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1. Introduction 
 

A topological space typically comprises a set accompanied 

by a specific topological structure that defines its open sets. 

This well-established framework allows for the 

demonstration of various properties and theorems within 

Mathematics. However, an intriguing question arises when 

considering the implications of replacing traditional 

topology with a more generalised structure. The exploration 

of this concept began in 1963 when mathematician Lev 

Levin introduced the ideas of semi-open sets and semi-

continuity within topological spaces. This innovative 

approach sparked interest among researchers, driving them 

to investigate weaker forms of open sets and ultimately 

leading to the development of a broader, more generalised 

framework for understanding topological properties. The 

ongoing research in this area continues to unveil new 

insights into the nature of continuity and convergence, thus 

expanding the horizons of topological theory. This paper is 

an attempt to review topological spaces. 

 

For example, in 1965, O. N. Jasted introduced the notation 

of α-open space; in 1982, A. S. Mashhour introduced pre-

open sets, and R. A. Mahmoud introduced β-open sets. 

Finally, in 1997, A. Csaszar generalised these new open sets 

by introducing the concept of ϒ-open sets. He defined the 

concept of generalised topology in 2002. A subset µ of the 

power set of a nonempty set X is called generalised topology 

on X if µ has the following properties 

1) 𝜙 ∈µ. 

2) Any union of elements of µ belongs to µ. 

 

Generalised topological space is an important generalisation 

of topological spaces that helps to prove many interesting 

results. This paper aims to introduce the concept of 

generalized topological spaces. In generalised topology, the 

role of an open set is given to µ-open sets, where µ is a 

generalised topology, so this concept belongs rather to the 

theory of generalized topological spaces instead of topology 

in the strict sense. 

 

 

 

Generalised Topological Spaces 

The concept of topological space is often generalised by 

replacing open sets with other kind of subsets. In many 

cases, a generalised topology is a subset. 𝜇  of P(X) that 

contains 𝜙 and any union of elements of 𝜇 belongs to 𝜇. 

 

Definition Let X be any set, a subset  𝜇 of P(X) is called 

generalised topology on X if 𝜇 has the following properties 

1) 𝜙 ∈ 𝜇 

2) Any union of elements of 𝜇 belongs to 𝜇. 

 

The pair (X,𝜇) is called generalised topological space. 

 

Remark: In generalised topology, we replace the family of 

open sets with larger ones. In general, every topology is a 

generalised topology. The union of all elements of 𝜇 will be 

denoted by M𝜇. 

 

Example 

Let X={1, 2, 3} and 𝜇 = {𝜙, 𝑋, {1, 2}, {1, 3}, {2, 3 }} are 

generalised topology on X. 

 

Definition Let 𝐵 ⊂ 𝑃(𝑋) and 𝜙 ∈ 𝐵, then B is called base 

for 𝜇 if {{∪ Bʹ: Bʹ ⊂ 𝐵}=𝜇.we also say that 𝜇 is generated by  

B. 

 

Definition: A generalised topology is called strong if 𝑋 ∈ 𝜇. 
 

Example 

Indiscrete topology is a strong topology since the only 

elements are 𝜙 and X. 

 

Definition A generalised topological space is called a quasi-

topological space if 𝜇 is closed under finite intersections. 

 

Example 

Let X=ℝ and 𝜇={𝜙, {1}, {1,2}, {1,2,3}} 

 

Definition A subset B of X is called μ-open if B∈ 𝜇. 

 

Definition A subset B of X is called. 𝜇-closed if 𝑋 − 𝐵 ∈ 𝜇. 
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Example 

Let 𝑋 = 𝑰𝒏 = {1,2,3, … . . 𝑛}  define  𝜇 = {𝜙, 𝑋}, ⋃{𝐴 ⊆
In: A = In − {i}, i = 1, 2, 3 … . }  then 𝜇  is a generalised 

topology and 𝜇 also strong. Here the only 𝜇-closed subsets 

are 𝜙 and X and singleton subsets of In. Then  𝜇 is called the 

generalised topology and (X,  𝜇 ) is called co-singleton 

generalised topological space. 

