
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 3, March 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Framework for Kubernetes High Availability and

Resilience in Public Cloud

Harshavardhan Nerella1, Prasanna Sai Puvvada2, Praveen Borra3

1Independent Researcher,

Austin, Texas, USA

nerellaharshavardhan[at]outlook.com

2Independent Researcher,

Austin, Texas, USA

Prasannasaipuvvada[at]outlook.com

3Computer Science, Florida Atlantic University,

Boca Raton, Florida, USA

pborra[at]fau.edu

Abstract: High Availability (HA) and Resilience is crucial for applications to minimize downtime, ensure business continuity, and

maintain consistent reliability. Kubernetes, as the de facto container orchestration platform, has been widely adopted by startups,

enterprises, and government agencies. While Kubernetes does not offer HA and Resilience for clusters and workloads by default, it

provides several mechanisms that can be used in tandem to achieve them. Managed Kubernetes services (e.g., AWS EKS, Azure AKS,

Google GKE) offload the responsibility of HA and resiliency for the control plane, which serves as the “brain” of Kubernetes. However,

the responsibility for the data plane and workloads still lies with cluster administrators and developers. This paper proposes a multi-

layered approach to achieving HA and Resilience in managed Kubernetes clusters. We categorize the approach into two layers:

workload and infrastructure layer. For each layer, we outline a series of mechanisms that must be adopted to ensure HA and Resilience.

By applying these techniques sequentially at each layer, Kubernetes clusters can handle failures gracefully, scale efficiently, and

maintain availability under varying workloads and infrastructure disruptions.

Keywords: Kubernetes, High availability, Cloud Computing, Resilience

1. Introduction

In the rapidly evolving landscape of cloud-native

technologies, Kubernetes has emerged as the leading

platform for orchestrating containerized applications.

Developed by Google and released as an open-source

project in 2014, Kubernetes was inspired by Google’s

internal systems like Borg and Omega, which managed

large-scale workloads across vast data centers [1]. Its name,

derived from the Greek word for “helmsman” or “pilot,”

reflects its role in steering application deployment and

scaling. Over the past decade, Kubernetes has been widely

adopted by startups, enterprises, and government agencies,

becoming the cornerstone of modern infrastructure

management [2].

High Availability (HA) refers to a system’s ability to remain

operational and accessible even in the face of failures.

Achieving HA involves eliminating single points of failure,

implementing redundancy, and ensuring rapid failover

mechanisms. The significance of HA cannot be overstated,

as system downtimes can lead to substantial financial losses,

damage to reputation, and erosion of customer trust. The

absence of HA can have severe business repercussions. It is

estimated that IT outages can cost organizations over $700

billion lost revenue and year in North America [3].

The importance of High Availability (HA) and Resilience

becomes evident when examining significant outages that

caused severe financial and operational disruptions. In 2021,

Facebook (now Meta) faced a 5.5-hour outage, disrupting

3.5 billion users across Facebook, WhatsApp, and

Instagram, resulting in $60 million in lost advertising

revenue due to a misconfiguration error [4]. Similarly,

Fastly’s outage in 2021 caused major websites like Amazon,

Reddit, and BBC to go offline when a configuration change

triggered a system-wide bug, impacting 85% of its network

[4]. These incidents underscore the devastating financial

and reputational consequences of downtime, emphasizing

the critical need for robust HA strategies to mitigate failures

and ensure business continuity.

Kubernetes operates through a split architecture as shown in

the figure 1, comprising the control plane and the data

plane. The control plane serves as the cluster’s “brain,”

managing the overall state, scheduling workloads, and

orchestrating communication between components [5]. In

managed Kubernetes services-such as Amazon Elastic

Kubernetes Service (EKS), Azure Kubernetes Service

(AKS), and Google Kubernetes Engine (GKE)-cloud

providers assume responsibility for the control plane’s HA

and resiliency, ensuring its robustness and scalability [1].

