International Journal of Science and Research (1JSR)
ISSN: 2319-7064
Impact Factor 2024: 7.101

Operational Calculus for the Fractional Fourier-
Laplace Transform

Vidya Sharma?, Akash Patalwanshi?

Professor and Head, Department of Mathematics, Smt. Narsamma Arts, Commerce and Science College,
Kiran Nagar, Amravati-444606, Maharashtra, India
2Department of Mathematics, Smt. Narsamma Arts, Commerce and Science College, Kiran Nagar,
Amravati-444606, Maharashtra, India
Corresponding Author Email: akashpatalwanshi7[at]gmail.com

Abstract: In this paper, we introduce the Fractional Fourier-Laplace Transform (FrFLT), rigorously defining its
structure, extending it to all fractional parameters. A comprehensive operational calculus for the FrFLT is developed by
proving its core properties, including linearity, shifting, scaling, differentiation, and modulation. These properties describe
how the FrFLT interacts with linear combinations of functions, spatial shifts, partial derivatives, scaling transformations,
and harmonic modulations. Additionally, we analyze the behavior of the FrFLT for various parameter values, providing
insights into its structure and operational utility. These results demonstrate the FrFLT’s versatility and potential for
applications in signal processing, mathematical physics, and engineering. Furthermore, this research establishes a
foundation for future exploration of the FrFLT in solving fractional differential equations and related problems.
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1. Introduction

The Fractional Fourier Transform (FRFT) serves as a generalization of the classical Fourier transform and has
garnered significant interest over the past two decades due to its diverse applications in areas such as signal
analysis, optics, and signal reconstruction [1, 2]. Moreover, it has also found utility in advanced fields such as
pattern recognition, cryptography, and fractal signal processing, highlighting its importance in both theoretical and
practical domains [3, 4, 5, 6]. The FRFT provides a framework for addressing certain mathematical problems that
the traditional Fourier transform cannot efficiently handle [2]. The concept of FRFT was implicitly introduced by
N. Wiener in 1929 [7] as a tool for solving specific ordinary and partial differential equations encountered in
quantum mechanics. However, it was not until 1980 that V. Namias, seemingly unaware of Wiener’s earlier work,
formally defined the FRFT to address similar problems arising from classical quadratic Hamiltonians in quantum
mechanics [8]. Subsequent refinements were made by McBride and Kerr [9].

Namias conceptualized the FRFT as an extension of the Fourier transform to fractional orders, in which the
standard Fourier transform corresponds to an order of one and the identity transform to an order of zero.
Importantly, the semi-group (additive) property was preserved, ensuring that applying the transform of order one-
half twice would yield the ordinary Fourier transform. Mathematically, the FRFT constitutes a family of operators
{F,}, indexed by a parameter a, where 0 < a < 1. Specifically,

Folf1 =1 Flfl=f

where £ represents the Fourier transform of £, and the composition satisfies FoFp = Farp.

By employing a suitable scaling, the FRFT can be parameterized by an angular parameter 6, with 0 < 8 < 2m.
Under this framework, F, remains the identity transformation, Frs2 represents the Fourier transform, and
additional properties include Fy = Fg 2. Explicitly,
Folf1 =1, Frpalf1 = f, Falf ] = F(=2), Forlfl=f.

Similarly, the Fractional Laplace Transform (FRLT) extends the classical Laplace transform to fractional orders
and serves as an important tool in both theoretical and applied mathematics. Analogous to the FRFT, the FRLT
generalizes its corresponding classical transform, enabling continuous interpolation between different orders
through a parameter that governs its behaviour. Introduced within the framework of canonical transforms, the
FRLT has been shown to be relevant to solving certain parabolic differential equations and to quantum mechanical
problems involving repulsive oscillators. Moreover, the FRLT exhibits properties such as continuity with respect
to its order parameter and adherence to the semi-group property, allowing compositions of fractional transforms to
yield transforms of combined orders. The FRLT also reduces to the standard Laplace and Bargmann transforms for
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specific parameter values, ensuring consistency with classical cases [10].

Both of these transforms and similar transforms exhibit several key mathematical properties, including linearity,
shifting, scaling, differentiation, and modulation, which underpin their utility in theoretical and applied contexts
as Iﬁear_coﬁbm_ati&ls,_spafala parameter shifts, scaled transformations and frequency modulations, forming the
foundation for their practical applications.