 

Definition For 𝐵 ⊂ 𝑋 let I(B)is the largest 𝜇-open subset of 

𝐵 or I(B) is the union of all 𝜇an open subset of B, then I(B) 

is called the interior of B. 

 

Definition Let C(B) be the smallest 𝜇- closed subset, which 

contains B and C(B), is called the closure of B. 

 

Definition: A point x∈X is called a 𝜇-cluster point of B if 

𝑈 ∩ (B − {X}) ≠ 𝜙 for each 𝑈 ∈ 𝜇 with 𝑥 ∈ 𝑈.the set of all 

𝜇-cluster points of B is denoted by d(B). The collection of 

all 𝜇-open sets that contains a point x is denoted by 𝜇x. that 

is 𝜇𝑥 = {U: U ∈ 𝜇, 𝑥 ∈ 𝑈}. 

 

Proposition 

Let B be a subset of a space X. Then the following holds 

1) 𝐼(𝐵) ⊆ 𝐵 ⊆ 𝐶(𝐵) 

2) 𝐼(𝐼(𝐵)) = 𝐼(𝐵) and 𝐶(𝐶(𝐵)) = 𝐶(𝐵) 
3) 𝐼𝑓 𝐵ʹ ⊆ 𝐵 𝑡ℎ𝑒𝑛 𝐼(𝐵ʹ) ⊆ 𝐼(𝐵) and 𝐶(𝐵ʹ) ⊆ 𝐶(𝐵)  and 

𝑑(𝐵ʹ) ⊆ 𝑑(𝐵) 
4) 𝐼(𝐵) = 𝐵 ⟺ 𝐵 is 𝜇 −open 

5) 𝐶(𝐵) = 𝐵 ⟺ 𝐵 is 𝜇-closed 

6) 𝐶(𝐵) = 𝑋 − 𝐼(𝑋 − 𝐵) and 𝐼(𝐵) = 𝑋 − 𝐶(𝑋 − 𝐵) 

7) 𝐶(𝐵) = 𝐵 ∪ 𝑑(𝐵) 

8) 𝑥 ∈ 𝐶(𝐵) ⟺ 𝑈 ∩ 𝐵 ≠ 𝜙 for each 𝑈 ∈ 𝜇𝑥 

9) 𝑥 ∈ 𝐼(𝐵) ⟺ 𝑈 ⊆ 𝐵 for some 𝑈 ∈ 𝜇𝑥. 

10) 𝑥 ≠ 𝑑({𝑥}) for each 𝑥 ∈ 𝑋 

 

Proof 

1) Let (X,𝜇) be a generalized topological space and B⊂X. 

From the definition we have 

I(B)  =∪ {G ∈ 𝜇: G ⊂ B} 

𝐼(𝐵) ⊆ 𝐵                     (1) 

And C(B)=∩{F:F is 𝜇-closed and F⊇ 𝐵} 

B⊆C(B)                       (2) 

From (1)   and (2) we get I(B) ⊆B⊆C(B). 

2) I(I(B) is the largest 𝜇-open set contained in B.I(I(B)) is 

the largest 𝜇 -opren set contained in I(B) is open 

I(I(B))is the largest 𝜇-open set contained in B. 

hence 𝐼(𝐼(𝐵))  = 𝐼(𝐵). 
C(B) is the smallest 𝜇-closed set contained in B.C(C(B)) 

is the smallest 𝜇-closed set contains C(B).since C(B) is 

closed, C(C(B)) is the C(B) is the smallest 𝜇-closed set 

contains B. 

Hence 𝐶(𝐶(𝐵)) = 𝐶(𝐵). 

