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Abstract: In this paper, we construct a sequence of measurable functions and examine its convergence to the common random fixed 

point of two continuous random operators defined on a non-empty closed subset of a separable 2-Hilbert space. To obtain the random 

fixed point of these operators, we employ a rational inequality and the parallelogram law.  
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1. Introduction 
 

In recent years, the investigation of random fixed points has 

gained significant interest, with several recent studies in this 

area being referenced in [7, 14]. In this work, we construct a 

sequence of measurable functions and analyze its 

convergence towards the unique random fixed point shared 

by two continuous random operators, which are defined on 

a non-empty closed subset of a separable Hilbert space. To 

obtain the random fixed point for these two operators, we 

employ a rational inequality and utilize the parallelogram 

law. In this paper, (Ω, Σ) represents a measurable space 

consisting of the set Ω and the sigma-algebra Σ of subsets of 

Ω. The symbol H denotes a separable 2-Hilbert space, while 

C refers to a non-empty closed subset of H.  

 

2. Preliminaries 
 

Definition 2.1. A function f: Ω → C is said to be measurable 

if 𝑓−1 (𝐵 ∩ 𝐶) ∈ Σ for every Borel subset B of H. Definition 

2.2. A function F: Ω×C → C is said to be a random operator 

if F (., x): Ω → C is measurable for every 𝑥 ∈ 𝐶.  

 

Definition 2.3. A measurable function g: Ω → C is said to 

be a random fixed point of the random operator F: Ω × C → 

C if F (t, g (t)) = g (t) for all 𝑡 ∈ Ω.  

 

Definition 2.4. A random operator F: Ω×C → C is said to 

be continuous if for fixed 𝑡 ∈ Ω, F (t,.): C → C is continuous.  

 

Condition (A). Two mappings P, Q: C → C, where C is a 

non-empty closed subset of a Hilbert space H, is said to 

satisfy condition (A) if 

‖𝑃𝑥 − 𝑄𝑦, 𝑡‖2 ≤ 𝑎1‖𝑥 − 𝑦, 𝑡‖2 + 𝑎2 [‖𝑥 − 𝑃𝑥, 𝑡‖2 +  ‖𝑦 −

𝑄𝑦, 𝑡‖2 ] + 𝑎3

‖𝑦−𝑄𝑦,𝑡‖2[1+ ‖𝑥−𝑃𝑥,𝑡‖2]

1+ ‖𝑥−𝑦,𝑡‖2   

for each x, y  C, 𝑎1, 𝑎2 being positive real numbers such 

that 0 < 𝑎1+ 𝑎2 + 𝑎3 < 
1

2
 

 

3. Main Result 
 

Theorem 3.1: Let C be a non-empty closed subset of a 

separable 2-Hilbert space H. Let P and Q be two continuous 

random operators defined on C such that for 𝑡 𝜖 Ω, P (𝑡,.), Q 

(𝑡,.): 𝐶 → 𝐶 satisfy condition (A). Then P and Q have a 

common unique random fixed point in C.  

 

Proof: We define a sequence of functions {𝑔𝑛} 𝑎𝑠 𝑔0  C is 

arbitrary measurable function for t   and n = 0, 1, 2, 3. . . 

. . . .  

 𝑔2𝑛+1(𝑡) = P (t, 𝑔2𝑛 (𝑡)), 𝑔2𝑛+2(𝑡) = Q (t, 𝑔2𝑛+1 (𝑡)) … 

(3.1.1)  

 

If 𝑔2𝑛(𝑡) = 𝑔2𝑛+1(𝑡) = 𝑔2𝑛+2(𝑡) for t   for some n then 

we see that 𝑔2𝑛(𝑡) a random fixed point of P and Q. So, we 

assume that no two consecutive terms of sequence {𝑔𝑛} are 

equal.  

For 𝑡 𝜖 Ω,  

 ‖𝑔2𝑛+1(𝑡) − 𝑔2𝑛+2(𝑡), 𝑎 ‖2 = ‖P (t, 𝑔2𝑛 (𝑡))  −
Q (t,  𝑔2𝑛+1 (𝑡)), 𝑎 ‖2 

 ≤ 𝑎1‖𝑔2𝑛(𝑡) − 𝑔2𝑛+1(𝑡), 𝑎‖2  

 +𝑎2[‖𝑔2𝑛 (𝑡)  − P (t,  𝑔2𝑛 (𝑡)), 𝑎‖2 + ‖ 𝑔2𝑛+1 (𝑡)  −
Q (t,  𝑔2𝑛+1 (𝑡)), 𝑎‖2 ]  

 + 𝑎3

‖𝑔2𝑛+1(𝑡)−Q (t, 𝑔2𝑛+1 (𝑡)),𝑎‖2[1+ ‖𝑔2𝑛 (𝑡) −P (t, 𝑔2𝑛 (𝑡)),𝑎‖2]

