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Abstract: Cloud computing capabilities are extended to the network's edge with fog computing, which offers low-latency processing and 

storage, making it essential for Internet of Things (IoT) applications. Numerous network and computational factors, however, can 

significantly influence a substantial impact on fog computing systems' performance. The main objective of this study is to rank and validate 

the most important elements that affect fog computing performance, particularly when it comes to Internet of Things applications. We 

investigate five key variables: Packet Loss Rate (PLR), Queue Time, Latency, Channel Utilization, and Throughput, in terms of their 

influence on the overall performance of fog nodes and IoT systems. Through a comprehensive evaluation using both theoretical models 

and experimental data, we establish a ranking for these variables based on their direct impact on fog computing performance. The analysis 

shows that Packet Loss Rate emerges as the most critical factor, as higher packet loss can severely degrade the reliability of communication 

between fog nodes and IoT devices. This is followed by Queue Time, which represents the delay incurred in processing incoming data 

requests; longer queue times contribute to increased system latencies and reduced throughput. Latency itself, although related to the 

aforementioned factors, ranks third as it directly affects the responsiveness of real-time applications. Channel Utilization, a measure of 

how effectively the communication channel is used, ranks fourth, influencing the overall network capacity and bandwidth efficiency. 

Lastly, Throughput is ranked fifth, as it is closely tied to the network's ability to transmit data efficiently but has a secondary effect 

compared to other variables in terms of performance degradation. These rankings were validated through consultation with industry 

experts, confirming the crucial roles that PLR and Queue Time play in optimizing fog computing performance. These findings provide 

valuable insights for researchers and practitioners seeking to improve the design and implementation of fog computing systems, 

highlighting the need for targeted optimizations in the most impactful variables to achieve enhanced performance in IoT environments. 
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1. Introduction  
 

Fog computing is essential in the quickly developing Internet 

of Things space because it enables real-time data processing 

at the network's edge, reducing latency and enhancing 

application performance  (Zhou L. L., 2021). Key 

performance indicators have a significant impact on the fog 

layer's effectiveness. To make sure fog computing systems 

can effectively handle and analyze data from a variety of IoT 

devices, it is essential to recognize and modify these features    

(Wang Y. L., 2024). Understanding these factors not only 

enhances specific IoT applications but also boosts overall 

reliability and scalability of fog computing systems in a data-

intensive setting. Figure 1 below provides a summary of the 

variables which determine fog computing performance. 

 
Figure 1: Variables determining fog computing 

performance 

 

Fog layer extends the concepts of cloud computing to the 

network edge by distributing processing resources over 

numerous nodes, including routers, switches, and local 

servers (Amin, 2022). By processing data closer to its source, 

this distribution aims to improve data efficiency and decrease 

reaction times. Even with these developments, latency issues 

still exist, which affects fog computing systems' effectiveness 

and performance. Optimizing these systems requires an 

understanding of the different variables and how they affect 

fog performance. 
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2. Related Work  
 

Numerous studies have examined the effectiveness of fog 

computing in Internet of Things (IoT) applications, with a 

number of them concentrating on the effects of different 

network and system characteristics. Since packet loss has a 

direct impact on distributed systems' dependability and 

quality of service, numerous studies have looked into the 

function of packet loss rate (PLR) in fog computing. Zhang et 

al. (2022), for example, investigated the connection between 

PLR and fog node communication and showed that higher 

packet loss causes noticeable delays and performance 

deterioration in real-time Internet of Things applications. In a 

similar vein, queue time has been found to be a significant 

determinant of fog computing performance.  

 

Liu et al. (2023) emphasizes how crucial it is to optimize 

queue management in order to decrease processing delays and 

enhance reaction times in fog nodes, especially for latency-

sensitive Internet of Things operations like industrial 

automation or autonomous driving.  

 

In fog computing, latency has been thoroughly investigated, 

with an emphasis on lowering end-to-end delays in edge 

computing settings. In order to satisfy the demanding real-

time requirements of several IoT applications, low-latency 

processing in fog nodes is essential, according to research by 

Kumar et al. (2024), which examines how excessive latency 

impairs the responsiveness of IoT devices. The function of 

channel utilization has also been investigated; Wang et al.'s 

study from 2023, highlights how it affects network efficiency 

and how available bandwidth is distributed between fog nodes 

and IoT devices.  

