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1. Introduction  
 
Let �� = {1, 2, 3, … , �} and �� be the partial one-to-one 
transformation semigroup on �� under composition of 
mappings. Then �� is an inverse semigroup (that is, for all 
� ∈ �� there exist a unique � ′ ∈ ��  such that � = ��′� 
and � ′ = �′��′). The importance of �� (more commonly 
known as the symmetric inverse semigroup or monoid) to 
inverse semigroup theory may be likened to that of the 
symmetric group �� to group theory. Every finite 
semigroup � is embeddable in ��. Let �� = {1, 2, … , �}. A 
(partial) transformation �: ��� � ⊆ ��  → �� � is said to 
be full or total if ��� � = ��; otherwise it is strictly 
partial. The height of � is ℎ(�) = |�� �|, the width or 
breadth of � is �(�) = |��� �|, the right(left) waist of � 
is ��(�) = max(�� �) [��(�) = min (�� �)], the 
collapse and fix of � are denoted by �(�) and �(�) and 
defined by  �(�) = |�(�)| = | ∪�∈�� � {����: |����| ≥
2|, �(�) = |�(�)| = |{� ∈ ��: �� = �}| respectively, 
where �� � is the image of � and ��� � is the domain of 
�. A transformation � ∈ ��  is said to be an isometry or 
distance-preserving if (∀ �, � ∈ ��� �) |� − �| =
|�� − ��|. It is well known that a partial transformation � 
is idempotent (�� = �) if and only if �� � = �(�). 
 
2. Methodology 
 
The methodology is: (i) listing the idempotent elements of 
the semigroup in Domain/Image of � and (ii) investigating 
and establishing its order as follows: Let ��� = {� ∈
��: (∀ �, � ∈ ��)|� − �| = |�� − ��|} be the 
subsemigroup of �� consisting of all partial isometries of 
�� for � = 1, 2, 3, 4, … .. then 
�(���) on �� = {1} has 2 elements i.e �1

1� and ∅. 
�(���) on �� = {1, 2} has 4 elements i.e 
�1 2

1 2� , �1
1� , �2

2� , ∅ with|�� �| = 2 
 
 
 
 
 
 
 

��� �|�� �  {1, 2} 
 {1, 2} �1 2

1 2� 

|�� �| = 1 
��� �|�� �  {1}  {2} 

 {1} �1
1�  

 {2}  �2
2� 

 
and ∅. �(���) on �� = {1, 2, 3} has 8 elements with: 

|�� �| = 3, 
��� �|�� �  {1, 2, 3} 

 {1, 2, 3} �1 2 3
1 2 3� 

  
|�� �| = 2, 

��� �|�� � {1, 2} {2, 3} {1, 3} 
{1, 2} �1 2

1 2�   

{2, 3}  �2 3
2 3�  

{1, 3}   �1 3
1 3� 

 
|�� �| = 1, 

��� �|�� � {1} {2} {3} 
{1} �1

1�   

{2}  �2
2�  

{3}   �3
3� 

 
and ∅. �(���) on �� = {1, 2, 3, 4} has 16 elements with: 

|�� �| = 4, 
��� �|�� � {1, 2, 3, 4} 
{1, 2, 3, 4} �1 2 3

1 2 3 44� 

 
|�� �| = 3, 

��� �|�� � {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} 
{1, 2, 3} �1 2 3

1 2 3�    

{1, 2, 4}  �1 2 4
1 2 4�   

{1, 3, 4}   �1 3 4
1 3 4�  

{2, 3, 4}    �2 3 4
2 3 4� 
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|�� �| = 2, 
��� �|�� � {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4} 

{1, 2} �1 2
1 2�      

{1, 3}  �1 3
1 3�     

{1, 4}   �1 4
1 4�    

{2, 3}    �2 3
2 3�   

{2, 4}     �2 4
2 4�  

{3, 4}      �3 4
3 4�

 
|�� �| = 1, 

��� �|�� � {1} {2} {3} {4} 
{1} �1

1�    

{2}  �2
2�   

{3}   �3
3�  

{4}    �4
4� 

 
and ∅. �(���) on �� = {1, 2, 3, 4, 5} has 32 elements, �(���) on 
�� = {1, 2, 3, 4, 5, 6} has 64 elements and �(���) on �� =
{1, 2, 3, 4, 5, 6, 7} has 128 elements. The tables of elements of 
�(���), �(���) and �(���) were constructed the same way. 
 
3. Results 
 
The results are shown in the triangle of numbers below 
and we prove a theorem that establishes the order of the 
set of Idempotent elements of the semi group. 
  

Triangle of numbers F(n;Im �) 
n/Im � 0 1 2 3 4 5 6 7 � �(�; �� �)

= |�(���)| 
0 1        1 
1 1 1       2 
2 1 2 1      4 
3 1 3 3 1     8 
4 1 4 6 4 1    16 
5 1 5 10 10 5 1   32 
6 1 6 15 20 15 6 1  64 
7 1 7 21 35 35 21 7 1 128 

 
Theorem: Let �(���) be the idempotent elements of ��� . 
Then |�(���)| = 2�. Proof. �(���) is a subsemigroup of 
�� because |�(���)| = |�(��)|. In ��, idempotents are 
partial identities i.e �� = �1 2 …

1 2 … ���. Also an element 
� is idempotent i.e �� = � if �(�) = �� �(= ��� �). 
Idempotents are like the power set which are subset of a 
set e.g if |�| = � then |�(�)| = 2�. It is also obvious and 
without loss of generality that idempotents are special 
case of binomial theorem which says ∑ ��

�� ������ =�
���

(� + �)� = 2� if � = � = 1. i.e ∑ ��
�� = 2�. =>�

���

 |�(���)| = 2�. 
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