 

3) If 𝐵ʹ ⊆ 𝐵 we If B have 𝐼(𝐵ʹ) ⊆ 𝐵ʹ  
So if, 𝐵ʹ ⊆ 𝐵 then  𝐼(𝐵ʹ) ⊆ 𝐵 
Thus I(Bʹ)is open set contained in B. 

so 𝐼(𝐵ʹ) ⊆ 𝐼(𝐵) 

Since 𝐵 ⊆ 𝐶(𝐵),if Bʹ is contained in B, we have 𝐵ʹ ⊆
𝐶(𝐵) 
Since C(B) is closed, we must have 𝐶(𝐵ʹ) ⊆ 𝐶(𝐵). 
 

4) Assuming 𝐼(𝐵) = 𝐵 

I(B) is the largest 𝜇-open set contained in B, so B is 𝜇-

open. 

 

Conversely assume B is 𝜇-open, that is B is san open set 

contained in B. 

𝐵 ⊆ 𝐼(𝐵)                                 (1) 

 

(Since I(B) is the union of all 𝜇-open set contained in B) 

also we have 

 𝐼(𝐵) ⊆ 𝐵.       (2) 

From (1)     and   (2)    𝐼(𝐵) = 𝐵𝑖𝜇 . 

 

5) Assume 𝐶(𝐵) = 𝐵. 
Since C(B) is the smallest 𝜇-closed set contains B, B is 

𝜇-closed. 

Conversely assume B is 𝜇-closed.  

i.e,B is closed set containing B. So 

𝐶(𝐵) ⊆ 𝐵.             (1) 

(Since C(B) is the intersection of all 𝜇-closed set) also 

we have  

𝐵 ⊆ 𝐶(𝐵)                                     (2) 

From (1)   and (2)      𝐶(𝐵) = 𝐵. 
 

6) To prove [𝐶(𝐵)]∁ = 𝐼(𝑋 − 𝐵), we have 
𝐶(𝐵) =∩ {𝐹: 𝐹 is closed and 𝐵 ⊆ 𝐹} 

[𝐶(𝐵)]∁ =∪ {𝐹𝑐: 𝐹 is closed and 𝐵 ⊆ 𝐹} 

=∪ {𝑈: 𝑈 is open and 𝐵 ⊆ 𝑈∁} 
 =∪ {𝑈: 𝑈 is open and 𝑈 ⊆ 𝐵∁} = 𝐼(𝑋 − 𝐵) 

Hence 𝐶(𝐵) = 𝑋 − 𝐼(𝑋 − 𝐵). 
To prove [𝐼(𝐵)]∁ = 𝐶(𝑋 − 𝐵),we have 

𝐼(𝐵)  =∪ {𝑈: 𝑈 is open and 𝑈 ⊆ 𝐵} 
[𝐼(𝐵)]𝑐 =∩  {𝑈𝑐: 𝑈 is open and 𝑈 ⊆ 𝐵} 

   =∩  {𝐹: 𝐹 is closed and 𝐹𝑐 ⊆ 𝐵} = 𝐶(𝑋 − 𝐵) =
{𝐹: 𝐹 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒𝑑 𝑎𝑛𝑑 𝐵𝑐 ⊆ 𝐹} 

𝐻𝑒𝑛𝑐𝑒 𝐼(𝐵) = 𝑋 − 𝐶(𝑋 − 𝐵). 
 

7) Claim 𝐵 ∪ 𝑑(𝐵) is closed or 𝑋 − 𝐵 ∪ 𝑑(𝐵) is open. 

To show that 𝐵 ∪ d(B) a neighbour of each of its points. 