 

Research by Zhao et al. (2022) shows that high throughput 

guarantees adequate data transfer capabilities for fog systems, 

but its efficacy is frequently dependent on the optimization of 

other factors like PLR and Queue Time. Throughput has been 

linked to overall system performance. Few studies provide a 

comprehensive ranking and validation of these variables 

specific to fog computing in IoT, despite the fact that these 

individual elements have been researched separately. This 

emphasizes the necessity of integrated approaches to 

performance improvement. 

 

3. Methodology  
 

In this work, we use the Random Forest Recursive Feature 

Elimination (RFE) technique to rank the important factors 

that affect fog computing performance in Internet of Things 

(IoT) applications. By facilitating edge processing in Internet 

of Things settings, fog computing creates additional 

difficulties with regard to resource management, latency, and 

network efficiency. Finding and ranking the most important 

performance metrics is essential for fog computing system 

optimization. Packet Loss Rate (PLR), Queue Time, Latency, 

Channel Utilization, and Throughput are among the 

characteristics taken into account in this work. Each of these 

elements has a major impact on how effective and efficient 

fog computing systems are overall in practical Internet of 

Things applications. 

 

We use Random Forest, an ensemble learning technique 

renowned for its resilience and capacity to manage intricate, 

high-dimensional datasets, to rank these variables. To 

determine feature importance, Random Forest constructs 

several decision trees, which is perfect for figuring out how 

much each variable contributes to a prediction model. We use 

the Recursive Feature Elimination (RFE) strategy, which 

iteratively removes the least significant features according to 

their effect on model performance, to improve this feature 

selection procedure. By lowering dimensionality, avoiding 

overfitting, and keeping only the most important variables, 

RFE contributes to increased model correctness. 

 

A synthetic dataset is created for this research in order to 

replicate IoT setups with different conditions for every 

variable. The dataset makes it possible to validate the ranking 

approach and conduct controlled experiments. We 

systematically determine the most important performance 

parameters that affect fog computing by combining RFE with 

Random Forest. The quantitative ranking of variables 

produced by this method can help guide future fog computing 

system optimization efforts, particularly in latency-sensitive 

Internet of Things applications. Figure 2 below shows the 

process flow in the ranking algorithm applied.  

 

 

 

 
Figure 2: Process flow for raking fog computing performance determinant variables 
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4. Results  
 

Table 1: Results for Ranking of variables using machine 

learning model (RF-RFE) 
Feature Rank 

Packet Loss Rate 1 

Queue Time (ms) 2 

Latency (ms) 3 

Channel Utilization 4 

Throughput (Mbps) 5 

 

Packet Loss Rate is prioritized first because it directly affects 

data integrity and reliability. High packet loss can lead to re-

transmissions and degraded application performance, making 

it critical to address for any fog computing application. Next, 

Latency is essential, as it measures the delay in data 

transmission. In fog computing, low latency is vital for real-

time applications, such as IoT devices, where even small 

delays can significantly affect performance. 

 

Queue Time follows closely, as it reflects the waiting time for 

data processing. Reducing queue time enhances system 

responsiveness, contributing to a better user experience and 

efficient resource utilization. Throughput (Mbps) ranks next, 

representing the data transfer rate. While high throughput is 

important, it is often influenced by the preceding factors, as 

high packet loss and latency can hinder overall throughput.  

 

Lastly, Channel Utilization measures bandwidth efficiency. 

Although important, its significance is generally derived from 

the other variables, making it the least critical in this specific 

context. This order ensures a comprehensive approach to 

optimizing fog computing performance. Response time was 

excluded as a performance variable because it overlaps with 

latency and queue time, which already capture essential 

delays in data processing and transmission. These variables 

provide more direct insights into the efficiency of data 

handling in fog environments. Additionally, response time 

may not offer unique advantages in specific contexts where 

real-time performance is paramount, as the emphasis shifts to 

metrics like packet loss and latency that significantly impact 

application quality. By focusing on these key indicators, 

researchers can streamline analysis and optimize system 

performance more effectively.  

 

Validation of variable ranking using industry experts. 

The study sampled 30 ICT experts with IOT-related 

Certifications. After the first expert is identified, a pervasive 

approach was used to link up the next expert in the industry.  

