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Abstract: High Availability (HA) and Resilience is crucial for applications to minimize downtime, ensure business continuity, and 

maintain consistent reliability. Kubernetes, as the de facto container orchestration platform, has been widely adopted by startups, 

enterprises, and government agencies. While Kubernetes does not offer HA and Resilience for clusters and workloads by default, it 

provides several mechanisms that can be used in tandem to achieve them. Managed Kubernetes services (e.g., AWS EKS, Azure AKS, 

Google GKE) offload the responsibility of HA and resiliency for the control plane, which serves as the “brain” of Kubernetes. However, 

the responsibility for the data plane and workloads still lies with cluster administrators and developers. This paper proposes a multi-

layered approach to achieving HA and Resilience in managed Kubernetes clusters. We categorize the approach into two layers: 

workload and infrastructure layer. For each layer, we outline a series of mechanisms that must be adopted to ensure HA and Resilience. 

By applying these techniques sequentially at each layer, Kubernetes clusters can handle failures gracefully, scale efficiently, and 

maintain availability under varying workloads and infrastructure disruptions. 
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1. Introduction 
 

In the rapidly evolving landscape of cloud-native 

technologies, Kubernetes has emerged as the leading 

platform for orchestrating containerized applications. 

Developed by Google and released as an open-source 

project in 2014, Kubernetes was inspired by Google’s 

internal systems like Borg and Omega, which managed 

large-scale workloads across vast data centers [1]. Its name, 

derived from the Greek word for “helmsman” or “pilot,” 

reflects its role in steering application deployment and 

scaling. Over the past decade, Kubernetes has been widely 

adopted by startups, enterprises, and government agencies, 

becoming the cornerstone of modern infrastructure 

management [2]. 

 

High Availability (HA) refers to a system’s ability to remain 

operational and accessible even in the face of failures. 

Achieving HA involves eliminating single points of failure, 

implementing redundancy, and ensuring rapid failover 

mechanisms. The significance of HA cannot be overstated, 

as system downtimes can lead to substantial financial losses, 

damage to reputation, and erosion of customer trust. The 

absence of HA can have severe business repercussions. It is 

estimated that IT outages can cost organizations over $700 

billion lost revenue and year in North America [3]. 

The importance of High Availability (HA) and Resilience 

becomes evident when examining significant outages that 

caused severe financial and operational disruptions. In 2021, 

Facebook (now Meta) faced a 5.5-hour outage, disrupting 

3.5 billion users across Facebook, WhatsApp, and 

Instagram, resulting in $60 million in lost advertising 

revenue due to a misconfiguration error [4]. Similarly, 

Fastly’s outage in 2021 caused major websites like Amazon, 

Reddit, and BBC to go offline when a configuration change 

triggered a system-wide bug, impacting 85% of its network 

[4]. These incidents underscore the devastating financial 

and reputational consequences of downtime, emphasizing 

the critical need for robust HA strategies to mitigate failures 

and ensure business continuity. 

 
Kubernetes operates through a split architecture as shown in 

the figure 1, comprising the control plane and the data 

plane. The control plane serves as the cluster’s “brain,” 

managing the overall state, scheduling workloads, and 

orchestrating communication between components [5]. In 

managed Kubernetes services-such as Amazon Elastic 

Kubernetes Service (EKS), Azure Kubernetes Service 

(AKS), and Google Kubernetes Engine (GKE)-cloud 

providers assume responsibility for the control plane’s HA 

and resiliency, ensuring its robustness and scalability [1]. 

 

Paper ID: SR250313194616 DOI: https://dx.doi.org/10.21275/SR250313194616 1705 

http://www.ijsr.net/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

Impact Factor 2024: 7.101 

Volume 14 Issue 3, March 2025 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

 
Figure 1: Kubernetes Architecture 

 

Conversely, the data plane, encompassing the worker nodes 

and the workloads, remains under the responsibility of 

cluster administrators and developers. This delineation 

necessitates implementation of effective HA strategies at 

both the workload and infrastructure layers to ensure 

seamless application performance. 

 

This paper proposes a multi-layered approach to achieving 

HA in managed Kubernetes clusters. We categorize the 

approach into two layers: the workload layer and the 

infrastructure layer. For each layer, we outline a series of 

mechanisms that must be adopted to ensure HA and 

Resilience. By applying these techniques sequentially at 

each layer, Kubernetes clusters can handle failures 

gracefully, scale efficiently, and maintain availability under 

varying workloads and infrastructure disruptions. 