Let 𝑦 ∈  𝐵 ∪ 𝑑(𝐵)  then since y is not a point of 

accumulation of B, no point of B except y. But  𝑦 ∉
          𝐵. so 𝐵 ∩ 𝑉 = 𝜙 

We claim 𝑑(𝐵) ∩ 𝑉 = 𝜙 V is an open set containing z 

which is an accumulation point of B.so 𝑉 ∩ 𝐵 = 𝜙.this 

is a contradiction.so 𝑑(𝐵) ∩ 𝑉 = 𝜙 and 𝑉 ⊂ 𝑋 −  𝐵 ∪
𝑑(𝐵).this proves that (𝐵 𝐵 ∪ 𝑑) is closed, and since it 

contains B. It also contains C(B). 

i.e, 𝐶(𝐵) ⊂  𝐵 ∪ 𝑑(𝐵)                         (1) 

Other way inclusion 𝐵 ∪ 𝑑(𝐵) ⊂ 𝐶(𝐵), it suffices to 

show that 𝑑(𝐵) ⊂ 𝐶(𝐵). 
Since we have 𝐵 ⊂ 𝐶(𝐵) so let 𝑦 ∈ 𝑑(𝐵) 
If 𝑦 ∉ 𝐶(𝐵) 𝑡ℎ𝑒𝑛 𝑦 ∈ 𝑋 − 𝐶(𝐵) which is open set since 

C(B) is always a closed set but y is an accumulation 

point of B. 

So (𝑋 − 𝐶(𝐵)) ∩ 𝐵 ≠ 𝜙 which is a contradiction. 

Since 𝑋 − 𝐶(𝐵) ⊂ 𝑋 − 𝐵. 𝑠𝑜 𝑦 ∈ 𝐶(𝐵). 
Hence 𝐵 ∪ 𝑑(𝐵) ⊂ 𝐶(𝐵). (2) 

From (1)   and (2)    , 𝐶(𝐵) =  𝐵 ∪ 𝑑(𝐵). 
 

8) Let 𝐷 = {𝑥 ∈ 𝑋: 𝑈 ∩ 𝐵 ≠ 𝜙, 𝑈 ∈ 𝜇𝑥}. 
Let 𝑥 ∈ 𝐶(𝐵). so 𝑥 ∈ 𝐵 ∪ 𝑑(𝐵). then 𝑥 ∈ 𝐵 or 𝑥 ∈
𝑑(𝐵). 
Let 𝑥 ∈ 𝑈 𝑎𝑛𝑑 𝑈 ∈ 𝜇𝑥. 
If 𝑥 ∈ 𝐵, 𝑈 ∩ 𝐵 ≠ 𝜙. 
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If 𝑥 ∈ 𝑑(𝐵)  then ∀ open set containing x contains a 

point of B other than x.since U is neighborhood of x,∃ 

open set V such that 𝑥 ∈ 𝑉 and 𝑉 ⊂ 𝑈. 
Here V is an open set x∈V .so 𝑉 ∩ 𝐵 ≠ 𝜙(since 𝑥 ∈
𝑑(𝐵)). 
Hence 𝑈 ∩ 𝐵 ≠ 𝜙 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑈 ∈ 𝜇𝑥 . 
Now to show that 𝐷 ⊆ 𝐶(𝐵), let 𝑥 ∉ 𝐶(𝐵).so 𝑥 ∈ 𝑋 −
𝐶(𝐵) and 𝑋 −  𝐶(𝐵) is open. 

i.e, 𝑋 −  𝐶(𝐵) is a neighborhood of x. 

Also 𝐵 ∩ 𝑋 − 𝐶(𝐵)  = 𝜙. 
Hence 𝑥 ∉ 𝐷 .if 𝑥 ∈ 𝐷 , then).so 𝐷 ⊆ 𝐶(𝐵)for each 𝑈 ∈
𝜇𝑥. and 𝑈 ∩ 𝐵 ≠ 𝜙. then 𝑐 ∈ 𝐶(𝐵). 𝑥 ∈ 𝐶(𝐵) 

 

9) Assume x∈I(B)  

We have 𝐼(𝐵) =∪ {𝑈: 𝑈 𝑖s open and 𝑈 ⊆ 𝐵}. 
So 𝑈 ⊆ 𝐵 for some 𝑈 ∈ 𝜇𝑥. 
Conversely assume that  𝑈 ⊆ 𝐵  for some  𝑈 ∈ 𝜇𝑥  and 

𝑥 ∈ 𝐵.then  

𝑥 ∈ {𝑈: 𝑈 is open and 𝑈 ⊆ 𝐵 }. so 𝑥 ∈ 𝐼(𝐵). 
 

