On Bc-open sets

Raad Aziz Al-Abdulla¹, Ruaa Muslim Abed²

¹,²Department of Mathematics, College of Computer Sciences and Mathematics, University of AL-Qadisiyah

Abstract: In this paper, we introduce a new class of open sets, called Bc-open sets, it is denoted and studied. Also, we have studied of definition Bc-paracompact spaces and nearly Bc-paracompact spaces and have provide some properties of this concepts.

Keywords: 0-open, Bc-open

1.Introduction

In [5] H. Z. Ibrahim introduced the concept of Bc-open set in topological spaces. This paper consist of two sections. In section one, we give similar definition by using of Bc-open sets and also we proof some properties about it. In section two we obtain new a characterization and preserving theorems of Bc-paracompact spaces, nearly Bc-paracompact spaces and the product of space X X Y where X is Bc-paracompact space and Y is 0-compact space.

Definition(1.1)[3]:
Let X be a topological space and A ⊂ X. Then A is called b-open set in X if A ⊂ X. The family of all b-open subset of a topological space (X, τ) is denoted by BO(X, τ) or (Briefly BO(X)).

Definition(1.2)[5]:
Let X be a topological space and A ⊂ X. Then A is called Bc-open set in X if for each x ∈ A ∈ BO(X, τ), there exists a closed set F such that x ∈ F C A. The family of all Bc-open subset of a topological space (X, τ) is denoted by BcO(X, τ) or (Briefly BcO(X)), A is Bc-closed set if A ⊂ A C is Bc-open set. The family of all Bc-closed subset of a topological space (X, τ) is denoted by BcC(X, τ) or (Briefly BcC(X)).

Remark(1.3):
It is clear from the definition that every Bc-open set is b-open, but the converse is not true in general as the following example:

Let X = {1, 2, 3}, τ = {ϕ, X, {1}, {2}, {1, 2}}. Then the closed set are: X, ϕ, {2, 3}, {1, 3}, {3}. Hence BO(X) = {ϕ, X, {1}, {2}, {1, 2}, {1, 3}, {2, 3}} and BcO(X) = {ϕ, X, {1}, {2}, {3}}. Then {1} is b-open but {1} is not Bc-open.

Definition (1.4)[10]:
1) Let X be a topological space and A ⊂ X. Then A is called 0-open set in X if for each x ∈ A, there exists an open set G such that x ∈ G C C A. The family of all 0-open subset of a topological space (X, τ) is denoted by 0O(X, τ) or (Briefly 0O(X)).
2) Let X be a topological space and A ⊂ X. A point x ∈ X is said to 0-interior point of A, if there exist an 0-open set U such that x ∈ U C A. The set of all 0-interior points of A is called 0-interior of A and is denoted by A×0.
3) Let X be a topological space and A ⊂ X. The 0-closure of A is defined by the intersection of all Bc-closed sets in X containing A, and is denoted by A×0.

Remark (1.5)[5]:
1) Every 0-open is Bc-open.
2) Every 0-closed is Bc-closed.

Example (1.6):
The intersection of two Bc-open sets is not Bc-open in general. Let X = {1, 2, 3}, τ = {ϕ, X, {1}, {2}, {1, 2}}. Then {1, 3}, {2, 3} is Bc-open set where as {1, 3}∩{2, 3} = {3} is not Bc-open set.

Remark (1.7)[2]:
The intersection of an b-open set and an open set is b-open set.

Proposition (1.8):
Let X be a topological space and A, B ⊂ X. If A is Bc-open set and B is an 0-open set, then A ∩ B is Bc-open set.

Proof:
Let A be a Bc-open set and B is an 0-open set, then A is b-open set and B is an open set since every 0-open is open. Then A ∩ B is b-open set by (Remark(1.7)). Now, let x ∈ A ∩ B, x ∈ A and x ∈ B, then there exists a closed set F such that x ∈ F ⊂ A and there exists an open set E such that x ∈ E ⊂ E ⊂ B. Therefore, E ∩ E is closed since the intersection of closed sets is closed. Thus x ∈ E ∩ E ⊂ A ∩ B. Then A ∩ B is Bc-open set.