The necessary education back ground include IOT 

certification on the common IOT professional courses. This 

is because the IOT specialty is still in its early stages, and the 

specialists are not evenly distributed in the industries. Also, 

statistically, the variability level of the population is very low, 

therefore the sample size is considered sufficient to provide 

accurate and reliable estimates of population parameters, to 

minimize sampling errors, and detect meaningful effects or 

relationships with adequate statistical power. A pilot study 

was carried out by administering questionnaires to ten 

industry experts with a intention of testing the data collection 

tool for consistency. The Cronbach's alpha values was 

realized sing the following formula:  

α = (
k

k − 1
) (

sy2 − εsi
2

s2y
) 

= (6/5)((6.62-2.33)/6.62) 

= 0.8 

 

This confirms that the data collection instrument is reliable 

and therefore suitable for the study.  

 

Analysis of variable ranking by industry experts using 

Kendall’s coefficient of concordance 

There were a total of 35 respondents to the survey, slightly 

above the target of 30.  

 

 
Figure 2: Distributions of respondents by gender 

 

There was generally gender balance among the respondents, 

with 45.7% indicating male and female respectively.  8.6% of 

the respondents did not declare their gender as per figure 2 

above.  

 

 
Figure 3: Distribution of respondents by age 

 

Majority of the respondents were fairly young, where 71.4% 

being between 18-24 years. 2.9% were between 35-44 years 

of age, as indicated in figure 3 above.  
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Figure 4: Rating role of fog computing in IOT 

 

More than 93% of the respondents rated fog computing to play a significant role in IOT. The 6.3% were treated as outliers, as  

indicated in table 4 above.  

 

 
Figure 5: Organizations where respondents have trained IOT with 

 

28 of the 35 respondents have already undergone professional training on IOT, majority of whom have gone through Cisco 

professional training as indicated in figure 5 above.  

 

 
Figure 6: Overall ranking of variables. 

 

In a snapshot, there seems to be a consensus on ranking of the variable as displayed in figure 6 above. Detailed analysis reveals 

the ranking as indicated below. 
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Table 2: Summary of data collected from industry experts 

on variable raking. 

RSPD Latency 
Chanel 

Utilization 
Throughput 

Packet 

loss rate 

Queue 

time 

A 3 4 5 1 2 

B 3 4 5 1 2 

C 2 5 4 3 1 

D 3 4 5 1 2 

E 5 4 3 2 1 

F 3 5 4 1 2 

G 3 5 4 1 2 

H 3 4 5 1 2 

I 3 4 3 2 1 

J 3 4 5 2 2 

K 3 4 5 2 1 

L 4 3 5 1 2 

M 3 4 5 1 2 

N 3 4 5 1 2 

O 3 4 5 2 1 

P 3 4 5 1 2 

Q 3 5 4 1 2 

R 4 5 3 2 1 

S 3 4 5 1 2 

T 3 5 4 2 1 

U 3 4 5 2 1 

V 3 4 5 1 2 

W 1 3 5 3 2 

X 3 1 5 3 2 

Y 3 4 5 1 2 

Z 3 5 4 2 1 

AA 3 3 4 2 1 

AB 3 4 5 1 2 

AC 3 4 5 1 2 

 

Kendall’s Value W:  =0.728656361 

Chi square:    =84.52413793 

P value:    =0.0436568 

 

Kendall’s value (W) of 0.728656361 indicates moderate to 

strong agreement among the respondents. They are largely in 

agreement, but there is still some variation in how they rank 

the fog computing performance variables. This suggests that 

the rankings are fairly consistent, but not perfectly aligned. 

The p-value was computed to be 0.0436568. Since the p-value 

is less than 0.05, it indicates statistically significant agreement 

at the 5% level. This means that the observed level of 

agreement among the raters is unlikely to have occurred by 

random chance, and the rankings represent a real pattern of 

consensus. The Chi-square value is 84.52413793 for the 

ranking output. The relatively large Chi-square statistic 

supports the notion that the rankings show significant 

deviation from randomness. It indicates that the observed 

agreement is not due to chance, further confirming the 

statistical significance of the rankings. 

 

The moderate to strong agreement (W = 0.73) among the 

raters, along with the statistically significant p-value 

(0.0436568), suggests that the rankings of the fog computing 

performance variables are reliable and meaningful. The raters 

largely agree on which variables are more important for fog 

computing performance. Given the statistical significance of 

the agreement, the rankings of the fog computing variables 

(Latency, Channel Utilization, Throughput, Packet Loss Rate, 

and Queue Time) can be considered trustworthy. There is a 

strong pattern of consensus that the raters' rankings are not 

due to random chance. Since the ranking process shows 

statistical significance, these rankings can be used with more 

confidence in making decisions about the relative importance 

of the variables. However, the moderate strength of 

agreement (W = 0.73) also indicates that further refinement 

or clarification in the ranking process could strengthen the 

consensus further. 