10) We have 𝑑(𝐵) = {𝑈 ∩ (𝐵 − {0}) ≠ 0 ∀𝑥 ∈ 𝑈𝑎𝑛𝑑 𝑈 ∈
𝜇} 

Let 𝐵 = {𝑥}. if 𝑥 ∈ 𝑈 and 𝑈 ∈ 𝜇𝑥. 
Then 𝑈 ∩ (𝐵 − {𝑥}) = 𝑈 ∩ 𝜙 = 𝜙. So 𝑥 ∉ 𝐵. 
Hence 𝑥 ∉ 𝑑(𝐵). this shows that 𝑥 ∉ 𝑑({𝑥}) for each 

𝑥 ∈ 𝑋. 
 

Definition Let X be a generalized topological space, and 𝜇x 

= {U: U∈ 𝜇 , x∈U}. 

1) Let x∈X and U∈ 𝜇x .then x is called the representative 

element of U, if U⊂V for each V∈ 𝜇x . 

2) a space X is called a C0-space if C0=X where C0 is the 

set of all representative elements of set of 𝜇. 
3) Let x∈X the set Md(x) ={ U∈ 𝜇x :U⊃V∈  𝜇x⇒V=U} is 

called the minimal description of X. 

 

Remark 

Let X be a space and x ∈ X if 𝜇 x is finite, then 𝑥 ∉
𝐶0 |𝑀𝑑(𝑥)| > 1  in which |𝑀𝑑(𝑥)|  is the cardinality of 

𝑀𝑑(𝑥). 
 

Let 𝑥 ≠ 𝐶0. that means x is not a representative element 

some open set V∈ 𝜇 .so the set 𝑀𝑑(𝑥)  = { 𝑈 ∈ 𝜇𝑥 ∶  𝑈 ⊃
𝑉 and 𝑈 ≠ 𝑉} 
 

Hence |𝑀𝑑(𝑥)| > 1. 
 

Conversely suppose |𝑀𝑑(𝑥)| = 1 then ∃𝑈, 𝑉 ∈
 𝜇𝑥 . such that  𝑈 ⊃ 𝑉 and 𝑈 = 𝑉.  i.e , 𝑥 ∈ 𝑈 for some 𝑈 ∈
𝜇.so X is representative of U.this shows that 

 

𝑥 ∈ 𝐶0, which a contradiction is.∴ |𝑀𝑑(𝑥)| > 1. 
 

Proposition  

Let B1, B2 be subsets of a C0 space X. Then 

1) I(B1∩B2)=I(B1)∩I(B2) 

2) C(B1∪B2)= C(B1) ∪ 𝐶(B2) 

 

Proof 

 

1) We have (𝐵1 ∩ 𝐵2) ⊂  𝐵1 and 𝐵1 ∩ 𝐵2 ⊂ 𝐵2         

Then we have 𝐼(𝐵1 ∩ 𝐵2) ⊂ 𝐼(𝐵1) and  𝐼(𝐵1 ∩ 𝐵2) ⊂ 𝐼(𝐵2). 
𝑆𝑜 𝐼(𝐵1 ∩ 𝐵2) ⊂ 𝐼(𝐵1) ∩ 𝐼(𝐵2)                          (1) 

 

If 𝑥 ∈  𝐼(𝐵1) ∩ 𝐼(𝐵1) 

 

Then there are 𝑈1, 𝑈2 ∈  𝜇𝑥 such that 𝑈1 ⊂  𝐵1 and 𝑈2 ⊂
 𝐵2. 
 

Since X is a a 𝐶𝑥 space 𝑥 ∈ 𝐶0. 
 