 

2. Literature Review 
 

According to Burns (2018), Kubernetes is fundamentally 

designed for scalability and fault tolerance by allowing 

multiple replicas of workloads to be distributed across 

nodes [6]. However, Burns emphasizes that Kubernetes' 

default configurations alone do not guarantee 

comprehensive high availability, requiring additional 

strategies at workload and infrastructure layers. 

 

Luksa (2017), in "Kubernetes in Action," emphasizes the 

inherent resiliency provided by managed control planes but 

notes that responsibility for ensuring the HA of workloads 

rests with cluster administrators [7]. 

 

Anemogiannis et al. (2025) proposed a novel anomaly 

detection and prediction framework to enhance Kubernetes 

resilience, leveraging graph-based representation and 

machine learning techniques to dynamically identify and 

manage anomalies within Kubernetes clusters. Their 

approach integrates unsupervised models to define normal 

operational states and supervised models for effective 

anomaly detection, thereby offering actionable insights for 

maintaining cluster availability [8]. 

While the aforementioned literature provides valuable 

insights, a gap remains in synthesizing and clearly outlining 

an integrated, multi-layered HA and Resilience strategy 

specifically for managed Kubernetes clusters. Existing 

studies often separately address workload or infrastructure 

HA aspects, leaving administrators without comprehensive 

guidance. This paper aims to bridge that gap by proposing a 

structured, cohesive framework encompassing both 

workload and infrastructure layers, designed specifically for 

managed Kubernetes environments in public cloud 

platforms. 

 

3. Workload Layer 
Achieving High Availability (HA) at the workload layer 

within managed Kubernetes clusters involves a 

comprehensive set of strategies to ensure continuous 

application availability and resilience. Below, we detail 

critical Kubernetes mechanisms that collectively provide 

robust workload resiliency: 

 

3.1 Deployment 

 

Deployments in Kubernetes manage stateless applications 

through replica sets, which specify the desired number of 

pod instances running concurrently. Applications should be 

managed as part of deployments rather than running as 

stand-alone pods. If an application supports multiple 

instances, they should be deployed at least two or more 

replicas to achieve high availability, redundancy and 

resilience. Utilizing parameters 

like maxSurge and maxUnavailable, Kubernetes ensures 

seamless rolling updates. maxSurge defines how many pods 

can be created above the desired count during updates, 

allowing workloads to scale temporarily, 

while maxUnavailable limits the number of pods that can be 

unavailable during updates, thereby guaranteeing minimum 

operational capacity. 

 

3.2 Resource request and limits 

Resource requests and limits in Kubernetes define the 

resource allocation boundaries for pods, ensuring 
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predictable performance and effective resource utilization 

within the cluster. Resource requests specify the minimum 

guaranteed resources (CPU and memory) a pod requires, 

guiding the scheduler in pod placement decisions. 

Conversely, resource limits define the maximum amount of 

resources a pod can consume, preventing excessive resource 

usage and draining the resources from other application 

pods. By configuring the limits and requests, Kubernetes 

automatically assigns pods to one of three Quality of 

Service (QoS) classes: 

 

• Guaranteed QoS: Pods are assigned to this class when 

their resource requests equal their resource limits. These 

types of pods have the highest resource availability 

assurances and lowest eviction risk under resource 

pressure. 

 

• Burstable QoS: Pods fall under this class when resource 

requests are specified but are lower than resource limits, 

allowing pods to temporarily consume additional 

resources if available. These pods have moderate resource 

assurances and are more susceptible to eviction compared 

to Guaranteed QoS pods. 

 

• Best-Effort QoS: Assigned to pods without specified 

resource requests or limits, offering minimal resource 

availability guarantees. Pods in this class are the first 

candidates for eviction during resource contention, 

presenting the highest risk of disruption. 

 

Configuring resource requests, limits is critical to ensuring 

workload and cluster stability and maximizing availability 

within Kubernetes clusters. 

 

3.3 Health Check Probes 

 

Kubernetes offers three essential health checks-Readiness, 

Liveness, and Startup probes-to monitor and maintain 

workload health: 

 

• Readiness Probes verify if pods are ready to serve 

requests. Pods that fail readiness checks are removed 

from service endpoints, preventing downtime or service 

disruption. 

 

• Liveness Probes determine if pods are responsive and 

functioning correctly. If a pod fails the liveness check, 

Kubernetes restarts it automatically, thus minimizing 

downtime. 

 

• Startup Probes manage the startup time of pods, ensuring 

slow-starting pods aren't prematurely restarted before 

becoming fully operational. 