In this paper, we introduce the fractional Fourier-Laplace Transform (FrFLT), a novel transformation that
combines essential features of the fractional Fourier transform (FRFT) and fractional Laplace transform (FRLT)
[19]. While the FrFLT was previously defined in [19] only for the fractional parameters «, 6 ¢ {0,7/2, }, we
extend its definition to encompass all values of a and 6. Additionally, we develop a comprehensive operational
calculus for the FrFLT by rigorously establishing its fundamental properties, including linearity, shifting,
differentiation, scaling, and modulation.

The paper is organized as follows. In the next section, we provide the necessary definitions, including a modified
definition of the fractional Laplace transform, the fractional Fourier-Laplace Transform (FrFLT), the testing
function space, and the distributional generalized fractional Fourier-Laplace Transform. In Section 3, we
investigate the behavior of the FrFLT for various parameter values. In Section 4, we rigorously derive the core
properties of the FrFLT. Finally, in the last section, Section 5, we conclude with a discussion of our findings and
their potential applications.

2. Preliminaries
I. The Fractional Fourier transform

The fractional Fourier transform (FRFT) with angle a of a function f(x) is defined in [11], can be expressed as

FLF @I = R = | £00 Kelrw) d 2.1)
where,
Hﬂ ei[(x2+u2)cozta—xu csc a]' ifa = mr
K, (x,u) = 2 (2.2)
o(x —u), ifa =2mm
§(x+u), ifa=0Cm-Dr

is a transformational kernel with « € R, m € Z and 6 denotes the Dirac delta function.
Il. Fractional Laplace transform

The fractional Laplace transform (FRLT) with angle ¢ of a function f(t) is defined in [10]. We now extend the
definition of fractional Laplace transform given in [10] to include the case where ¢ is integral multiple of 7z, which
were previously undefined. In this paper, we use the notation 6 instead of ¢. This extension ensures that the FRLT
framework is complete and facilitates its seamless application in defining the Fractional Fourier-Laplace
transform. The extended definition of FRLT is as follows:

The fractional Laplace transform (FRLT) with angle 8 of a function f(t) is defined as

Lolf @) = Lo = | F(©) Ko(t,v) de (2.3)
where,
1-— iC.OtH e[(ﬂﬂﬂ)%—tvcsc 6], if6 =
Kq(t,v) = 2m 2.4)
o(t —v), if @ = 2nm
6(t+v), if0d =2n—-1n

is a transformational kernel with 8 € R, n € Z and § denotes the Dirac delta function.
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This extended definition agrees with the definition given by Torre in [10] when 8 = nm and it also include the
case where @ is integral multiple of . In accordance with this extended definition, the FRLT reduced to the
identity transform at & = 2nm and at it reduce to reflection transform f(—v) at 8 = (2n — 1)m.

I11. The Conventional Fractional Fourier-Laplace Transform

The fractional Fourier-Laplace transform with angle parameters a and 8 of f(x, t) is a linear operator given by the
integral transform,

FLyolf (x,8)} = Fpo(u,v) = f f f(x,t) Kpg(x,u,t,v)dxdt (2.5)

where, o
( C(a’e)ei[a(a)(x2+u2)—p(a)xu]e[b(6)(t2+vz)—q(6)tv]’ ifa,0 & {kr: k € 7}

C,(2)8(t — v)ella@G+ul)—p(@xu] ifa # mrand 0 = 2nm

C,(2)8(t + v)eila@@? +u?)—p@xu] ifa #mmrand 6 = 2n— 1)m

C,(0)8(x — w)elb®*+v*)-a(@)tv] ifa =2mmand @ # nn
Kap(ru,t,v) = 4 C,(8)5(x + w)elb®E* +vH)-a®)tv] ifa =(2m—1mand 0 # nn

6(x —u)s(t —v), ifa,0 € {2k : k € 7}

S(x—w)d(t +v), ifa =2mmand 0 = 2n— D&

S(x+u)s(t —v), ifa=2m—1)mand 6 = 2nn

S(x+u)s(t +v), ifa,0 € {2(k—Vm:k € Z}

(2.6)
is a transformation kernel with

1—icota 1—icotf
(@ = |, GO = [ C@) = @GO,

cota cotd
a(@) =——, b(®) =—
Where a,6 € R, m,n € Z and & denotes the Dirac delta function. For simplicity we may write C;, C,, C, a, b, p,
and q instead of C; (), C,(0), C(a, 0), a(a), b(0), p(a) and q(0).