 

5. Discussion  
 

To make sure that the system's design and operational 

priorities match practical applications, industry experts had to 

validate the ranking of fog computing performance variables. 

In addition to guaranteeing that the performance 

measurements are thorough and in line with industry 

demands, expert validation aids in fine-tuning the ranking of 

these variables according to their practical usefulness. 

 

A high degree of internal consistency among the experts who 

took part in the validation process is shown by the Cronbach's 

alpha value of 0.8. This implies that the respondents strongly 

agreed on the dependability and significance of the variables 

in determining fog computing performance, irrespective of 

their backgrounds. Generally speaking, a Cronbach's alpha of 

0.8 is regarded as a good threshold, indicating that the 

measurement instrument used to collect the experts' data 

yields reliable and consistent results. In fog computing, where 

several measures must cooperate to guarantee peak system 

performance, this consistency is essential. 

 

The findings are further validated by the demographic 

dispersion of the respondents. The results show a respectable 

gender diversity, with 45.7% of respondents being male and 

female (the remaining respondents did not specify their 

gender). This shows that the findings are reflective of a wide 

range of industry professionals. By ensuring that the results 

are not skewed by the viewpoint of one gender, gender 

diversity in expert validation can offer a more comprehensive 

understanding of the pertinent performance measures. 

Furthermore, the comparatively small proportion of 

responders (1.4%) in the 18–24 age range indicates that the 

majority of experts have substantial industry experience, 

giving their assessments and opinions additional weight.  

 

Additionally, fog computing was evaluated as significant in 

IoT by 93% of respondents, indicating that the industry as a 

whole recognizes its significance. This high degree of 

agreement not only highlights fog computing's increasing 

importance but also supports the widespread belief that 

improving its performance is essential to the effective 

deployment of IoT systems. Because fog computing is widely 

used in edge computing scenarios where latency, throughput, 

and response times are crucial, the expert validation process 

offers a crucial basis for giving these metrics top priority in 

operational and design models. 

 

The most important factors for fog computing performance 

can be identified with the assistance of expert evaluations. 

Response time, throughput, and latency are frequently seen as 

critical measures, particularly in Internet of Things settings 

where real-time data processing is crucial. Because they have 

a direct impact on the system's capacity to manage massive 

data volumes effectively, variables like queue time and packet 
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loss rate also aid in improving the system's performance 

assessment. Organizations can have a better understanding of 

how to prioritize these metrics in the design of fog computing 

systems that are responsive and efficient by validating these 

factors through expert feedback. 

 

Notably, 28 of the 35 respondents had received professional 

training in IoT, which greatly increases the validity and 

applicability of their responses. These professionals' 

assessments are extremely relevant for assessing important 

performance measures since they are knowledgeable about 

the requirements and difficulties of IoT systems and possess 

both theoretical and practical expertise.  

 

The specialists are skilled at comprehending how each of 

these factors impacts fog computing systems' total 

performance because of their training. For example, in real-

time IoT applications where rapid data processing is essential, 

latency and throughput are crucial. Likewise, to guarantee 

data integrity and reduce transmission delays, queue time and 

packet loss rate are crucial. The professionals assist in 

determining which performance aspects should be given 

priority in order to guarantee effective, scalable, and 

dependable fog computing systems in Internet of Things 

environments by validating the significance of these 

variables. This professional validation procedure yields 

useful information for fog computing deployment 

optimization. 

 

6. Conclusion 
 

This study ranked Packet Loss Rate, Queue Time, Latency, 

Channel Utilization, and Throughput as key determinants of 

fog computing performance in IoT applications, with Packet 

Loss Rate and Queue Time proving most critical. Validated 

by experts, these findings underscore the need to prioritize 

data reliability and processing delays in system design. While 

synthetic data provided a solid foundation, real-world testing 

remains a vital next step. These insights pave the way for 

more responsive and efficient IoT ecosystems 

 

7. Future Work  
 

Although industry experts' insights have verified the existing 

technique, large-scale, real-world IoT implementations will 

be necessary for additional validation. Future research will 

concentrate on improving the feature selection procedure, 

validating the model in a variety of use cases and situations, 

and expanding the rankings' usefulness for fog computing 

optimization in real-world settings.  
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