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Abstract: As a prerequisite for lending and the preservation of healthy portfolios, banks must estimate the Probability of Default (PD) 

correctly. There are multiple methods available to assess credit risk, however reliance on single predictive models, which is predominantly 

used, ignores the multifaceted aspects of credit risk. At the same time, the compliance of IFRS 9 has become a focal concern. It goes 

without saying that one of these regulations is the estimation of PD for the whole life of a credit contract, which presupposes the calculation 

of incremental PDs during the contract's life–the PD term structure. Accurate PD term structure forecasts are important for business 

planning within the boundaries of the firm's risk appetite and the ever-changing regulations. This paper focuses on the application of 

machine learning algorithms XGBoost and Random Boosting Forest (RBF) to enhance the accuracy of PD term structure forecasting. A 

profound assessment of results is carried out based on specified performance metrics, and the models are compared to the traditional 

paradigm. 
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1. Introduction 
 

Measurement of credit risk is required by financial institutions 

to loan portfolio management and their financial health. PD 

estimation is a key component, essential for the estimation of 

Expected Credit Loss (ECL), which financial institutions use 

to allocate capital and minimize risk. Financial institutions 

make loan loss provisions for absorbing expected losses from 

defaults or impairments, which are calculated as: 

 

𝐸𝐶𝐿 =  𝑃𝐷 ∗ EAD ∗ 𝐿𝐺𝐷      (1) 

 

Where, Expected Credit Loss (ECL) is a function of the 

Probability of Default (PD), Exposure at Default (EAD), and 

Loss Given Default (LGD), where EAD is the loan amount 

outstanding at default, and LGD is the percent loss in the event 

of default by the borrower. 

 

The IFRS 9 standard has introduced rigorous requirements for 

PD term structure modeling with the emphasis on demanding 

precise PD estimates over the entire term of financial 

contracts. Traditional models, although effective in certain 

instances, might not be entirely successful in capturing 

intricate relationships among different risk factors and credit 

defaults. Machine learning (ML) techniques provide new 

opportunities for enhancing PD estimation. This paper 

suggests a machine learning-driven strategy to PD term 

structure modeling with an emphasis on Gradient Boosted 

Trees (GBTs) and Deep Neural Networks (DNNs). They are 

contrasted with traditional Markov Chain models to determine 

their effectiveness in solving IFRS 9 requirements. 

 

2. Literature Review 
 

2.1 Traditional Methods for PD Modeling 

 

Other conventional PD modeling techniques such as logistic 

regression and Markov Chains have also been extensively 

applied to credit risk evaluation. Logistic regression remains 

very common due to its ease of interpretation and simplicity, 

which estimates the probability of default using linear 

associations among variables. It fails in handling non-linear 

behaviors and time-dependent data (Ohlson, 1980). Markov 

Chains, applied to describe the transitions between credit 

states through time, offer dynamic information but presume 

independence between states, making them less flexible 

(Jarrow et al., 1997). Although good at an earlier stage of 

regulation (e.g., Basel II), both techniques struggle with 

complicated, large-scale data. 

 

2.2 Modern Machine Learning Techniques 

 

Machine learning methods, such as Random Forests, 

XGBoost, and Deep Neural Networks (DNNs), have become 

prominent for their effective replacement of traditional 

modeling methods in addressing key shortcomings in 

predictive capability and simplicity in data. Random Forests 

are resistant to overfitting through the use of ensemble 

learning and are effective in describing non-linear 

relationships, which make them especially robust in broad 

applications (Breiman, 2001). XGBoost, through its gradient 

boosting methodology, enhances the predictability, 

particularly under imbalanced data scenarios—a common 

problem in PD modeling (Chen & Guestrin, 2016). On the 

other hand, DNNs are unrivaled for fine-grained patterns and 

non-linear relationships and are most appropriate for dealing 

with data complexity. Despite this, their significant resource-
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hungry and "black box" nature creates issues, particularly in 

intense stress banking and regulation environments (Heaton et 

al., 2017). Although these emerging methods significantly 

outperform standard models, their opaqueness and 

interpretation restricting nature detest mass uptake among 

regulators. 