So there is 𝑈 ∈  𝜇𝑥  such that X is representative element of 

U and hence 𝑈 ⊂  𝑈1 and 𝑈 ⊂  𝑈2 

 

Consequently 𝑥 ∈  𝑈 ⊂  𝑈1 ∩ 𝑈2 ⊂ 𝐵1 ∩ 𝐵2  

 

It follows that 𝑥 ∈ 𝐼(𝐵1 ∩ 𝐵2). 
 

Thus 𝐼(𝐵1) ∩ 𝐼(𝐵2)  ⊂  𝐼(𝐵1 ∩ 𝐵2).                   (2) 

 

From (1) and (2)   𝐼(𝐵1) ∩ 𝐼(𝐵2) =  𝐼(𝐵1 ∩ 𝐵2) 

 

2) We have 𝐵1 ⊂ 𝐵1 and 𝐵2 ⊂ 𝐵1 ∪ 𝐵2 . 
Then 𝐶(𝐵1)  ⊂ 𝐶(𝐵1 ∩ 𝐵2) and 𝐶(𝐵2)  ⊂ 𝐶(𝐵1 ∩ 𝐵2). 
So 𝐶(𝐵1)  ∪ 𝐶(𝐵2)  ⊂ 𝐶(𝐵1 ∪ 𝐵2)                    (1) 

If 𝑥 ∈  𝐶(𝐵2 ∪ 𝐵2)then 𝑥 ∈ 𝑋 − 𝐼(𝑋 −  𝐵1 ∪ 𝐵2). 

So 𝑥 ∈ 𝑋 − 𝐼(𝐵1
∁ ∩ 𝐵2

∁) 

It follows that 𝑥 ∈ 𝑋 − 𝐼(𝐵1
∁) ∩ 𝐼(𝐵2

∁). 

i.e., 𝑥 ∈ [𝑋 − 𝐼(𝐵1
∁)] ∪ [𝑋 − 𝐼(𝐵2

∁)] 
so 𝑥 ∈ 𝐶(𝐵1) ∪ 𝐶(𝐵2). 
Hence 𝐶(𝐵2) ∪ 𝐶(𝐵2) ⊃  𝐶( 𝐵1 ∪ 𝐵2). 
i.e., 𝐶( 𝐵1 ∪ 𝐵2) ⊂  𝐶( 𝐵1) ∪ 𝐶(𝐵2).                 (2) 

From (1) and  (2) , 𝐶( 𝐵1 ∪ 𝐵2) ⊂  𝐶( 𝐵1) ∪ 𝐶(𝐵2). 
 

Proposition  

Let X be a space. If 𝜇  is finite, then the following are 

equivalent. 

1) X is a C0-space.  

2) I(B1∩B2)= I(B1)∩I(B2). 

3) C(B1 ∪B2)= C(B1)∪C(B2) for each B1,B2 ∈  P(X).where 

P(X) is the power set of X. 

 

Proof 

 

1⟹2 

Let  𝐵1 ∩ 𝐵2 ⊂   𝐵1and  𝐵1 ∩ 𝐵2 ⊂ 𝐵2 
 

Then we have 𝐼( 𝐵1 ∪ 𝐵2) ⊂  𝐼( 𝐵1) ∩ 𝐼(𝐵2),         (1) 

 

If 𝑥 ∈  𝐼( 𝐵1) ∩ 𝐼(𝐵2), then there are 𝑈1, 𝑈2 ∈
 𝜇𝑥  such that  𝑈1 ⊂   𝐵1 𝑎𝑛𝑑𝑈2 ⊂ 𝐵2 

 

Since X is a C0 space, 𝑥 ∈ 𝐶0. 
 

So, there is 𝑈 ∈  𝜇𝑥    such that X is a representative element 

of U and hence 𝑈 ⊂  𝑈1 and 𝑈 ⊂  𝑈2, 

 

Consequently 𝑥 ∈ 𝑈 ⊂  𝑈1 ∩  𝑈2 ⊂  𝐵1 ∩ 𝐵2. 
 

It follows that 𝑥 ∈  𝐼( 𝐵1 ∩ 𝐵2). 
 