Paper ID: SR250313194616 DOI: https://dx.doi.org/10.21275/SR250313194616 1705

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 3, March 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Figure 1: Kubernetes Architecture

Conversely, the data plane, encompassing the worker nodes

and the workloads, remains under the responsibility of

cluster administrators and developers. This delineation

necessitates implementation of effective HA strategies at

both the workload and infrastructure layers to ensure

seamless application performance.

This paper proposes a multi-layered approach to achieving

HA in managed Kubernetes clusters. We categorize the

approach into two layers: the workload layer and the

infrastructure layer. For each layer, we outline a series of

mechanisms that must be adopted to ensure HA and

Resilience. By applying these techniques sequentially at

each layer, Kubernetes clusters can handle failures

gracefully, scale efficiently, and maintain availability under

varying workloads and infrastructure disruptions.

2. Literature Review

According to Burns (2018), Kubernetes is fundamentally

designed for scalability and fault tolerance by allowing

multiple replicas of workloads to be distributed across

nodes [6]. However, Burns emphasizes that Kubernetes'

default configurations alone do not guarantee

comprehensive high availability, requiring additional

strategies at workload and infrastructure layers.

Luksa (2017), in "Kubernetes in Action," emphasizes the

inherent resiliency provided by managed control planes but

notes that responsibility for ensuring the HA of workloads

rests with cluster administrators [7].

Anemogiannis et al. (2025) proposed a novel anomaly

detection and prediction framework to enhance Kubernetes

resilience, leveraging graph-based representation and

machine learning techniques to dynamically identify and

manage anomalies within Kubernetes clusters. Their

approach integrates unsupervised models to define normal

operational states and supervised models for effective

anomaly detection, thereby offering actionable insights for

maintaining cluster availability [8].

While the aforementioned literature provides valuable

insights, a gap remains in synthesizing and clearly outlining

an integrated, multi-layered HA and Resilience strategy

specifically for managed Kubernetes clusters. Existing

studies often separately address workload or infrastructure

HA aspects, leaving administrators without comprehensive

guidance. This paper aims to bridge that gap by proposing a

structured, cohesive framework encompassing both

workload and infrastructure layers, designed specifically for

managed Kubernetes environments in public cloud

platforms.

3. Workload Layer
Achieving High Availability (HA) at the workload layer

within managed Kubernetes clusters involves a

comprehensive set of strategies to ensure continuous

application availability and resilience. Below, we detail

critical Kubernetes mechanisms that collectively provide

robust workload resiliency:

3.1 Deployment

Deployments in Kubernetes manage stateless applications

through replica sets, which specify the desired number of

pod instances running concurrently. Applications should be

managed as part of deployments rather than running as

stand-alone pods. If an application supports multiple

instances, they should be deployed at least two or more

replicas to achieve high availability, redundancy and

resilience. Utilizing parameters

like maxSurge and maxUnavailable, Kubernetes ensures

seamless rolling updates. maxSurge defines how many pods

can be created above the desired count during updates,

allowing workloads to scale temporarily,

while maxUnavailable limits the number of pods that can be

unavailable during updates, thereby guaranteeing minimum

operational capacity.

3.2 Resource request and limits

Resource requests and limits in Kubernetes define the

resource allocation boundaries for pods, ensuring

Paper ID: SR250313194616 DOI: https://dx.doi.org/10.21275/SR250313194616 1706

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 3, March 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

predictable performance and effective resource utilization

within the cluster. Resource requests specify the minimum

guaranteed resources (CPU and memory) a pod requires,

guiding the scheduler in pod placement decisions.

Conversely, resource limits define the maximum amount of

resources a pod can consume, preventing excessive resource

usage and draining the resources from other application

pods. By configuring the limits and requests, Kubernetes

automatically assigns pods to one of three Quality of

Service (QoS) classes:

• Guaranteed QoS: Pods are assigned to this class when

their resource requests equal their resource limits. These

types of pods have the highest resource availability

assurances and lowest eviction risk under resource

pressure.

• Burstable QoS: Pods fall under this class when resource

requests are specified but are lower than resource limits,

allowing pods to temporarily consume additional

resources if available. These pods have moderate resource

assurances and are more susceptible to eviction compared

to Guaranteed QoS pods.