1+ ‖𝑔2𝑛(𝑡)−𝑔2𝑛+1(𝑡),𝑎‖2  

 = 𝑎1‖𝑔2𝑛(𝑡) − 𝑔2𝑛+1(𝑡), 𝑎‖2  

 + 𝑎2[‖𝑔2𝑛 (𝑡)  − 𝑔2𝑛+1 (𝑡)), 𝑎‖2 + ‖ 𝑔2𝑛+1(𝑡) −
𝑔2𝑛+2(𝑡), 𝑎‖2 ]  

 + 𝑎3

‖𝑔2𝑛+1(𝑡)−𝑔2𝑛+2(𝑡) 𝑎‖2[1+ ‖𝑔2𝑛 (𝑡) −𝑔2𝑛+1(𝑡),𝑎‖2]

1+ ‖𝑔2𝑛(𝑡)−𝑔2𝑛+1(𝑡),𝑎‖2  

 =  (𝑎1 + 𝑎2) ‖𝑔2𝑛(𝑡) − 𝑔2𝑛+1(𝑡), 𝑎‖2  +   (𝑎2 +
𝑎3) ‖𝑔2𝑛+1(𝑡) − 𝑔2𝑛+2(𝑡) 𝑎‖2 

  (1 − 𝑎2 + 𝑎3) ‖𝑔2𝑛+1(𝑡) − 𝑔2𝑛+2(𝑡) 𝑎‖2 ≤  (𝑎1 +
𝑎2) ‖𝑔2𝑛(𝑡) − 𝑔2𝑛+1(𝑡), 𝑎‖2 

 ‖𝑔2𝑛+1(𝑡) − 𝑔2𝑛+2(𝑡) 𝑎‖2 ≤ 𝐾‖𝑔2𝑛(𝑡) − 𝑔2𝑛+1(𝑡), 𝑎‖2 

 Where, K = 
 (𝑎1+𝑎2) 

 (1−𝑎2−𝑎3) 
 < 1 … (3.1.2)  

 

In general,  

 ‖𝑔𝑛(𝑡) − 𝑔𝑛+1(𝑡) 𝑎‖2 ≤ 𝐾‖𝑔𝑛−1(𝑡) − 𝑔𝑛(𝑡), 𝑎‖2  

 ‖𝑔𝑛(𝑡) − 𝑔𝑛+1(𝑡) 𝑎‖ ≤ 𝐾𝑛‖𝑔𝑛−1(𝑡) − 𝑔𝑛(𝑡), 𝑎‖ for t  

  

 

Now, we shall prove that for t  , {𝑔𝑛(𝑡)}) } is a Cauchy 

sequence.  

For every position integer n, we have 

‖𝑔𝑛(𝑡) − 𝑔𝑛+𝑝(𝑡) 𝑎‖ = ‖𝑔𝑛(𝑡) − 𝑔𝑛+1(𝑡) −  𝑔𝑛+2(𝑡) −

. . . . . . −𝑔𝑛+𝑝−1(𝑡)  − 𝑔𝑛+𝑝(𝑡), 𝑎‖ 
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For all 𝑡 𝜖 Ω, {𝑔𝑛 (𝑡) } is a Cauchy sequence. for this for 

every position integer i we have, for 𝑡 𝜖 Ω.  

 ∥ 𝑔𝑛 (𝑡) − 𝑔𝑛+𝑝 (𝑡), 𝑎 ∥ = ∥ 𝑔𝑛 (𝑡) − 𝑔𝑛+1 (𝑡) + ⋯ + 

𝑔𝑛+𝑝−1 (𝑡) + −𝑔𝑛+𝑝 (𝑡), 𝑎 ∥ 

 

 ≤ ∥ 𝑔𝑛 (𝑡) − 𝑔𝑛+1 (𝑡), 𝑎 ∥ + ∥ 𝑔𝑛+1 (𝑡) – 𝑔𝑛+2 (𝑡), 𝑎 ∥ +. . 

. + ∥ 𝑔𝑛+p-1 (𝑡) − 𝑔𝑛+p (𝑡), 𝑎 ∥ 

 ≤ [𝐾𝑛 + 𝐾𝑛+1+. . . + 𝐾𝑛+𝑝−1] ∥𝑔0 (𝑡) − 𝑔1 (𝑡), 𝑎∥ 

 = 𝐾𝑛 [1 + 𝐾 + 𝐾2+. . . + 𝐾𝑝−1] ∥𝑔0 (𝑡) − 𝑔1 (𝑡), 𝑎∥ 

 = 
𝐾𝑛

1−𝐾
 ∥𝑔0 (𝑡) − 𝑔1 (𝑡), 𝑎∥, for all 𝑡 𝜖 Ω 

As n → , ∥𝑔n (𝑡) – 𝑔n+p (𝑡), 𝑎∥ → 0. It follows that for all 

𝑡 𝜖 Ω, {𝑔𝑛 (𝑡) } is a Cauchy sequence and hence is 

convergent in 2-Hilbert Space H.  

