International Journal of Science and Research (IJSR) ISSN: 2319-7064 Impact Factor 2024: 7.101

A Study of Fixed Point for Two Continuous Random Operators in 2-Hilbert Space

A. S. Saluja

Department of Mathematics, Institute for Excellence in Higher Education, Bhopal, M. P, India Email: drassaluja[at]gmail.com

Abstract: In this paper, we construct a sequence of measurable functions and examine its convergence to the common random fixed point of two continuous random operators defined on a non-empty closed subset of a separable 2-Hilbert space. To obtain the random fixed point of these operators, we employ a rational inequality and the parallelogram law.

2020 Mathematical Sciences Classification: 54H25, 47H10.

Keywords: Separable 2-Hilbert Space, Random operators, Measurable function, Common random fixed point.

1. Introduction

In recent years, the investigation of random fixed points has gained significant interest, with several recent studies in this area being referenced in [7, 14]. In this work, we construct a sequence of measurable functions and analyze its convergence towards the unique random fixed point shared by two continuous random operators, which are defined on a non-empty closed subset of a separable Hilbert space. To obtain the random fixed point for these two operators, we employ a rational inequality and utilize the parallelogram law. In this paper, (Ω, Σ) represents a measurable space consisting of the set Ω and the sigma-algebra Σ of subsets of Ω . The symbol H denotes a separable 2-Hilbert space, while C refers to a non-empty closed subset of H.

2. Preliminaries

Definition 2.1. A function $f: \Omega \to C$ is said to be measurable if $f^{-1}(B \cap C) \in \Sigma$ for every Borel subset *B* of *H*. **Definition 2.2.** A function $F: \Omega \times C \to C$ is said to be a random operator if $F(., x): \Omega \to C$ is measurable for every $x \in C$.

Definition 2.3. A measurable function $g: \Omega \to C$ is said to be a random fixed point of the random operator $F: \Omega \times C \to C$ if F(t, g(t)) = g(t) for all $t \in \Omega$.

Definition 2.4. A random operator $F: \Omega \times C \rightarrow C$ is said to be continuous if for fixed $t \in \Omega$, $F(t, .): C \rightarrow C$ is continuous.

Condition (A). Two mappings $P, Q: C \rightarrow C$, where C is a non-empty closed subset of a Hilbert space H, is said to satisfy condition (A) if

 $\begin{aligned} \|Px - Qy, t\|^{2} &\leq a_{1} \|x - y, t\|^{2} + a_{2} \left[\|x - Px, t\|^{2} + \|y - Qy, t\|^{2} \right] + a_{3} \frac{\|y - Qy, t\|^{2} [1 + \|x - Px, t\|^{2}]}{1 + \|x - y, t\|^{2}} \end{aligned}$

for each x, y \in C, a_1, a_2 being positive real numbers such that $0 < a_1 + a_2 + a_3 < \frac{1}{2}$

3. Main Result

Theorem 3.1: Let C be a non-empty closed subset of a separable 2-Hilbert space H. Let P and Q be two continuous random operators defined on C such that for $t \in \Omega$, P (*t*,.), Q

(*t*,.): $C \rightarrow C$ satisfy condition (A). Then P and Q have a common unique random fixed point in C.

Proof: We define a sequence of functions $\{g_n\}$ as $g_0 \in C$ is arbitrary measurable function for $t \in \Omega$ and n = 0, 1, 2, 3...

$$g_{2n+1}(t) = P(t, g_{2n}(t)), g_{2n+2}(t) = Q(t, g_{2n+1}(t)) \dots$$

(3.1.1)

If $g_{2n}(t) = g_{2n+1}(t) = g_{2n+2}(t)$ for $t \in \Omega$ for some n then we see that $g_{2n}(t)$ a random fixed point of P and Q. So, we assume that no two consecutive terms of sequence $\{gn\}$ are equal.