Proposition (1.9)[5]:
Let X be a topological space and A ⊂ X. Then A is Bc-open set if and only if A is b-open set and it is a union of closed sets. That is A = Uα Fα where A is b-open set and Fα is closed sets for each α.

Proposition (1.10)[5]:
Let {Aα; α ∈ A} be a collection of Bc-open sets in a topological space X. Then Uα Aα is Bc-open.

Lemma (1.11)[4]:
Let X be a topological space and Y ⊂ X. If G is an 0-open in X, then G ∩ Y is an 0-open in Y.

Proposition (1.12)[5]:
Let X be a topological space and Y ⊂ X. If G is a Bc-open set in X and Y is an open in X, then G ∩ Y is b-open in Y.
Proposition (1.13):
Let \(X \) be a topological space and \(Y \subseteq X \). If \(G \) is a \(\theta \)-open in \(X \) and \(Y \) is a \(\theta \)-open in \(X \), then \(G \cap Y \) is \(\theta \)-open in \(Y \).

Proof:
Let \(x \in G \cap Y \), \(x \in G \) and \(x \in Y \). Since \(G \) is a \(\theta \)-open set in \(X \), then for each \(x \in G \in BO(X) \), there exists \(F \) is closed set in \(X \) such that \(x \in F \in G \) and since \(Y \) is an \(\theta \)-open in \(X \), then there exists \(U \) open set in \(X \) such that \(x \in U \subseteq \overline{U} \subseteq Y \). Since \(G \) is \(\theta \)-open, then \(G \) is \(Bc \)-open and since \(Y \) is an \(\theta \)-open, then \(Y \) is an open set by proposition (1.12). Therefore, \(G \cap Y \) is \(\theta \)-open in \(Y \). Since \(F, U \) are closed set in \(X \) and \(Y \subseteq X \), then \(F \cap U \) is closed set in \(Y \). Thus \(x \in F \cap U \subseteq G \cap Y \). Hence \(G \cap Y \) is \(\theta \)-open in \(Y \).

Proposition (1.14):
Let \(X \) be a topological space and \(Y \) is an \(\theta \)-open subset of \(X \). If \(G \) is an \(\theta \)-open in \(Y \), then \(G \) is \(\theta \)-open in \(X \).

Proof:
Suppose that \(Y \) is an \(\theta \)-open subset of \(X \) and \(G \subseteq Y \), since \(G \) is a \(\theta \)-open set in \(Y \), then for each \(x \in G \in BO(Y) \), there exists \(F \) is closed set in \(Y \) such that \(x \in F \subseteq G \). Let \(G = Y \cup U \), \(U \subseteq Y \), and \(F = E \cap Y \subseteq X \). Then \(x \in E \subseteq Y \). Hence \(G \) is \(\theta \)-open in \(X \).

Lemma (1.15)[6]:
Let \(X \) and \(Y \) be a topological spaces and let \(A \subseteq X, B \subseteq Y \) be two non empty subset:
1) If \(A \) is an open set in \(X \) and \(B \) is an open set in \(Y \), then \(A \times B \) is an open set in \(X \times Y \).
2) If \(A \) is a closed set in \(X \) and \(B \) is a closed set in \(Y \), then \(A \times B \) is a closed set in \(X \times Y \).
3) \((A \times B) = A \times \overline{B}\).

Theorem (1.16):
Let \(X \) and \(Y \) be a topological spaces and let \(A \subseteq X, B \subseteq Y \) such that \(A \) is an \(\theta \)-open set of \(X \), \(B \) is an \(\theta \)-open set of \(Y \), then \(A \times B \) is an \(\theta \)-open subset of \(X \times Y \).