Thus 𝐼( 𝐵1 . ) ∩ 𝐼(𝐵2. ) ⊂  𝐼( 𝐵1 ∩ 𝐵2. )                    (2) 

 

From (1) and (2) we get 𝐼( 𝐵1) ∩ 𝐼(𝐵2) =  𝐼( 𝐵1 ∩ 𝐵2) for 

each B1, B2∈P(X). 
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2⇒ 1 

If X is not a C0 space, then there is 𝑥 ∈ 𝑋  such that 𝑥 ∉
 𝐶0.then |𝑀𝑑(𝑥)| > 1. 
 

So, there are 𝑈1, 𝑈1  ∈  𝑀𝑑(𝑥) such that U1∉U2. 

 

Hence 𝑥 ∈  𝑈1 ∩  𝑈2 =  𝐼(𝑈1) ∩ 𝐼(𝑈2).on the other hand for 

each 𝑈 ∈ 𝜇𝑥 , 𝑈 ⊄  𝑈1 ∩  𝑈2 because 𝑈1, 𝑈2 ∈  𝑀𝑑(𝑥). 
 

So 𝑥 ∉  𝐼(𝑈1 ∩  𝑈2) 
 

This contradicts 𝐼(𝑈1 ∩  𝑈2) = 𝐼(𝑈1) ∩ 𝐼( 𝑈2). 
 

So X is a C0 space. 

 

2⇒3 

 

Assume 𝐼( 𝐵1 ∩ 𝐵2) =  𝐼( 𝐵1) ∩ 𝐼(𝐵2). 
 

Then C( 𝐵1 ∪ 𝐵2) = 𝑋 − 𝐼(𝑋 −  𝐵1 ∪ 𝐵2 )) 

= 𝑋 − 𝐼( 𝐵1
∁ ∩ 𝐵2

∁) 

= 𝑋 − [ 𝐼(𝐵1
∁) ∩  𝐼(𝐵2

∁) 

= [𝑋 −  𝐼( 𝐵1
∁)]  ∪  [𝑋 −  𝐼( 𝐵2

∁)] 
=  𝐶( 𝐵1) ∩ 𝐶( 𝐵2) 
 

So 𝐶( 𝐵1 ∪ 𝐵2) =  𝐶( 𝐵1) ∩ 𝐶(𝐵2). 
 

1⇒2 

Assume 𝐶( 𝐵1 ∪ 𝐵2) =  𝐶( 𝐵1) ∩ 𝐶(𝐵2)then 

𝐼( 𝐵1 ∪ 𝐵2) = 𝑋 −  𝐶(𝑋 −  ( 𝐵1 ∩ 𝐵2))     = 𝑋 − 𝐶(𝐵1
∁ ∩

𝐵2
∁) =  𝑋 − [𝐶(𝐵1

∁) ∪  𝐶(𝐵2
∁)]    

                    = [ 𝑋 − 𝐶(𝐵1
∁) ]  ∩ [ 𝑋 − 𝐶(𝐵2

∁)]   =  [𝑋 −
𝐶(𝑋 −  𝐵1)]  ∩ [𝑋 − 𝐶(𝑋 −  𝐵2)] 
                    =  𝐼( 𝐵1) ∪ 𝐼( 𝐵2) 
So 𝐼( 𝐵1 ∩ 𝐵2) =  𝐼( 𝐵1) ∩ 𝐼(𝐵2) 
 

Remark 

Finite in the above proposition cannot be omitted. In fact let 

X be the closed interval [0,1].then 𝐼( 𝐵1 ∩ 𝐵2) =  𝐼( 𝐵1) ∩
𝐼(𝐵2)and 𝐼( 𝐵1 ∩ 𝐵2) =  𝐼( 𝐵1) ∩ 𝐼(𝐵2)  for each     B1,B2∈ 

P(X).but X is not a C0 space. 