• Best-Effort QoS: Assigned to pods without specified

resource requests or limits, offering minimal resource

availability guarantees. Pods in this class are the first

candidates for eviction during resource contention,

presenting the highest risk of disruption.

Configuring resource requests, limits is critical to ensuring

workload and cluster stability and maximizing availability

within Kubernetes clusters.

3.3 Health Check Probes

Kubernetes offers three essential health checks-Readiness,

Liveness, and Startup probes-to monitor and maintain

workload health:

• Readiness Probes verify if pods are ready to serve

requests. Pods that fail readiness checks are removed

from service endpoints, preventing downtime or service

disruption.

• Liveness Probes determine if pods are responsive and

functioning correctly. If a pod fails the liveness check,

Kubernetes restarts it automatically, thus minimizing

downtime.

• Startup Probes manage the startup time of pods, ensuring

slow-starting pods aren't prematurely restarted before

becoming fully operational.

Together, these probes proactively monitor pod health,

automatically remediating issues, thereby ensuring

continuous workload availability. In the following

deployment manifest, the deployment is configured with a

replica count of 3, a rolling update strategy with maxSurge

and maxUnavailable set to 1 pod each, resource requests

and limits, and readiness and liveness probes.

apiVersion: apps/v1

kind: Deployment

metadata:

 name: workload-layer-deployment

 labels:

 app: workload-layer

spec:

 replicas: 3

 strategy:

 type: RollingUpdate

 rollingUpdate:

 maxSurge: 1

 maxUnavailable: 1

 selector:

 matchLabels:

 app: workload-layer

 template:

 metadata:

 labels:

 app: workload-layer

 spec:

 containers:

 - name: workload-layer

 image: my-image:latest

 ports:

 - containerPort: 8080

 resources:

 requests:

 memory: "256Mi"

 cpu: "250m"

 limits:

 memory: "512Mi"

 cpu: "500m"

 readinessProbe:

 httpGet:

 path: /health

 port: 8080

 initialDelaySeconds: 10

 periodSeconds: 5

 timeoutSeconds: 2

 successThreshold: 1

 failureThreshold: 3

 livenessProbe:

 httpGet:

 path: /health

 port: 8080

 initialDelaySeconds: 15

 periodSeconds: 10

 timeoutSeconds: 2

 successThreshold: 1

 failureThreshold: 3

3.4 Tables Horizontal Pod Autoscaler (HPA)

Deployment helps to maintain a certain number of replicas

at all times. Often, applications experience increases in load

that existing replicas cannot handle adequately. Hence,

applications deployed as deployments should be configured

with Horizontal Pod Autoscaler (HPA). HPA dynamically

adjusts the number of pod replicas based on real-time

resource utilization metrics such as CPU or memory usage.

Paper ID: SR250313194616 DOI: https://dx.doi.org/10.21275/SR250313194616 1707

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 3, March 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

This elasticity allows Kubernetes workloads to respond

efficiently to variable demand, reducing the risk of

downtime during sudden spikes in traffic. In the below code

snippet, the HPA is configured on the deployment to scale

from 3 to 10 replicas if average cpu utilization is over 75.

apiVersion: autoscaling/v2

kind: HorizontalPodAutoscaler

metadata:

 name: workload-layer-hpa

 labels:

 app: workload-layer

spec:

 scaleTargetRef:

 apiVersion: apps/v1

 kind: Deployment

 name: workload-layer-deployment

 minReplicas: 3

 maxReplicas: 10

 metrics:

 - type: Resource

 resource:

 name: cpu

 target:

 type: Utilization

 averageUtilization: 75

3.5 Pod Disruption Budget (PDB):

Pod Disruption Budgets (PDB) play a crucial role in

maintaining application availability during voluntary

disruptions, such as routine maintenance operations, cluster

upgrades, or planned evictions. Technically, a PDB defines

rules around how many pods of a particular deployment or

StatefulSet can be safely disrupted simultaneously.