Proof:
Let \(A \) be an \(\theta \)-open set of \(X \) and \(B \) be an \(\theta \)-open set of \(Y \), then for each \(x \in A \), there exists \(G \) open set in \(X \) such that \(x \in G \subseteq \overline{G} \subseteq A \) and for each \(y \in B \), there exists \(U \) open set in \(X \) such that \(y \in U \subseteq \overline{U} \subseteq B \). By lemma (1.15)(1), then \(G \times U \) is an open set in \(X \times Y \). Since \(G \), \(U \) is closed set, then \(G \times U \) is a closed set in \(X \times Y \) by lemma (1.15)(2). Since \(G \times U = G \times \overline{U} \) by lemma (1.15)(3), then \(x \in G \times U \subseteq G \times \overline{U} \subseteq A \times X \). Hence \(A \times B \) is an \(\theta \)-open subset of \(X \times Y \).

Proposition (1.17)[8]:
Let \(X \) and \(Y \) be a topological spaces and let \(A \subseteq X, B \subseteq Y \) such that \(A \) is a \(Bc \)-open set of \(X \), \(B \) is an open set of \(Y \), then \(A \times B \) is a \(Bc \)-open subset of \(X \times Y \).

Proposition (1.18):
Let \(X \) and \(Y \) be a topological spaces and let \(A \subseteq X, B \subseteq Y \) such that \(A \) is a \(Bc \)-open set of \(X \), \(B \) is an \(\theta \)-open set of \(Y \), then \(A \times B \) is a \(Bc \)-open subset of \(X \times Y \).

Proof:
Let \(A \) be a \(Bc \)-open set of \(X \) and \(B \) be an \(\theta \)-open set of \(Y \), then for each \(x \in A \in BO(X) \), there exists \(F \) closed set in \(X \) such that \(x \in F \subseteq A \) and for each \(y \in B \), there exists \(U \) open set in \(Y \) such that \(y \in U \subseteq \overline{U} \subseteq B \). Since \(A \) is a \(Bc \)-open in \(X \) and \(B \) is an \(\theta \)-open in \(Y \), then \(A \) is a \(Bc \)-open in \(X \) and \(B \) is an open in \(Y \). Thus \(A \times B \) is a \(Bc \)-open subset of \(X \times Y \) by proposition (1.17), \(x \in A \) and \(y \in B \), then \((x,y) \in A \times B \in BO(X) \). Since \(x \in F \subseteq A \) and \(y \in U \subseteq \overline{U} \subseteq B \) such that \(F \) is closed set in \(X \) and \(U \) is closed set in \(Y \), then \(F \times U \) is closed set in \(X \times Y \). Therefore, \((x,y) \in F \times U \subseteq A \times B \). Hence \(A \times B \) is a \(Bc \)-open subset in \(X \times Y \).

Definition (1.19)[1]:
Let \(X \) be a topological space and \(x \in X \). Then a subset \(N \) of \(x \) is said to be a \(\theta \)-neighborhood of \(x \), if there exists \(\theta \)-open set \(U \) in \(X \) such that \(x \in U \subseteq N \).

Definition (1.20)[5]:
Let \(X \) be a topological space and \(A \subseteq X \). A point \(x \in X \) is said to be \(Bc \)-interior point of \(A \) if there exist a \(Bc \)-open set \(U \) such that \(x \in U \subseteq A \). The set of all \(Bc \)-interior points of \(A \) is called \(Bc \)-interior of \(A \) and is denoted by \(A^{Bc} \).

Theorem (1.21)[5]:
Let \(X \) be a topological space and \(A, B \subseteq X \), then the following statements are! true:
1) \(A^{Bc} \) is the union of all \(Bc \)-open set which are contained in \(A \).
2) \(A^{Bc} \) is \(Bc \)-open in \(X \).
3) \(A^{Bc} \subseteq A \).
4) \(A \) is \(Bc \)-open if and only if \(A = A^{Bc} \).
5) \((A^{Bc})^{Bc} = A^{Bc} \).
6) If \(A \subseteq B \), then \(A^{Bc} \subseteq B^{Bc} \).
7) \(A^{Bc} \cup B^{Bc} = (A \cup B)^{Bc} \).
8) \(A \cap B^{Bc} = A^{Bc} \cap B^{Bc} \).