 

Base 

 

Definition Let β⊆P(X), then 𝛽  is called a base for a 

generalized topology 𝜇 if μ ={∪βʹ: βʹ⊆ β}. 

 

Proposition  

β⊆P(X) is a base for a generalized topology 𝜇 ⟺whenever 

U is a 𝜇-open set and 𝑥 ∈ 𝑈, then ∃𝐵 ∈  𝛽 ⊆ 𝑈. 
 

Proof 

Let 𝛽 be a base for 𝜇. 

 ∴  𝜇 = {∪ 𝛽ʹ: 𝛽ʹ ⊆  𝛽}. 
 

If U is a 𝜇-open set, then U∈  𝜇 and thus ∃ βʹ⊆ β such that 

𝑈 =⊂  𝛽ʹ. 
 

Since x∈U, there is a Bʹ∈  𝛽ʹ.so that 𝑥 ∈  𝐵ʹ, 𝐵ʹ ⊆∪ 𝛽ʹ = 𝑈. 
 ∴ 𝒙 ∈  𝐵ʹ ⊆ 𝑈. 
 

Conversely let U be a set ,we show ∃ 𝛽ʹ ⊆  𝛽. So that 𝑈 =∪
𝛽ʹ. 

 

By supposition for each 𝑥 ∈ 𝑈 there is 𝐵𝑥 ⊆ 𝑈. 
 

Now if we consider 𝛽ʹ = { 𝐵𝑥: 𝑥 ∈ 𝑈} it will be clear that  

𝑈 =∪ 𝛽ʹ. 
 

Theorem  

𝛽  Is a base for some strong generalized topology ⟺𝑋 =
∪𝐵𝜖𝛽 𝐵. 

 

Proof 

Let 𝛽  is a base for some strong generalized topology 𝜇.since 

x is a 𝜇 -open set, by above proposition ∀𝑥 ∈ 𝑋, ∃ 𝑎 𝐵𝑥 ∈
 𝛽 𝑠𝑜 𝑡ℎ𝑎𝑡 𝑥 ∈  𝐵𝑥  ⊆ 𝑈. 
   ∴ 𝑿 ⊆∪𝑥𝜖𝑋 𝐵𝑥 ⊆∪𝐵𝜖𝛽 𝐵 ⊆ 𝑋 ⇒ 𝑋 =∪𝐵𝜖𝛽 𝐵. 

 

Conversely suppose that 𝑋 =∪𝐵𝜖𝛽 𝐵. 

 

Consider the set 𝜇 = {∪ 𝛽ʹ: 𝛽ʹ ⊆  𝛽}. we show that is a 

strong generalized topology if we take 𝛽ʹ = 𝜙 , then 𝑐ʹ =
{ 𝜙 }. ∴  𝜙 ∈ 𝜇. 
 

Any union of elements of μ  again has a form like its 

elements and there for belongs to 𝜇 .on the other hand by 

definition it is obvious that μ is a base for 𝜇. 

 

Theorem  

A subset of P(X) is a base for some generalized topology on 

X. 

Proof 

Let β be a subset of  P(X). 

Consider the set  𝜇 =  {∪ 𝛽ʹ: 𝛽ʹ ⊆  𝛽}. 

If we repeat the proof of the converse part in the above 

theorem, we conclude that 𝜇 is a generalised topology which 

has β as a base. 

 

2. Conclusion 
 

Transitioning from a standard to a generalised topology is 

relatively straightforward. It involves the inclusion of 

additional open sets, which enhances the structure of the set 

and introduces a more decadent array of properties. This 

discussion provides an introductory overview of generalised 

topological spaces, highlighting some fundamental results 

within this framework. Despite the progress made, numerous 

open problems still need to be solved, which presents a rich 

avenue for further exploration. Furthermore, various 

topological properties require new definitions when applied 

to generalised topological spaces, indicating a need for 

continued research. The field of generalised topology is 

vibrant and evolving, with recent studies contributing 

valuable insights, the specifics of which can be found in the 

referenced materials. 
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