Configure PDB by specifying either the minimum number

of pods that must remain available (minAvailable) or the

maximum number of pods that can be simultaneously

unavailable (maxUnavailable) during disruptions. PDBs

inform Kubernetes' eviction logic to respect these

constraints, ensuring that critical workloads maintain a

minimum operational capacity at all times. Without

appropriately defined PDBs, routine maintenance or

upgrades could inadvertently disrupt too many pods

concurrently, leading to service degradation or downtime.

4. Infrastructure Layer

Achieving High Availability (HA) and resilience at the

infrastructure layer within managed Kubernetes clusters

requires meticulous cluster configuration, strategic node

placement, appropriate use of third-party software, and a

carefully designed cloud environment. Below, we detail

essential infrastructure-level strategies and mechanisms that

collectively ensure workload stability, cluster robustness,

and continuous service availability:

4.1 Taints and Toleration

Kubernetes employs taints and tolerations as mechanisms to

precisely control pod scheduling on designated nodes,

thereby optimizing resource allocation and maintaining high

cluster availability. Taints are applied to nodes, signifying

specific conditions or dedicated roles, and preventing pods

without corresponding tolerations from being scheduled on

those nodes. Pods must explicitly declare tolerations

matching node taints to be eligible for scheduling onto

tainted nodes.

This feature is particularly critical in managing nodes

reserved for specialized workloads-such as GPU-intensive

tasks, security-sensitive applications, or infrastructure-level

components like monitoring and logging services. By using

taints and tolerations, administrators can isolate critical or

resource-intensive workloads onto dedicated infrastructure,

significantly reducing the risk of performance degradation

due to resource contention.

4.2 Namespace Quotas

Namespace quotas set constraints on resource consumption

(CPU, memory, etc.) within individual namespaces.

Implementing quotas prevents a workload in a single

namespace from monopolizing cluster resources, which

could compromise the availability of other applications-e.g.,

evicting other pods and, in certain situations, potentially

bringing down the entire cluster. Quotas enable predictable

resource allocation and capacity planning, ensuring

balanced and stable cluster performance.

4.3 Node Autoscaling

Node autoscaling is not an inherent feature of Kubernetes

itself. However, open-source solutions like Cluster

Autoscaler [10] or Karpenter facilitate automatic node

scaling based on workload demand or capacity constraints

within the cluster. These autoscalers dynamically provision

additional nodes when existing resources are insufficient for

scheduling new workloads or when workloads experience

increased demand. Conversely, they also scale down nodes

during periods of reduced application load, optimizing

resource utilization and minimizing unnecessary operational

costs.

In particular, advanced autoscaling tools such as Karpenter

[9] individually assess workload resource requirements,

proactively provisioning nodes tailored precisely to the

needs of pending workloads. This targeted approach

significantly reduces scheduling latency, enhances workload

placement efficiency, and improves overall resource

allocation. Node autoscaling thereby ensures consistent

resource availability, maintaining optimal performance

during fluctuating workloads and effectively preventing

resource starvation, ultimately contributing to the robustness

and availability of Kubernetes-managed applications.

4.4 Cloud Multi-AZ:

Deploying Kubernetes nodes across multiple availability

zones (AZs) is foundational to achieving high availability at

the infrastructure level. Multi-AZ deployments ensure that

Kubernetes clusters are resilient against localized

infrastructure failures, such as power outages, network

disruptions, or hardware malfunctions within a single AZ.

Paper ID: SR250313194616 DOI: https://dx.doi.org/10.21275/SR250313194616 1708

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 3, March 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Multi-AZ deployment involves evenly distributing nodes

across distinct AZs within the cloud provider's region, thus

ensuring that replicas of application pods are not co-located

within a single failure domain. Kubernetes scheduling

mechanisms like topology spread constraints help facilitate

balanced distribution of pods across these nodes.

Furthermore, we recommend using a min of three AZ in

production. This approach mitigates the risk that a single

AZ failure could affect all instances of critical workloads

simultaneously.