 

2.3 Current Regulatory Practices: IFRS 9 

 

IFRS 9 accounting standard demands forward-looking 

estimation of PD in a lifetime expected credit loss framework. 

This needs models capable of predicting PD over the exposure 

life while being capable of incorporating macroeconomic 

projections. Markov Chains have been adjusted to meet the 

requirements but are unable to deal with complex, nonlinear 

relationships and rapidly changing economic conditions. 

Conversely, contemporary machine learning methods—i.e., 

Random Forest and XGBoost—have enhanced predictive 

performance through accurate capture of complex 

interdependencies and inclusion of macroeconomic factors 

(Pérez et al., 2019). Their capacity to adapt to evolving risk 

patterns renders them appropriate for compliance with IFRS 

9. Regulators, nevertheless, are circumspect due to 

transparency and interpretability of models concerns, issues 

that pose essential challenges to the extensive application of 

these sophisticated methods (ECB, 2019). 

 

3. Data 
 

Data for this research was collected from one of the Middle 

East based Bank. The dataset is approximately 12000 fixed-

rate mortgages originated from January 1, 2014 through Dec 

31, 2023. The Dataset contains two types of files, Loan-level 

origination files, and monthly loan performance on a subset of 

the fully amortizing 30-year fixed-rate mortgages. The dataset 

consists of a mix of time-variant and time-invariant features. 

Time-variant characteristics, e.g., the current balance, change 

over time during the duration of the loan, while time-invariant 

characteristics, e.g., the credit score of an individual, remain 

constant. The characteristics include heterogeneous factors 

related both to the financial contract and to the consumer but 

with some details being categorized. Every financial contract 

is linked with a particular consumer account, where there is 

one-to-one relationship between consumers and their 

accounts. A customer can have several contracts associated 

with a single account, such that a default on any single 

contract leads to defaults on all associated contracts. The data 

also contains external macroeconomic data from the 

International Monetary Fund (IMF) or the Economist 

Intelligence Unit (EIU) database, which has monthly updated 

features pertaining to the Middle East economic climate, 

therefore offering temporal contextual data relevant to the 

financial contracts. 

 

Table 1: The macroeconomic features used for this study 
Feature name Feature code 

Oil price MEOP 

Consumers purchase index (CPI) MECPI 

Real GDP growth MERGDPG 

Real interest rate (RIR) MERIR 

Unemployment MEUE 

Domestic credit growth MEDCG 

Central Government revenue as percentage of 

GDP 

MECGR 

Central Government expenditure as percentage of 

GDP 

MECGE 

 

4. Machine learning methods 
 

This section provides an overview of the machine learning 

techniques evaluated within this study. It talks on basic ideas 

in ensemble machine learning, including Random Forest and 

Boosting. 

 

4.1 Random Forests 

 

High prediction variance of models is a widespread problem 

in many modeling problems. A very successful strategy to 

overcome this problem is to build an ensemble of a large 

number of simple models, which are individually relatively 

weak learners. By combining their predictions, a more 

powerful model can be derived. A highly renowned ensemble 

technique is the random forest, in which the weak learners are 

decision trees that are made much stronger by bootstrap 

aggregation, or bagging. This section addresses the bagging 

technique, the structure of decision trees, and the overall idea 

of random forests. 

 

Bootstrap: Bootstrap aggregating, or bagging, is an essential 

element in the random forest model. However, the method is 

not specific to decision trees or random forests; it is a strategy 

that can be employed to decrease the variance of any learning 

model. Bagging works on the principle that the average of a 

set of observations reduces variance. Specifically, for a set of 

n independent observations X1….. Xn, with variance 𝜎2 we 

have that Var(X) = 𝜎2/n, where X is the mean. To reduce 

model variance, multiple training sets can be sampled, a 

model trained on each, and their average prediction computed. 

