maintain well-structured code. 

 

Mission Sequence Execution 

The experiment begins with the mission clock being reset, and 

the current time and date recorded. Preliminary checks are 

conducted to verify the functionality of the abort function and 

confirm that the pump is turned off. Since no operations are 

required during the initial 24 hours, a 24-hour timer is started. 

After this period elapses, the pump is activated for 5 seconds to 

ensure that the lyophilization of the pellet is undone by pumping 

the necessary fluid. 

 

Hourly Photo Capture 

A loop is implemented to manage the photo capture process. 

Every hour, the LED is turned on, a photo is taken, and the LED 

is turned off to conserve power. This ensures that images are 

captured at regular intervals. Nested conditional statements are 

used to monitor the mission clock and trigger the sequence 

when the clock reaches the hour. 

 

Environmental Data Collection 

Every 15 minutes, data is collected from the temperature, 

humidity, and CO2 sensors. This process follows a similar 

structure to the photo-capture sequence, ensuring data recording 

is consistent. Error checks are integrated to return error 

messages in case of invalid or impossible inputs. Additionally, 

the system introduces a 5-second delay to avoid conflicts if the 

LED is active for photo capture during a data collection 

interval. 

 

Real-Time Mission Clock Monitoring 

To verify functionality and maintain an accurate sequence of 

events, the current mission clock is printed every second. This 

provides continuous monitoring and helps to identify any 

irregularities during the experiment. This structure ensures that 

all components function as intended, while incorporating robust 

error-checking mechanisms and logical workflows to support 

the mission's success. 
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4. Data Presentation 
 

 
Flight Unit Data (Time Stamp 1) 

 

 
Flight Unit Data (Time Stamp 2) 
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Flight Unit Data (Time Stamp 3) 

 

5. Discussion 
 

During the experiment, periodic increases in CO₂ levels were 

observed, indicating metabolic activity by the Pestalotiopsis 

microspora fungus. As P. microspora is known for its ability to 

degrade polyurethane, the rise in CO₂ levels suggests that the 

fungus was actively breaking down the polymer and utilizing it 

as a carbon source for its growth and metabolism. The 

degradation process likely involved enzymatic breakdown of 

the polyurethane into smaller compounds, which were then 

metabolized, releasing CO₂ as a byproduct. 

 

These fluctuations in CO₂ levels served as indirect evidence that 

P. microspora was effectively consuming the polyurethane 

material. By monitoring these changes alongside visual 

observations of mycelium growth on the foam, we were able to 

conclude that the fungus was successfully degrading the 

polymer. 

 

Although upwards trends were seen between each time stamp, 

due to the lack of persistence in the sensor settings, by default, 

certain configurations (such as the automatic self-calibration 

feature, temperature offset, and sensor altitude), were not saved 

to the non-volatile memory. This means that every time the 

sensor restarted, it would revert back to its initial state. As a 

result, any calibrations or adjustments that happened during 

either operation or study were lost on every power cycle or 

reset. Such losses made the sensor readings inconsistent 

between time stamps.  

 

Another related issue is about the automatic self-calibration 

mechanism itself. It is usually on unless it is specifically 

disabled. The self-calibration mechanism recalibrates the 

sensor to 400 ppm of CO2 each week when it detects fresh air. 

If the sensor does not experience low CO2 concentrations 

periodically, this recalibration can cause the baseline CO2 

readings to stabilize at values around 400-700 ppm upon each 

restart. Such behaviour can result in inaccurate readings until 

the sensor stabilises. Turning off the automatic self-calibration 

may potentially resolve this issue.  

 

Hence, although the sensor readings did not show an upward 

trend across the entire scope of data collection, upward trends 

could be seen across each individual timestamp, indicating that 

carbon dioxide levels were indeed increasing over the course of 

the experiment. 

 

Experiment Limitations 

Our experiment faced several notable limitations. Firstly, we 

were only able to conduct the experiment in microgravity 

conditions on the International Space Station (ISS) once. This 

restricted our ability to replicate the experiment and verify the 

results obtained from our initial flight unit. Consequently, our 

conclusions are based solely on data from this single trial. 

 

Secondly, the system controlling the experimental capsule 

experienced a shutdown midway through the study. As a result, 

we were only able to collect data for 15 days, rather than the 

originally planned 30-day duration. This reduction in data 

collection time limited the scope of our analysis and may have 

impacted the comprehensiveness of our findings. 

 

Lastly, due to repeated restarts of the McMeck system, the 

carbon dioxide sensor reset its baseline measurement each day. 

This prevented us from recording absolute CO₂ levels over the 

duration of the experiment. Instead, we were only able to 

measure the rate at which CO₂ levels increased daily, which 

may have constrained the accuracy of our conclusions regarding 

fungal activity and polyurethane consumption.  
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6. Conclusion and Implications  
 

In sum, this study demonstrates the potential of Pestalotiopsis 

microspora in microgravitational conditions, which can provide 

a sustainable solution for space waste management. Its results 

lay the groundwork for incorporating fungi bioremediation 

systems into space exploration initiatives to sustainably recycle 

waste in space. Despite our promising findings, more research 

is nonetheless required in more controlled environments, as 

well as research on how to best optimize the capabilities of 

Pestalotiopsis microspora in such a field. Yet, by harnessing 

innovative solutions like fungal bioremediation, this 

experiment was successful in taking a step forward to create 

sustainability initiatives beyond Earth, paving the way for more 

efficient future space exploration. 
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