 

Together, these probes proactively monitor pod health, 

automatically remediating issues, thereby ensuring 

continuous workload availability. In the following 

deployment manifest, the deployment is configured with a 

replica count of 3, a rolling update strategy with maxSurge 

and maxUnavailable set to 1 pod each, resource requests 

and limits, and readiness and liveness probes. 

 

 

apiVersion: apps/v1 

kind: Deployment 

metadata: 

  name: workload-layer-deployment 

  labels: 

    app: workload-layer 

spec: 

  replicas: 3 

  strategy: 

    type: RollingUpdate 

    rollingUpdate: 

      maxSurge: 1 

      maxUnavailable: 1 

  selector: 

    matchLabels: 

      app: workload-layer 

  template: 

    metadata: 

      labels: 

        app: workload-layer 

    spec: 

      containers: 

      - name: workload-layer 

        image: my-image:latest 

        ports: 

        - containerPort: 8080 

        resources: 

          requests: 

            memory: "256Mi" 

            cpu: "250m" 

          limits: 

            memory: "512Mi" 

            cpu: "500m" 

        readinessProbe: 

          httpGet: 

            path: /health 

            port: 8080 

          initialDelaySeconds: 10 

          periodSeconds: 5 

          timeoutSeconds: 2 

          successThreshold: 1 

          failureThreshold: 3 

        livenessProbe: 

          httpGet: 

            path: /health 

            port: 8080 

          initialDelaySeconds: 15 

          periodSeconds: 10 

          timeoutSeconds: 2 

          successThreshold: 1 

          failureThreshold: 3 
 

3.4 Tables Horizontal Pod Autoscaler (HPA) 

 

Deployment helps to maintain a certain number of replicas 

at all times. Often, applications experience increases in load 

that existing replicas cannot handle adequately. Hence, 

applications deployed as deployments should be configured 

with Horizontal Pod Autoscaler (HPA). HPA dynamically 

adjusts the number of pod replicas based on real-time 

resource utilization metrics such as CPU or memory usage. 
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This elasticity allows Kubernetes workloads to respond 

efficiently to variable demand, reducing the risk of 

downtime during sudden spikes in traffic. In the below code 

snippet, the HPA is configured on the deployment to scale 

from 3 to 10 replicas if average cpu utilization is over 75. 

 

apiVersion: autoscaling/v2 

kind: HorizontalPodAutoscaler 

metadata: 

  name: workload-layer-hpa 

  labels: 

    app: workload-layer 

spec: 

  scaleTargetRef: 

    apiVersion: apps/v1 

    kind: Deployment 

    name: workload-layer-deployment 

  minReplicas: 3 

  maxReplicas: 10 

  metrics: 

  - type: Resource 

    resource: 

      name: cpu 

      target: 

        type: Utilization 

        averageUtilization: 75 
 

3.5 Pod Disruption Budget (PDB): 

 

Pod Disruption Budgets (PDB) play a crucial role in 

maintaining application availability during voluntary 

disruptions, such as routine maintenance operations, cluster 

upgrades, or planned evictions. Technically, a PDB defines 

rules around how many pods of a particular deployment or 

StatefulSet can be safely disrupted simultaneously. 

Configure PDB by specifying either the minimum number 

of pods that must remain available (minAvailable) or the 

maximum number of pods that can be simultaneously 

unavailable (maxUnavailable) during disruptions. PDBs 

inform Kubernetes' eviction logic to respect these 

constraints, ensuring that critical workloads maintain a 

minimum operational capacity at all times. Without 

appropriately defined PDBs, routine maintenance or 

upgrades could inadvertently disrupt too many pods 

concurrently, leading to service degradation or downtime. 

 

4. Infrastructure Layer 
 

Achieving High Availability (HA) and resilience at the 

infrastructure layer within managed Kubernetes clusters 

requires meticulous cluster configuration, strategic node 

placement, appropriate use of third-party software, and a 

carefully designed cloud environment. Below, we detail 

essential infrastructure-level strategies and mechanisms that 

collectively ensure workload stability, cluster robustness, 

and continuous service availability: 

 

4.1 Taints and Toleration 

 

Kubernetes employs taints and tolerations as mechanisms to 

precisely control pod scheduling on designated nodes, 

thereby optimizing resource allocation and maintaining high 

cluster availability. Taints are applied to nodes, signifying 

specific conditions or dedicated roles, and preventing pods 

without corresponding tolerations from being scheduled on 

those nodes. Pods must explicitly declare tolerations 

matching node taints to be eligible for scheduling onto 

tainted nodes. 