 

Existence of random fixed point: for all 𝑡 𝜖 Ω,  

Let 𝑔𝑛 (𝑡) → g (t) as n →  … (3.1.3)  

Since C is closed and g is a function from C to C.  

 

By Parallelogram law, we have  

‖𝑔(𝑡) − 𝑄 (𝑡, 𝑔(𝑡)), 𝑎‖2 = ‖𝑔(𝑡) −  𝑔2𝑛+1(𝑡) +
𝑔2𝑛+1(𝑡)  −  𝑄 (𝑡, 𝑔(𝑡)), 𝑎‖2 

≤ 2‖𝑔(𝑡) −  𝑔2𝑛+1(𝑡), 𝑎‖2 + 2‖𝑔2𝑛+1(𝑡)  −
 𝑄 (𝑡, 𝑔(𝑡)), 𝑎‖2 

= 2‖𝑔(𝑡) −  𝑔2𝑛+1(𝑡), 𝑎‖2 + 2‖P (t, 𝑔2𝑛 (𝑡))  −
 𝑄 (𝑡, 𝑔(𝑡)), 𝑎‖2  

≤  2{‖𝑔(𝑡) −  𝑔2𝑛+1(𝑡), 𝑎‖2 +  𝑎1‖𝑔2𝑛 (𝑡)  − 𝑔(𝑡), 𝑎‖2  

 + 𝑎2[‖ 𝑔2𝑛 (𝑡)  − P (t,  𝑔2𝑛 (𝑡)), 𝑎‖2 + ‖𝑔 (𝑡)  −
𝑄 (𝑡, 𝑔(𝑡)), 𝑎‖2 ]  

 + 𝑎3

‖𝑔(𝑡)−𝑄 (𝑡,𝑔(𝑡)),𝑎‖2[1+ ‖𝑔2𝑛(𝑡)−P(t, 𝑔2𝑛(𝑡)),𝑎‖
2

]

1+ ‖𝑔2𝑛(𝑡)−𝑔(𝑡),𝑎‖2 } 

 

As {𝑔2𝑛 (𝑡) } and {𝑔2𝑛+1 (𝑡) } are sub sequences of {𝑔𝑛 

(𝑡) }, hence as n → , {𝑔2𝑛 (𝑡) } → g (t) and {𝑔2𝑛+1 (𝑡) } 

→ g (t).  

 

Therefore, as n → ,  
‖𝑔(𝑡) − 𝑄 (𝑡, 𝑔(𝑡)), 𝑎‖2 ≤  2{‖𝑔(𝑡) −  𝑔(𝑡), 𝑎‖2 +
 𝑎1‖𝑔(𝑡) −  𝑔(𝑡), 𝑎‖2  

 +𝑎2[‖ 𝑔 (𝑡)  − 𝑔 (𝑡), 𝑎‖2 +  ‖𝑔 (𝑡)  − 𝑄 (𝑡, 𝑔(𝑡)), 𝑎‖2 ]  

 + 𝑎3

‖𝑔(𝑡)−𝑄 (𝑡,𝑔(𝑡)),𝑎‖2[1+ ‖𝑔(𝑡)−𝑔 (𝑡),𝑎‖2]

1+ ‖𝑔(𝑡)−𝑔(𝑡),𝑎‖2  

 ‖𝑔(𝑡) − 𝑄 (𝑡, 𝑔(𝑡)), 𝑎‖2 ≤ 2 (𝑎2+ 𝑎3) ‖𝑔 (𝑡)  −
𝑄 (𝑡, 𝑔(𝑡)), 𝑎‖2  

 (1-2𝑎2-2𝑎3) ‖𝑔(𝑡) − 𝑄 (𝑡, 𝑔(𝑡)), 𝑎‖2 ≤ 0 

 (1-2𝑎2-2𝑎3) ‖𝑔(𝑡) − 𝑄 (𝑡, 𝑔(𝑡)), 𝑎‖2 = 0 (as 2 (𝑎2+ 

𝑎3) < 1)  

 

This implies that 

Q (t, g (t)) = g (t) for all 𝑡 𝜖 Ω,  

Similarly, P (t, g (t)) = g (t) for all 𝑡 𝜖 Ω 

 

Again, If S:   C → C be a continuous random operator on 

a non-empty subset C of a Separable 2-Hilbert space H, then 

for any measurable function f:  → C, the function g (t) = S 

(t, f (t) h (t) is also measurable [9].  

 

It follows from the construction of {𝑔𝑛 (𝑡) } (𝑏𝑦 (3.1.1)) and 

the above consideration that {𝑔𝑛 (𝑡) } is a sequence of 

measurable function. This fact shows that g: Ω → 𝐶 is a 

common random fixed point of P and Q. This completes the 

proof.  
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