For $t \in \Omega$, $||g_{2n+1}(t) - g_{2n+2}(t), a||^2$ $\|P(t, g_{2n}(t)) -$ Q (t, $g_{2n+1}(t)$), $a \parallel^2$ $\leq a_{I} \|g_{2n}(t) - g_{2n+1}(t), a\|^{2}$ $+a_{2}[||g_{2n}(t) - P(t, g_{2n}(t)), a||^{2} + ||g_{2n+1}(t) -$ Q (t, $g_{2n+1}(t)$), $a \|^2$] + $a_3 \frac{\|g_{2n+1}(t) - Q(t, g_{2n+1}(t)), a\|^2 [1 + \|g_{2n}(t) - P(t, g_{2n}(t)), a\|^2]}{\|g_{2n+1}(t) - P(t, g_{2n}(t)), a\|^2}$ $= a_{l} ||g_{2n}(t) - g_{2n+1}(t), a||^{2}$ $= a_{l} ||g_{2n}(t) - g_{2n+1}(t), a||^{2}$ $a_2[||g_{2n}(t) - g_{2n+1}(t)), a||^2 + ||g_{2n+1}(t) - g_{2n+1}(t)| = 0$ + $g_{2n+2}(t), a \|^2$] + $a_3 \frac{\|g_{2n+1}(t) - g_{2n+2}(t) a\|^2 [1 + \|g_{2n}(t) - g_{2n+1}(t), a\|^2]}{\|g_{2n+1}(t) - g_{2n+2}(t) \|^2}$ $1 + \|g_{2n}(t) - g_{2n+1}(t), a\|^2$ $(a_1 + a_2) ||g_{2n}(t) - g_{2n+1}(t), a||^2 + (a_2 + a_2)$ = a_3) $||g_{2n+1}(t) - g_{2n+2}(t) a||^2$ $\Rightarrow (1 - a_2 + a_3) \|g_{2n+1}(t) - g_{2n+2}(t) a\|^2 \leq (a_1 + a_2) \|g_{2n+1}(t) - g_{2n+2}(t) a\|^2 \leq (a_1 + a_2) \|g_{2n+1}(t) - g_{2n+2}(t) a\|^2$ a_2) $||g_{2n}(t) - g_{2n+1}(t), a||^2$ $\Rightarrow \|g_{2n+1}(t) - g_{2n+2}(t) a\|^2 \le K \|g_{2n}(t) - g_{2n+1}(t), a\|^2$ Where, $K = \frac{(a_l + a_2)}{(l - a_2 - a_3)} < 1 \dots (3.1.2)$

In general,

 $\begin{aligned} \|g_n(t) - g_{n+1}(t) a\|^2 &\leq K \|g_{n-1}(t) - g_n(t), a\|^2 \\ \Rightarrow \|g_n(t) - g_{n+1}(t) a\| &\leq K^n \|g_{n-1}(t) - g_n(t), a\| \text{ for } t \in \Omega \end{aligned}$

Now, we shall prove that for $t \in \Omega$, $\{g_n(t)\}\}$ is a Cauchy sequence.

For every position integer n, we have

 $\|g_n(t) - g_{n+p}(t) a\| = \|g_n(t) - g_{n+1}(t) - g_{n+2}(t) - \dots - g_{n+p-1}(t) - g_{n+p}(t), a\|$

Volume 14 Issue 3, March 2025 Fully Refereed | Open Access | Double Blind Peer Reviewed Journal www.ijsr.net

For all $t \in \Omega$, $\{gn(t)\}$ is a Cauchy sequence. for this for every position integer i we have, for $t \in \Omega$.

 $\| gn(t) - gn + p(t), a \| = \| gn(t) - gn + 1(t) + \dots + gn + p - 1(t) + -gn + p(t), a \|$

$$\leq \|gn(t) - gn+1(t), a\| + \|gn+1(t) - gn+2(t), a\| + ...$$

$$+ \|gn+p-1(t) - gn+p(t), a\| \\ \leq [K^n + K^{n+1} + ... + K^{n+p-1}] \|g0(t) - g1(t), a\| \\ = K^n [1 + K + K^2 + ... + K^{p-1}] \|g0(t) - g1(t), a\| \\ = \frac{K^n}{l-K} \|g0(t) - g1(t), a\|, \text{ for all } t \in \Omega$$

As $n \to \infty$, $||gn(t) - gn + p(t), a|| \to 0$. It follows that for all $t \in \Omega$, $\{gn(t)\}$ is a Cauchy sequence and hence is convergent in 2-Hilbert Space H.

Existence of random fixed point: for all $t \in \Omega$,

Let $gn(t) \rightarrow g(t)$ as $n \rightarrow \infty \dots (3.1.3)$ Since C is closed and g is a function from C to C.

By Parallelogram law, we have $\begin{aligned} \|g(t) - Q(t, g(t)), a\|^2 &= \|g(t) - g_{2n+1}(t) + g_{2n+1}(t) - Q(t, g(t)), a\|^2 \\ &\leq 2\|g(t) - g_{2n+1}(t), a\|^2 + 2\|g_{2n+1}(t) - Q(t, g(t)), a\|^2 \\ &= 2\|g(t) - g_{2n+1}(t), a\|^2 + 2\|P(t, g_{2n}(t)) - Q(t, g(t)), a\|^2 \\ &\leq 2\{\|g(t) - g_{2n+1}(t), a\|^2 + a_1\|g_{2n}(t) - g(t), a\|^2 \\ &+ a_2[\|g_{2n}(t) - P(t, g_{2n}(t)), a\|^2 + \|g(t) - Q(t, g(t)), a\|^2] \\ &+ a_3 \frac{\|g(t) - Q(t, g(t)), a\|^2 [1 + \|g_{2n}(t) - P(t, g_{2n}(t)), a\|^2]}{1 + \|g_{2n}(t) - g(t), a\|^2} \} \end{aligned}$

As $\{g2n(t)\}$ and $\{g2n+1(t)\}$ are sub sequences of $\{gn(t)\}$, hence as $n \to \infty$, $\{g2n(t)\} \to g(t)$ and $\{g2n+1(t)\} \to g(t)$.