, pla) =csca, q(0) =csch

IV. The Testing Function space E(R™)

An infinitely differentiable complex valued smooth function @ on R™ belongs to E(R"), if for each compact
subset K ¢ S, , I c S, where, S, ={x € R™ [x|] <a,a >0}, S, ={t € R™ |t| <b,b > 0} such that,

= sup|DLD§ =0,1.2,..
YE,l,q(Q) §1é119| X q®(xl t)| < oo, l,q 0; 2 (27)
tel
Thus E(R™) will denote space of all @ € E(R™) with compact support contained in S, N S,. Moreover, we say
that f is a fractional Fourier-Laplace transformable if it is a member of E*, the dual space of E.

V. Distributional Generalized Fractional Fourier-Laplace Transform

The distributional fractional Fourier-Laplace transform of f(x,t) € E(R") is defined by

FTFLT{f(x' t)} = Fa,G (u: U) = (f(x' t)' Ka,@ (.X, u,t, U) ) (28)
where, K, g(x,u, t,v) is as given in (2.6). The R.H.S. of (2.8) is meaningful because K, o(x,u,t,v) € E and
f(x,t) EE™.

3. Analysis of FrFLT for different parametric values

The FrFLT of f(x,t), for some special values of @« & 6 are given in the Table 1. Since the calculations are
straightforward, only final results will be tabulated. Note that, here f(x,t) belongs to space W of all integrable
functions with property that f(x,t) € W if and only if F,[f(x,t)],, Lolf(x,t)]; € W. Where, F,[f(x,t)], is
fractional Fourier transform of f(x, t) with respect to x at angle a and Lg[f (x, t)]; denotes the fractional Laplace
transform of f(x, t) with respect to t at angle 6.
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Table 1: FrFLT for different parametric values

Values of e, 6 Ko o(x,u,t,v) FLyo[f (%, )] = Fop(u,v)
a,0 € {2kr : k € 7} §(x — w8t — v) Foolflw,v) = f(u,v)
a6 €{2(k—Dm:k €7} S(x+uw)d(t+v) Fr z[f1w,v) = f(—u,—v)
a=2mm6=02n—-1n §(x —w)8(t + v) Fo x[f1(u,v) = f(u, —v)
a=02m-1)n,60 =2nn d(x +w)é(t—v) Fr olfl(w,v) = f(—u,v)

a =2mmand 6 # nn Co8(x —welb@+vH-at] | Fy5[f1(w,v) = Lo[f (w, )] (v)

a=2m—Drand 6 #nm | C,86(x +w)elt@+v-av] | Fo o[f1(w,v) = Lo[f (—u, )] (v)

a#mmand 0 =2nw | C,5(t — v)ellaC* +u-pau] | F o[f1(u,v) = Folf (x, )], (w)

a#mmrand = 2n—1)r | C,8(t + v)ellaC*+ud-pxu] | F, o[f1(u,v) = Fy[f (x, )], (w)
gg[ flw,v) =

T 1 1 ;
=0 =— | -ixu,-tv
¢ 2 \Ej;e et \/;\/;FL{f(x O}, v)

Where FL{f (x, t)}(u, v) denotes Fourier-Laplace transform of f(x,t) as defined in [18]. Based on the analysis in
Table 1, we shall now focus on Fy, ¢ for a, 6 & {km : k € Z}. In this case the kernel of FrFLT is:

K,o(x,ut,v) = C(a, g)ei[a(x2+u2)—pxu]e[b(t2+v2)—qtv] (3.1)

that is,

Ky oCout,v) = \/1 _£C0ta\/1 _Zl C.Ot9 em[(x +u?)cosa— 2xu]e25m9 [(t*+v?) cos 6-2tv]
’ T Tl

4. Some properties of FrFLT

In this section, we derived various operational transform formulae for the FrFLT, including results related to
linearity, shifting, scaling, differentiation and modulation.