Since training data is typically scarce, it's typically not feasible 

to sample many different training sets. Therefore, one can 

create B bootstrapped training sets and fit a model 𝑓𝑏(𝑥) to 

both bootstrap samples of observations. As a result, the mean 

of the B predictions is calculated, which is the final model 

f*(x) [30]. That is, 

 

f ∗(x)  =  
1

B
  ∑  B

b=1  fb(x)        (2) 

 

Decision Tree: The simplest tree-based model is the decision 

tree, which divides the predictor space into a number of 

regions, assigning each observation to one of them. In these 

regions, predictions are usually in the form of the average 

response value for regression problems, or the mode for 

classification problems. These regions are characterized by 

data-driven decision-making criteria, which are binary 

partitions according to some predictors or features. Due to this 

binary nature, the decision-making criteria can be effectively 

represented as a binary tree. 

 

Figure 1 depicts a decision tree for a binary classification 

problem. The gray disc-shaped nodes are the internal nodes, 

where two decision rules based on the predictors 𝑥1 and 𝑥2 

are taken. The colored rectangular nodes, or leaves, are 

terminal nodes that produce the final prediction (𝑦^=1 or 

𝑦^=0) for observations within these particular regions. 

Paper ID: SR25412191705 DOI: https://dx.doi.org/10.21275/SR25412191705 1116 

http://www.ijsr.net/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

Impact Factor 2024: 7.101 

Volume 14 Issue 4, April 2025 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

 
Figure 1: An illustration of a decision tree for a binary 

classification problem 

 

4.2 Extreme Gradient Boosting 

One of the most popular techniques for improving the 

performance of decision trees is the technique known as 

boosting. Similar to bagging, boosting is a general technique 

that can be used with numerous models but is primarily 

applied to tree models. One of the most well-known 

applications of boosting in recent times has been the Extreme 

Gradient Boosting (XGBoost) algorithm. This chapter 

discusses the general foundations of boosting, which leads to 

an in-depth examination of XGBoost and its underlying 

algorithm. 

 

Boosting, like bagging, employs a multitude of decision trees, 

denoted as f1 to fn. Unlike the individually developed trees of 

a random forest, boosting develops trees sequentially, with 

each new tree developed based on knowledge from the prior 

ones. Unlike bootstrap sampling, boosting assaults the data by 

fitting trees to altered versions of the dataset. 

 

The notion behind boosting is to start with the first decision 

tree model and iteratively fit new trees to the residuals of the 

current model, using the residuals r as the response variable. 

The new fitted trees are added to the initial model, and the 

residuals are updated. The trees used in boosting are usually 

small, with few terminal nodes, as specified by the parameter 

d. This enables the model to gradually enhance its 

performance in its weak areas of performance. Moreover, the 

shrinkage parameter η or the learning rate further slows the 

process of fitting by diminishing the impact of newly added 

trees and thereby enabling more trees to be added for 

enhancing the model further. The process of boosting 

regression trees is outlined in Algorithm 3.2. 

 

Algorithm 3.2 Boosting procedure for regression trees. 

1. Set f(x) = 0 and r1 = y1 for all I in the training set 

2. Form a = 1, 2…., B, repeat: 

a) Fit a tree fb with d splits to the training data (X, r). 

b) Update f by adding a shrunken version of the new 

tee: 

𝑓(𝑥)
 

←  𝑓(𝑥)  +  𝑛𝑓𝑏(𝑥)        (3) 

c) Update the residuals,  

𝑟1 ← 𝑟1 − 𝑛𝑓𝑏(𝑥1)          (4) 
3. Return the boosted model, 

𝑓(𝑥)
 

←  ∑ 𝑛𝑓𝑏(𝑥)𝐵
𝑏=1            (5) 

5. Methodology 
 

5.1 Modeling Objective 

 

This study aims to predict the PD term structure for a specific 

contract at a fixed time horizon using a set of related features. 

Theoretically, the PD term structure complements a survival 

function, focusing on the probability of a consumer not 

“surviving” the contract. Formally, for contract i with features 

Xi at time t, the modeling objective is defined as 

 

    𝐘ˆ𝑖, 𝑡 =  1  −  𝑆ˆ(𝑡, 𝑥𝑖)                           (6) 

 

Where Sˆ(t,xi)  is the estimated survival function, and yˆi,t ∈ RT 

represents the estimated PD term structure T time steps ahead 

t + 1,t + 2,...,t + T. Here, yˆi,t ∈ [0,1]T., with the time horizon 

interpreted as the prediction horizon. 