Definition (1.22)[5]:
Let \(X \) be a topological space and \(A \subseteq X \). The \(Bc \)-closure of \(A \) is defined by the intersection of all \(Bc \)-closed sets in \(X \) containing \(A \), and is denoted by \(\overline{A^{Bc}} \).

Theorem (1.23)[5]:
Let \(X \) be a topological space and \(A, B \subseteq X \). Then the following statements are true:
1) \(\overline{A^{Bc}} \) is the intersection of all \(Bc \)-closed sets containing \(A \).
2) \(\overline{A^{Bc}} \) is \(Bc \)-closed set in \(X \).
3) \(A \subseteq \overline{A^{Bc}} \).
4) \(A \) is \(Bc \)-closed set if and only if \(A = \overline{A^{Bc}} \).
5) \((\overline{A^{Bc}})^{Bc} = \overline{A^{Bc}} \).
6) If \(A \subseteq B \), then \(\overline{A^{Bc}} \subseteq \overline{B^{Bc}} \).
7) \(\overline{A^{Bc}} \cup \overline{B^{Bc}} = \overline{(A \cup B)^{Bc}} \).
8) \((A \cap B)^{Bc} \subseteq \overline{A^{Bc}} \cap \overline{B^{Bc}} \).

Proposition (1.24)[5]:
Let \(X \) be a topological space and \(A \subseteq X \). Then \(x \in \overline{A^{Bc}} \) if and only if \(A \cap U \neq \phi \) for every \(Bc \)-open set \(U \) containing \(x \).
Definition(1.25)[5]:
Let X be a topological space and $A \subset X$. A point x is said to be Bc-limit point of A, if for each Bc-open set U containing x, $U \cap (A - \{x\}) \neq \emptyset$. The set of all Bc-limit points of A is called a Bc-derived set of A and is denoted by A^{bc}.

Proposition(1.26)[5]:
Let X be a topological space and $A \subset X$. Then $A^{bc} = A \cup A^{bc}$.

Proposition(1.27):
Let X be a topological space and $A \subset X$, then A^{bc} is the smallest Bc-closed set containing A.

Proposition(1.28)[5]:
Let X be a topological space and $A \subset X$, then the following statements are true:
1) $(A^{bc})^{c} = (A^{c})^{abc}$.
2) $(A^{+bc})^{c} = (A^{c})^{b}$.
3) $A^{bc} = (A^{c})^{b}$.
4) $A^{+bc} = (A^{c})^{c}$.

Definition(1.29):
Let X be a topological space and $A \subset X$, A is called 0-regular open set in X iff $A = A^{0-\theta}$. The complement of 0-regular open set is called 0-regular closed.

Definition(1.30):
Let X be a topological space and $A \subset X$, A is called Bc-regular open set in X iff $A = A^{bc-Bc}$. The complement of Bc-regular open set is called Bc-regular closed.

Remark(1.31):
Let X be a topological space and $A \subset X$, A is Bc-regular open set, then A^{bc-Bc} is Bc-regular open set.

Proof:
To prove A^{bc-Bc} is Bc-regular open we must prove that $A^{bc-Bc} = A^{Bc-Bc-Bc}$, since $A \subset A^{bc}$, then $A^{bc} \subset A^{Bc-Bc}$ and since A is Bc-open set, hence $A \subset A^{Bc-Bc} A^{Bc-Bc} \subset A^{Bc-Bc-Bc} ... (1)$ Since $A^{Bc-Bc} \subset A^{Bc}$, then $A^{Bc-Bc} \subset A^{Bc-Bc-Bc}$ and $A^{Bc-Bc-Bc} = A^{Bc}$, hence $A^{Bc-Bc-Bc} \subset A^{Bc-Bc}$... (2) From (1) and (2) we get $A^{Bc-Bc} = A^{Bc-Bc-Bc}$. Hence A^{BC-Bc} is Bc-regular open.