 

This feature is particularly critical in managing nodes 

reserved for specialized workloads-such as GPU-intensive 

tasks, security-sensitive applications, or infrastructure-level 

components like monitoring and logging services. By using 

taints and tolerations, administrators can isolate critical or 

resource-intensive workloads onto dedicated infrastructure, 

significantly reducing the risk of performance degradation 

due to resource contention. 

 

4.2 Namespace Quotas 

 

Namespace quotas set constraints on resource consumption 

(CPU, memory, etc.) within individual namespaces. 

Implementing quotas prevents a workload in a single 

namespace from monopolizing cluster resources, which 

could compromise the availability of other applications-e.g., 

evicting other pods and, in certain situations, potentially 

bringing down the entire cluster. Quotas enable predictable 

resource allocation and capacity planning, ensuring 

balanced and stable cluster performance. 

 

4.3 Node Autoscaling 

 

Node autoscaling is not an inherent feature of Kubernetes 

itself. However, open-source solutions like Cluster 

Autoscaler [10] or Karpenter facilitate automatic node 

scaling based on workload demand or capacity constraints 

within the cluster. These autoscalers dynamically provision 

additional nodes when existing resources are insufficient for 

scheduling new workloads or when workloads experience 

increased demand. Conversely, they also scale down nodes 

during periods of reduced application load, optimizing 

resource utilization and minimizing unnecessary operational 

costs. 

 

In particular, advanced autoscaling tools such as Karpenter 

[9] individually assess workload resource requirements, 

proactively provisioning nodes tailored precisely to the 

needs of pending workloads. This targeted approach 

significantly reduces scheduling latency, enhances workload 

placement efficiency, and improves overall resource 

allocation. Node autoscaling thereby ensures consistent 

resource availability, maintaining optimal performance 

during fluctuating workloads and effectively preventing 

resource starvation, ultimately contributing to the robustness 

and availability of Kubernetes-managed applications. 

 

4.4 Cloud Multi-AZ: 

 

Deploying Kubernetes nodes across multiple availability 

zones (AZs) is foundational to achieving high availability at 

the infrastructure level. Multi-AZ deployments ensure that 

Kubernetes clusters are resilient against localized 

infrastructure failures, such as power outages, network 

disruptions, or hardware malfunctions within a single AZ. 
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Multi-AZ deployment involves evenly distributing nodes 

across distinct AZs within the cloud provider's region, thus 

ensuring that replicas of application pods are not co-located 

within a single failure domain. Kubernetes scheduling 

mechanisms like topology spread constraints help facilitate 

balanced distribution of pods across these nodes. 

Furthermore, we recommend using a min of three AZ in 

production. This approach mitigates the risk that a single 

AZ failure could affect all instances of critical workloads 

simultaneously. 

 

4.5 Larger Instance types 

 

Creating a cluster with larger instance types reduces cluster 

overhead, particularly in relation to interactions with the 

Kubernetes API server. Additionally, larger nodes 

accommodate more pods per node, thereby minimizing 

node-to-API server communication and reducing overall 

cluster management overhead. Consequently, this approach 

decreases the API server load, enhancing the stability and 

responsiveness of cluster management operations. 

 

5. Conclusion 
 

Achieving High Availability (HA) and resilience in 

managed Kubernetes clusters deployed in public cloud 

environments requires a systematic, multi-layered strategy. 

Throughout this paper, we have emphasized that 

Kubernetes, despite its robust architecture and widespread 

adoption, does not inherently guarantee high availability at 

either the workload or infrastructure layers. Responsibility 

for ensuring HA at these layers rests with cluster 

administrators and developers. 

 

In addressing both workload and infrastructure layers, 

critical Kubernetes mechanisms such as deployments, 

Horizontal Pod Autoscaler (HPA), Pod Disruption Budgets 

(PDBs), Pod Topology Spread Constraints, Pod Priority and 

Preemption, resource requests and limits, health check 

probes, Taints and Tolerations, Namespace Quotas, Node 

Autoscaling, Multi-AZ node distribution, and optimal node 

sizing collectively ensure application stability, operational 

continuity, and enhanced cluster resilience. Proper 

implementation of these strategies enables workloads to 

dynamically scale, gracefully handle failures, maintain 

performance, and mitigate infrastructure-level risks. 

 

Ultimately, the effective integration and rigorous 

implementation of these workload and infrastructure 

strategies form a robust framework for achieving 

comprehensive HA. As Kubernetes continues to dominate 

container orchestration, the importance of proactively 

addressing potential failure points through these strategies 

cannot be overstated. Adopting this holistic approach will 

empower organizations to sustain business continuity, 

minimize downtime, and reliably deliver resilient cloud-

native services. 
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