 

5.2 Machine Learning Models 

 

5.1.1 Random Boosting Forest 

The model we refer to as RBF is, as the name suggests, a 

combination of the concepts random forest and boosting. The 

Random Boosting Forest model combines ensemble methods 

with gradient boosting to enhance prediction accuracy and 

reduce variance. The RBF consists of multiple XGBoost 

ensembles, each trained on randomly subsampled data to 

improve stability and reduce overfitting. In contrast to 

bootstrap sampling used in random forests, the RBF input data 

is instead randomly subsampled to each XGBoost ensemble. 

In Figure 5.2, the general RBF model architecture is depicted 

for b = 1, 2, . . . ,B ensembles, and some example training data 

xi = (xi1,xi2,...,xip)with p features and i = 1,2,...,n observations. 

Further, the model is trained in a Cox regression setting while 

its predictions is based on the Kaplan-Meier estimator. Firstly, 

we cover the training procedure of the RBF. We recall the Cox 

model, 

 

ℎ(𝑡, 𝑥𝑖)  =  ℎ0(𝑡) 𝑒𝑥𝑝(𝛽1𝑥𝑖1 + ···  + 𝛽𝑝𝑥𝑖𝑝)              (7)    

             

In the RBF, we exchange the linear predictor for an XGBoost 

ensemble. Thus, one ensemble is defined as 

 

ℎ(𝑏)(𝑡, 𝑋𝑖)  =  ℎ0
(𝑏)(𝑡)𝑇𝑏(𝑋𝑖)                     (8) 

 

where Tb is the bth XGBoost ensemble. Consequently, the full 

model becomes 

ℎ(∗)(𝑡, 𝑋𝑖)  =  
1

𝐵
∑ ℎ0

(𝑏)(𝑡)𝑇𝑏(𝑋𝑖)
𝐵

𝑏=1
             (9) 

 

Naturally, the RBF model is optimized with respect to the 

negative Cox partial log-likelihood, presented in Equation (3). 

 

Next, we discuss the prediction approach for the Random 

Boosting Forest (RBF). Given that a Cox regression model 

cannot directly illustrate the survival function, the Kaplan-

Meier estimator is employed at the leaves of the XGBoost 

ensembles. Specifically, the XGBoost ensembles predict the 

training data using their underlying Cox models. 

Subsequently, at each leaf node, a survival curve is estimated 

using the Kaplan-Meier estimator, based on the observations 
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assigned to that specific leaf node. Finally, the predictions 

from each ensemble are averaged to obtain a final prediction. 

 
Figure 2: The RBF model architecture. 

 

5.2.2. XGBoost 

XGBoost is used in this study as an advanced boosting 

algorithm that improves prediction performance by iteratively 

training decision trees on the residuals of the previous model. 

As the Kaplan-Meier estimator is nonparametric, predictions 

based solely on one ensemble would rely on relatively few 

observations at each leaf node, resulting in naturally unstable 

predictions with high variance. Therefore, by employing 

multiple parallel ensembles, the variance issue can be 

mitigated, thereby enhancing the predictive performance of 

the model. 

 

6. Model Implementation 
 

Here, the objective is to present the methodology with regards 

to the modeling approaches. 

 

The Random Boosting Forest (RBF) is built in five variations: 

four with the EW data sets and one with the LO data set. The 

process of building the RBFs includes two principal stages: 

 

Hyper parameter search on individual XGBoost ensembles: 

Every ensemble is tuned independently for every data set 

without aggregation. 

 

Tuning the number of boosted trees and parallel ensembles: 

The number of boosted trees for each XGBoost ensemble and 

the number of parallel ensembles for each RBF is optimized. 