4.1 Linearity property

FLyolerf (1) + c29(x, )} = 1 F Ly o{f (x, 1)} + c2F Lo o{g (x, 1)} (4.1)
Proof: From the definition of FrFLT we have,

FLyolcrf(x,t) + co9(x,t)} = f f (i f(x, ) + c29(x, 1)) Koo (x,u, t, v)dx dt
=C .foo foo (arf(x,t) + c29(x, 1)) eila(x?+u?)—pxu] o [b(t*+v*)=qtv] 4y gt
= clcfoo foof(x, 0 ei[a(x2+u2)_pxu]e[b(t2+U2)—qtv] dx dt

+CZC-[ -[ g(x,t) ei[a(x2+u2)—pxu]e[b(t2+v2)—qtv] dx dt

o) f f f(x,t) Kpo(x,u,t,v) dx dt + c, f f g(x,t) Ky o(x,u, t,v) dx dt
leﬁa,e{f(x' t)} + CZTLa,Q{g(x: t)} u
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4.2  Modulated shifting property
. . ia(u—2\2 _¥
FLale @0 £, 0, = e 2L o 03 (u - 20-%) w2
Proof: By definition of FrFLT we have,

FLaple @ Of (x, )} (u,v) = f f el X WOf (x, £) Ko (x,u, t,v) dx dt

= Cf f ei(wx—il,bt)f(x’ t) eilaG?+u®)—pxu] 5 [b(t*+v*)=qtv] gy dt

Zl'a(u—ﬂ)2 2b(v—£>£

=Ce 2p/pe a/q
<[ [ el sl oo b5
- eZi“(”_%)%e”(”:ziq%_:,caﬂ{f(x, £} (u _ % v— %) .
4.3  Shifting properties
| FLop{f (= x0, 0}, v) = e““"g‘pxﬂu)e"(“‘%)%ﬂw{f(x, £} (u _ 2‘;"" , v) (4.3)
I FLoolf(xt —t)}(u,v) = e(vid-atov)o (- %)%Tﬁa,e{f (x, )} (u' v %) (4.4)
FLo g lf (= Xort — t)}(t,v) = piCaxi-pxou) o (bid-atov) o (125225572 (v )05

1l (4.5)

2ax0 tho
X — —_—
P Lol 0o 0} (u = 2220,y — 22%)

Proof: By definition of FrFLT we have,
(D FLgplf (x — x0, )}, v) = f j fx —x0,8) Ko g(x,u, t,v) dx dt

Substituting x — x, = z = dx = dz we Qet,

FLyglf (x — x0,6)}(u,v) = f f f(z,t) Kpg(z + xp,u,t,v) dz dt
= Cf f f(z,t) ei[a((z+x0)2+u2)—p(z+x0)u]e[b(t2+v2)—qtv] dz dt
= Cei(axg_Pxou)f f eZiazxof(Z’ t) ei[a(z2+u2)—pzu]e[b(t2+v2)_qtv] dz dt

= Cei(axg_Pxou)f f eZiaxxof(x’ t) ei[a(x2+u2)_pxu] e[b(t2+u2)_qtv] dx dt

_ ei(ax%—pxou)j-"j;ag{ezm"x"f(x’ t) }

, i(y—0%0)\4a’xg 2ax
— ez(ax(z)—’pxou)el(u D ) p T‘La,e{f(x, t)} (u — > 0 , v) By (4.2)

(D) FLoo(fGut =t @) = [ [ fut=to) Keolrut,v) drde
Substituting t — t, = y = dt = dy we get, e?@*+v*-ayv)
FLaolf (x,t — t)}(w,v) = f f fO6,y) Kgo(x,u,y + to,v) dx dy

. FLyoff (x,t — to)}(u,v) = C-[ j f(x,y) eilatx®+u?)—pxu] o [b((V+te)*+v*)=q(r+to)v] gy dy
— Ce(btcz)—qtov)f f QZbytOf(x,y)ei[a(xz"'uz)—pxu] e[b(y2+v2)_qu] dx dy
= -[ -[ QthtOf(x, t) ei[a(x2+u2)_pxu] e[b(t2+v2)_qtv] dx dt
= (bti-atov) FLyo {e2btto f(x, )}
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_ bto)4b~to 2bt
= o)V E L o (x,00) (u, v 0) By (4.2)
(D) FLplfC=xont =t = | [ =0t = t0) Koo, v) d e
Substituting x — xq = z, t — t, = y and hence dx = dz and dt = dy we get,
FLyolf (x — x0,t — o)}, v) = f f f(z,y) Kooz +x0,u,y +to,v) dz dy