4.5 Larger Instance types

Creating a cluster with larger instance types reduces cluster

overhead, particularly in relation to interactions with the

Kubernetes API server. Additionally, larger nodes

accommodate more pods per node, thereby minimizing

node-to-API server communication and reducing overall

cluster management overhead. Consequently, this approach

decreases the API server load, enhancing the stability and

responsiveness of cluster management operations.

5. Conclusion

Achieving High Availability (HA) and resilience in

managed Kubernetes clusters deployed in public cloud

environments requires a systematic, multi-layered strategy.

Throughout this paper, we have emphasized that

Kubernetes, despite its robust architecture and widespread

adoption, does not inherently guarantee high availability at

either the workload or infrastructure layers. Responsibility

for ensuring HA at these layers rests with cluster

administrators and developers.

In addressing both workload and infrastructure layers,

critical Kubernetes mechanisms such as deployments,

Horizontal Pod Autoscaler (HPA), Pod Disruption Budgets

(PDBs), Pod Topology Spread Constraints, Pod Priority and

Preemption, resource requests and limits, health check

probes, Taints and Tolerations, Namespace Quotas, Node

Autoscaling, Multi-AZ node distribution, and optimal node

sizing collectively ensure application stability, operational

continuity, and enhanced cluster resilience. Proper

implementation of these strategies enables workloads to

dynamically scale, gracefully handle failures, maintain

performance, and mitigate infrastructure-level risks.

Ultimately, the effective integration and rigorous

implementation of these workload and infrastructure

strategies form a robust framework for achieving

comprehensive HA. As Kubernetes continues to dominate

container orchestration, the importance of proactively

addressing potential failure points through these strategies

cannot be overstated. Adopting this holistic approach will

empower organizations to sustain business continuity,

minimize downtime, and reliably deliver resilient cloud-

native services.

References

[1] IBM, “The History of Kubernetes.” [Online].

Available:

https://www.ibm.com/think/topics/kubernetes-history

[2] Kubernetes Blog, “10 Years of Kubernetes,” Jun. 6,

2024. [Online]. Available:

https://kubernetes.io/blog/2024/06/06/10-years-of-

kubernetes/

[3] Insights for Professionals, “The Real Cost of IT

Outages & Disruptions.” [Online]. Available:

https://www.insightsforprofessionals.com/it/leadership

/the-real-cost-of-it-outages-disruptions

[4] Insights for Professionals, “Famous Business

Outages.” [Online]. Available:

https://www.insightsforprofessionals.com/it/leadership

/famous-business-outages

[5] Wikipedia, “Kubernetes.” [Online]. Available:

https://en.wikipedia.org/wiki/Kubernetes

[6] B. Burns, Designing Distributed Systems: Patterns and

Paradigms for Scalable, Reliable Services. Sebastopol,

CA: O’Reilly Media, 2018. [Online]. Available:

https://www.amazon.com/Designing-Distributed-

Systems-Paradigms-Scalable/dp/1491983647

[7] M. Luksa, Kubernetes in Action. Shelter Island, NY:

Manning Publications Co., 2017. [Online]. Available:

https://www.manning.com/books/kubernetes-in-action

[8] V. Anemogiannis, B. Andreou, K. Myrtollari, K.

Panagidi, and S. Hadjiefthymiades, “Enhancing

Kubernetes Resilience through Anomaly Detection

and Prediction,” arXiv preprint, arXiv:2503.14114,

2025. [Online]. Available:

https://arxiv.org/abs/2503.14114

[9] Karpenter Documentation. [Online]. Available:

https://karpenter.sh/docs/

[10] Kubernetes Autoscaler GitHub Repository. [Online].

Available: https://github.com/kubernetes/autoscaler

[11] Learnk8s, “How to Choose the Right Node Size for

Kubernetes.” [Online]. Available:

https://learnk8s.io/kubernetes-node-size

Paper ID: SR250313194616 DOI: https://dx.doi.org/10.21275/SR250313194616 1709

http://www.ijsr.net/