 

The XGBoost ensembles are tuned on the negative Cox partial 

log-likelihood as in Equation 3. The split search algorithm, as 

described in Section 3.2, is based on a histogram-based 

method with 512 bins. Hyperparameters are searched using 

the Optuna framework over 25 trials. For every trial, at most 

250 boosted trees and an early stopping criterion of five trees 

are used to prevent overfitting. This parameter was chosen 

through initial experimentation. Hyperparameter search space 

is specified, including whether ranges are continuous or 

discrete, and for discrete ranges, the third parameter specifies 

step size. Specifically, minimum loss reduction is the 

threshold for further splitting a leaf node, and minimum child 

weight is the minimum total instance weight for further 

splitting. Once the hyper parameters of XGBoost are 

determined, the number of boosted trees in each ensemble is 

optimized by 5-fold cross-validation on the whole training 

data (with validation set). Then RBFs are constructed 

incrementally with parallel ensembles added to models. 

Parallel ensembles are limited to a maximum of 15, and an 

early stopping criterion of three ensembles, as determined by 

the Brier Score on the validation set. 

 

7. Model Evaluation 
 

The four necessary components of model performance are (1) 

point-in-time and average performance measures, (2) point-

in-time performance measures, (3) comparison of model 

predictions, and (4) feature importance. Included in the 

performance measures are CDAUC, C-Index, Brier Score, 

UBS, and CSM. Brier Score is used from the account 

perspective due to potential right-censorship, while UBS can 

be used for contracts as they are uncensored. 

 

To assess average performance measures, calculations are 

performed at every time step in the prediction horizon, and the 

optimal models are selected using an Adjusted Average 

Metric (AAM), where all measures are assigned an equal 

weight. Point-in-time measures investigate the performance of 

leading machine learning (ML) models at specific times in the 

prediction horizon. Model prediction comparison consists of 

a comparison plot between defaulting and non-defaulting 

predicted term structures for the top ML models. The feature 

importance analysis is performed using the top 30 most 

informative features through Shapley values across the top 

ML models. All this analysis is based on 2000 randomly 

sampled test observations in order to facilitate comparable 

analysis by model type. 

 

8. Results 
 

Table 2 presents the averaged performance metrics for all 

models. The RBFs excel in terms of Brier Score and CDAUC. 

 

Table 2: The averaged performance metrics, along with the 

Adjusted Average Metric (AAM). The Brier Score is 

abbreviated  
Metrics 

Model 
Data 

set 
CDAUC 

C-

Index 
BS UBS CSM AAM 

RBF 

LO 0.9240 0.8874 0.1042 0.1517 0.0039 0.3106 

EW3 0.9255 0.8860 0.1051 0.1446 0.0034 0.3115 

EW6 0.9245 0.8804 0.1051 0.1543 0.0021 0.3088 

EW9 0.9201 0.8887 0.1064 0.1325 0.0037 0.3135 

EW12 0.9258 0.8715 0.1086 0.1559 0.0016 0.3062 

 

Based on the Adjusted Average Metric (AAM), the top-

performing machine learning model is the RBF model, 

evaluated using the EW9 dataset. 
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9. Discussion 
 

Our analysis of feature importance in the RBF model shows 

that it relies on the same feature types, which means that the 

external features are redundant. There are also indications that 

there are models that are more complex than necessary. The 

findings imply that model preference should be model 

dependent. In account-level modeling, we suggest the RBF 

model due to its better performance. Despite the complexity 

of the RBF model's architecture and the resulting practical 

challenges in the application of its term structures, it is a 

genuine step forward in PD term structure modeling by the 

inclusion of state-of-the-art ML algorithms. This paper creates 

avenues for potential future research on new models in this 

class 

 

10. Conclusion 
 

This research illustrates that machine learning (ML) models 

are very strong at forecasting the term structures of PD and 

beating the baseline DHMC model in the Adjusted Average 

Metric (AAM). The more accurate ML models achieve high 

accuracy across the prediction horizon and particularly over 

longer time horizons, while the DHMC model tends to depend 

on naive forecasts. This indicates the paramount significance 

of the fusion of various features in predictive modeling 

approaches.  
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