= f f f(zy) etlal@+xe)?* +u)—p(z+xo)u] o [D((Y+to)*+v*)-q(y+to)v] 4, dy
— Cei(axg—zﬂxou)e(bt%—qtov)f f e2(1azx0+bYt0) £ (7 ) eila@?+u?)—pzu] o [b(y?*+v?)-ayv] 4, dy

_ Cei(axg—pxou)e(bt(z)—qtov)f f e2(iaxxo+btte) £(y 1) eilaGx?+u?)—pxu] H[b(t2+v®)-qtv] 1y 4t

— ei(ax%—pxou)e(btg—qtov)j:L e{ez(iaxx0+btt0)f(x t)}

&411 X, bty\4b?t 2 2bt
= l(ax3-pPxow) o (bt5~qtov) o* i(u- po) p Oe(v ‘IO) T L aolf(x, 1)} (u— axo'v_TO) By (+2)

4.4  Scaling property

For nonzero real constant r and s,

FLyo{f (rx, st)}(u,v) =j1 — lcota Jl — icotf l[cow 2( Egzz a)] [Cow 2( 22220)]

2 —icota sz —icoth " (4.6)

sin B siny )

p U ]
rsina’ ssin@

X FLolf (00} (u

where, f = arctan(r? tan a) and ¥ = arctan(s? tan 6)
Proof: By definition of FrFLT we have,

FLyolf (rx,st)}(u,v) = f f f(rx,st) Ky o(x,u,t,v) dx dt

= CJ f f(rx, st) eilaGx?+u)—pxu] o [b(t*+v*)=qtv] g, 4t

Substituting y = rx and z = st
Hence dy = rdx and dz = sdt = dx = d—y and dt = %

& +uz)—pY dydz
& FLaolf (rx, st)}(w,v) = C j f ey o G -aie] 1, D=
1—icota [1—icotf 1 Cota( rurr?)—yuSl| [C°t9(z +v252)— ZUM]

— 272 y —yu 252 S dv d

[y - o0
Now , if we define § = arccot( - ) = arctan(r? tana) and y = arccot (Cztze) = arctan(s? tan 6) then we
get,
_ |1 —icota 1_iC0t9J _[ Cotﬁ(y +utr?)— y“rcss(,:caﬁCSCB]e[w(zzwzsz)‘z”sccssccgyCSCY]f( Dy dz
B 2mr? 2ms2i Y2} &y

, . cotB[ csca \? csca cotf( csca cotﬁ
_ 1—icota l—lCOtQJ' f \y2+ rcsCB) >_y(urcscﬁ)cscﬁ 2 \urcscﬁ) 2 r?
2nr? 2ms?i
coty csch \? _csch coty csch \?  coty
[P 8 (s r e

_ \/1 —lcota\/l —icotd [C"tﬁ 2r2(1 Tfsccszcgrﬁ)]e[coztyvzsz(l stcc:cfy)]

2mr? 2ms2i
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t z t 6\? 6
[ [ A tera poleinhos] [ 880 5, 0y

% csc? s*csc?y

_ |l—icota [1—icotf [C"tﬁ 2 2(1 csc? a )] [COW zsz(1 csc? 0 )]
B 2nr? 2ms?2i

tB 2 t 6 \? 6
[7 [ ol o] P b O e

1 —icota 1—icotf i COt“u2(1 csc?a )] [Cow 2(1 csc? 6 )]
= el 2 r4csc? s*csc?y

r2(1 —icotp) . |s?(1 —icoty)

csca cscO )

X FLaolf (x,00) (u

U
rcscB’ scscy

_ \/ 1—icota \/1 —icoth el[c"t“ 2( Eg:zg)] [C°t9 2( Egz§6>]7’£a3{f(x t)}( sin B ’ siny )

r2 —icota.s2—icoth rsina’ ssin®
n
4.5 Differential properties
d . .
| FLao {5=f 000} (0, v) = ~2ai L p{f (6,0} + iup FLopf (5, )) (47)
0
1 FLyg {af(x, t)} (w,v) = =2b FLyg{tf(x, 1)} + vq FLy p{f (x, 1)} (4.8)

Proof: By definition of FrFLT we have
) .‘]—"Lag{ fx, t) (w,v) _j f — F 0, 0) Kep (o, t,v) dx de