2. Separation Axiom

Definition(2.1)[7]:
A space X is called $\partial X = \partial X - space$ iff for each $x \neq y$ in X there exist disjoint 0-open sets U, V such that $x \in U, y \in V$.

Definition(2.2):
A space X is called Bc-regular space iff for each x in X and C 0-closed set such that $x \in C$, there exist disjoint Bc-open sets U, V such that $x \in U, C \subseteq V$.

Proposition(2.3):
A space X is Bc-regular space iff for every $x \in X$ and each 0-open set U in X such that $x \in U$ there exists a Bc-open set W such that $W \subseteq W^{bc} \subseteq U$.

Proof:
Let X be a Bc-regular space and $x \in X$, U is 0-open in X such that $x \in U$. Thus U^{c} is 0-closed set, $x \in U^{c}$. Then there exist disjoint Bc-open set W, V such that $x \in W, U^{c} \subseteq V$. Conversely let F be an 0-open set such that $x \notin F$. Then F^{c} is an 0-open set and $x \notin F^{c}$. Thus there exist W be Bc-open set such that $x \in W \subseteq W^{bc} \subseteq F^{c}$. Then $x \in W, F \subseteq (W^{bc})^{c}$ and $W, (W^{bc})^{c}$ are disjoint Bc-open sets. Hence X is Bc-regular space.

Definition(2.4):
A space X is called Bc^{*}-regular space iff for each $x \in X$ and Bc-closed set C such that $x \notin C$, there exist disjoint sets U, V such that U is 0-open, V is a Bc-open and $x \in U, C \subseteq V$.

Proposition(2.5):
A space X is Bc^{*}-regular space iff for every $x \in X$ and each Bc-open set U in X such that $x \in U$ there exists an 0-open set W such that $x \in W \subseteq W^{bc} \subseteq U$.

Proof:
Let X be a Bc^{*}-regular space and $x \in X, U$ be Bc-open in X such that $x \in U$. Thus U^{c} is Bc-closed set, $x \notin U^{c}$. Then there exist disjoint Bc-open set W, V such that $W \subseteq \emptyset, V^{c} \subseteq U$. Conversely let F be a Bc-closed set such that $x \in F$. Then F^{c} is a 0-open set and $x \in F^{c}$. Thus there exist W be Bc-open set such that $x \in W \subseteq W^{bc} \subseteq F^{c}$. Then $x \in W, F \subseteq (W^{bc})^{c}$ and $W, (W^{bc})^{c}$ are disjoint Bc-open sets. Hence X is Bc^{*}-regular space.

Definition(2.7):
A space X is called almost Bc-regular space iff for each x in X and C is 0-closed regular closed set such that $x \notin C$, there exist disjoint Bc-open sets U, V such that $x \in U, C \subseteq V$.

Definition(2.8):
A space X is called almost Bc^{*}-regular space iff for each x in X and C is Bc-regular closed set such that $x \notin C$, there exist disjoint Bc-open sets U, V such that U is 0-open, V is Bc-open and $x \in U, C \subseteq V$.

Proposition(2.9):
A space X is almost Bc-regular space iff for every $x \in X$ and each 0-closed set U in X such that $x \in U$ there exists an Bc-open set W such that $x \in W \subseteq W^{bc} \subseteq U$.

Proof:
Let X be a almost Bc-regular space and $x \in X, U$ is 0-closed in X such that $x \in U$. Thus U^{c} is 0-closed set, $x \notin U^{c}$. Then there exist disjoint Bc-open set W, V such that $x \in W, U^{c} \subseteq V$. Conversely let F be an 0-closed set such that $x \notin F$. Then F^{c} is an 0-closed set and $x \notin F^{c}$. Thus there exist W be Bc-open set such that $x \in W \subseteq W^{bc} \subseteq F^{c}$. Then $x \in W, F \subseteq (W^{bc})^{c}$ and $W, (W^{bc})^{c}$ are disjoint Bc-open sets. Hence X is Bc-regular space.
A space X is almost Bc-regular space iff for every $x \in X$ and each Bc-regular open set U in X such that $x \in U$ there exists an 0-open set W such that $x \in W \subseteq \overline{W}^{Bc} \subseteq U$.