Therefore, as
$$n \to \infty$$
,
 $\|g(t) - Q(t, g(t)), a\|^2 \leq 2\{\|g(t) - g(t), a\|^2 + a_l\|g(t) - g(t), a\|^2 + a_2[\|g(t) - g(t), a\|^2] + \|g(t) - Q(t, g(t)), a\|^2] + a_3 \frac{\|g(t) - Q(t, g(t)), a\|^2 [1 + \|g(t) - g(t), a\|^2]}{1 + \|g(t) - g(t), a\|^2}$
 $\Rightarrow \|g(t) - Q(t, g(t)), a\|^2 \leq 2(a_2 + a_3) \|g(t) - Q(t, g(t)), a\|^2$
 $\Rightarrow (1 - 2a_2 - 2a_3) \|g(t) - Q(t, g(t)), a\|^2 \leq 0$
 $\Rightarrow (1 - 2a_2 - 2a_3) \|g(t) - Q(t, g(t)), a\|^2 = 0$ (as $2(a_2 + a_3) < 1$)

This implies that Q (t, g (t)) = g (t) for all $t \in \Omega$, Similarly, P (t, g (t)) = g (t) for all $t \in \Omega$

Again, If S: $\Omega \times C \rightarrow C$ be a continuous random operator on a non-empty subset C of a Separable 2-Hilbert space H, then for any measurable function f: $\Omega \rightarrow C$, the function g (t) = S (t, f (t) h (t) is also measurable [9].

It follows from the construction of $\{gn(t)\}$ (by (3.1.1)) and the above consideration that $\{gn(t)\}$ is a sequence of measurable function. This fact shows that g: $\Omega \rightarrow C$ is a common random fixed point of P and Q. This completes the proof.

References

- Abed, S. S., Ajeel, Y. J., and Alsaidy, S. K. "Results on quasi contraction random operators", J. International Journal of Science and Research, 6 (3): 607 – 610 (2017).
- [2] Beg, I. and Ahahzad, N., Random approximations and random fixed-point theorems, *J. Appl. Math. Stochastic Anal.*, 7 (2): 145–150, 1994.
- [3] Bharucha-Reid. A. T., Fixed point theorems in probabilistic analysis, Bull. Amer. Math. Soc., 82, 611-645 (1996).
- [4] Bharucha-Reid. A. T., Random, Integral equations Academic Press, New York, 1972.
- [5] Choudhary, B. S. and Ray, M., Convergence of an iteration leading to a solution of a random operator equation, *J. Appl. Math. Stochastic Anal.*, 12 (2): 161–168, 1999.
- [6] Choudhary, B. S. and Upadhyay, A., An iteration leading to random solutions and fixed point of operators, *Soochow J. Math.*, 25 (4): 395–400, 1999.
- [7] Choudhary, B. S., A common unique fixed-point theorem for two random operators in Hilbert space, *IJMMS.*, 32 (3): 177–182, 2002.
- [8] Hans. P, Random fixed-point theorems, Transactions of the first Prague Conference on Information Theory, Statistical Decision Functions, Random Process, 105 – 125 (1957).
- [9] Himmelberg, C. J., Measurable relations, *Fund Math*, 87: 53–72, 1975.
- [10] Nair, Smita and Shrivastava. Shalu, Fixed point theorem for Hilbert space, *Jour. Pure Math.22*, 33-37 (2005).
- [11] Nashine. Hemant kumar, existence of common random fixed point and random best approximation for non-commuting random operators, Bulletin of the Institute of Mathematics Vol.5 No.1, pp.25-40 (2010).
- [12] Pagey, S. S and Malviya. Neeraj, A Common Unique Random Fixed-Point Theorem for rational inequality in Hilbert Space, Int. Journal of Math. Analysis, Vol.4, no.3, 133 – 141 (2010).
- [13] Regan, D. O., Fixed points and random fixed points for weakly inward approximable maps, proceedings of the American Mathematical Society 126 No.10, 3045-3053 (1998).
- [14] Rhoades, B. E., Iteration to obtain random solutions and fixed points of operators in uniformly convex Banach spaces, *Soochow Journal of Mathematics*, 27 (4) (2001), 401-404.
- [15] Telci, M. and Tas, K., On some non-expensive type mappings and fixed points, *Indian J. Appl. Pure Math.*, 24: 145–149, 1993.
- [16] Yusra J. A., Osamah H. M. and Halah, Q. H., Some common random fixed-point theorems of quasi contraction random operators in metric spaces and random well posed, Sci. Int. (Lahore), 32 (5), 557-560, 2020.

Volume 14 Issue 3, March 2025 Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net