= Cf f eilaG® +u®)—pau] o [b(t* +v%)—qtv] a—f(x, t) dx dt
x

— Cf e[b(t2+v2)_qtv] {J ei[a(x2+u2)_pxu]aif(x’ t) dx} dt
—0 X

— 0o

— Cf e[b(t2+v2)_qtv] {[ei[a(x2+u2)_pxu]f(x’ t)]°° _f l[a(x +u?)—pxu] i[2ax — up] f(x,t) dx} dt
— CJ- elb(E*+v*)—qtv] {_f eilatx?+u?)—pxu] i[2ax — up] f(x,t) dx} dt
= —ZiaCf f ei[a(x2+u2)_pxu] e[b(t2+u2)_qtv] xf(x, t)dx dt

FiupC f ° f * gilaGe+u?)-pru] y[b(e2+v2)-atv] FQut) dx de
= —2ai FLy o{xf(x, )} + iu;(); ;L%é;{f(x, £)
D) FLyp {% fx, t)} (wv) = f ) f m% £ ©) Koo (1, 6, v) dox dt
_c f B f " pilaG?+u?)—pr] b +0?)—qtv] % FQu0) dx dt

— Cf ei[a(x2+u2)_pxu] {f e[b(t2+v2)_qt17] aif(x’ t) dt} dx
—o t

— 00

c foo etlax?+u?)-pxu] {[e[b(t2+v2)_qtv]f(x, t)]O_OOo B J‘°° elb(t*+v?)—qtv] [2bt — vq] f(x, 1) dt} dx

— Cf ei[a(x2+u2)_pxu] {_f e[b(t2+v2)_qtv] [th _ UCI] f(x’ t) dt} dx

— 00
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[oe]

— _2hC j j eilaC+ut)-pxul o [b(e2+92)-at0] ¢ £(x 1) dx dit

— 00

+ vof f ei[a(x2+u2)—pxu]e[b(t2+v2)—qtv]f(x’ t) dx dt
= —2b FLyp{tf(x,0)} + vq FLop{f (x,£)}

4.6  Modulation properties

I FLyol{f(x,t) cos(rx + ist)}(u, v)

— 1 eZLa(u—— —

= 2 M e ) e 0 (-
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=—e
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-QIC/)'Q|U1
N————

N———

208 P17 e, 0) (u +

2 e (" 2a)i 7 aolf (x, 1)} (u %,v + 2)
1 _ja(u+) v—)>
— e a0 et e ) (u +ow—)

Proof: By definition of FrFLT we have,
(D FLypl{f(x,t) cos(rx + ist)}(u,v)

= Cf f eilaGe +u?)—pxu] o [b(¢*+v")=atv] £ (5 1) cos(rx + st) dx dt

i(rx+ist) —i(rx+ist)
j f L[a(x +u?)— pxu] [p(t2+v*)—qtv] f(x,t) <6’ te )dx dt

ﬁ

2
{j f L[a(x +u?)- pxu] [b(t2+v?)- qtv]f(x t)el(TxHSt)dx dt}

+E{f f ei[a(x +u2)—pxu]e[b(t +v?)—qtv] f(x, t)e—i(rx+ist)dx dt}

. . 1 . .
= ETLag{f(x £)elrx+isH(y, v) + 7 FLa olf (x, D)e irx+isHl(y, v)
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N|ﬁ
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AD  FLypl{f (x,t)}sin(rx + ist) (u,v)

= Cf f ellaGe +u?)—pxu] o [b(¢*+v*)=atv] £ (3 ) sin(rx + ist) dx dt
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—o0 oo ’ 21
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5. Conclusion

In this paper, we introduced the fractional Fourier-Laplace Transform (FrFLT), extending its applicability to all
values of the fractional parameters a and 6. Previous studies on FrFLT primarily focused on specific parameter
ranges, leaving certain cases undefined. To address this limitation, we extended a definition of the fractional
Laplace Transform (FRLT) given by Torre. This extension completes the theoretical framework of the FrFLT,
enabling a seamless operational calculus for FrFLT.

The main results of this paper include several derived and rigorously proved properties of the FrFLT, such as
linearity, shifting, differentiation, scaling, and modulation. Furthermore, we analyzed the FrFLT under various
parameter values, providing insights into its structure. These findings provide a theoretical framework for applying
the FrFLT in diverse fields such as signal processing, engineering, and mathematical physics, offering new
perspectives and expanding its range of applications. By establishing these foundational results, this work lays the
groundwork for further advancements in the study and application of the FrFLT.
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