Proof:
Let X be a Bc-normal space and $x \in X$ be Bc-regular open in X such that $x \in U$. Thus U^c is Bc-closed set, $x \notin U^c$. Then there exist disjoint set W, V such that W is an 0-open, V is a Bc-open and $x \in W, U^c \subseteq V$. Hence $x \in W \subseteq \overline{W}^{Bc} \subseteq U^c \subseteq V$. Conversely, let F be an Bc-regular closed set such that $x \notin F$. Then F^c is an Bc-regular open set and $x \in F^c$. Thus there exist W is 0-open set such that $x \in W \subseteq \overline{W}^{Bc} \subseteq F^c$. Then $x \in W, F \subseteq (\overline{W}^{Bc})^c$ and $(\overline{W}^{Bc})^c$ is Bc-open set, $W \cap (\overline{W}^{Bc})^c = \emptyset$. Hence X is almost Bc-regular space.

Definition 2.11:
A space X is called Bc-normal space iff for every disjoint 0-closed set F_1, F_2 there exist disjoint Bc-open sets V_1, V_2 such that $F_1 \subseteq V_1, F_2 \subseteq V_2$.

Proposition 2.12:
A space X is called Bc-normal space iff for every 0-closed set $F \subseteq X$ and each 0-open set U in X such that $F \subseteq U$ there exists an 0-open set W such that $F \subseteq W \subseteq \overline{W}^{Bc} \subseteq U$.

Proof:
Let X be a Bc-normal space and F is an 0-closed set in X, U is an 0-open set such that $F \subseteq U$. Thus U^c is 0-closed set U^c, F are disjoint 0-open set, there exists 0-closed set W, V such that $F \subseteq W$, $U^c \subseteq V, W \cap V = \emptyset$. Hence $F \subseteq W \subseteq \overline{W}^{Bc} \subseteq \overline{W}^{Bc} \subseteq U^c \subseteq V \subseteq U$. Conversely, let F_1, F_2 be a disjoint 0-closed set. Then F_1^c is an 0-open set and $F_2 \subseteq F_2^c$. Thus there exist W is Bc-open set such that $F_1 \subseteq W \subseteq \overline{W}^{Bc} \subseteq F_2$. Then $F_1 \subseteq W, F_2 \subseteq (\overline{W}^{Bc})^c$ and $(\overline{W}^{Bc})^c$ is disjoint Bc-open set. Hence X is Bc-normal space.

Proposition 2.13:
If X is both Bc-normal and $\partial F - space$, then X is Bc-regular.

Proof:
Let $x \in X$ and U be an 0-open set such that $x \in U$. Then $\{x\}$ is a 0-closed subset of X. Thus there exists a Bc-open set W such that $\{x\} \subseteq W \subseteq \overline{W}^{Bc} \subseteq U$. By proposition (2.12), $x \in W \subseteq \overline{W}^{Bc} \subseteq U$ and hence by proposition (2.3) X is Bc-regular space.

3.Bc-paracompact Spaces

Definition 3.1:
A covering of a topological space X is the family $\{A_\alpha; \alpha \in \Lambda\}$ of subsets of X such that $\bigcup_{\alpha \in \Lambda} A_\alpha = X$. If each A_α is open, then $\{A_\alpha; \alpha \in \Lambda\}$ is called an open covering, and if each set A_α is closed, then $\{A_\alpha; \alpha \in \Lambda\}$ is called a closed covering. A covering $\{B_\gamma; \gamma \in \Gamma\}$ is said to be a refinement of a covering $\{A_\alpha; \alpha \in \Lambda\}$ if for each γ in Γ there exists some α in Λ such that $B_\gamma \subseteq A_\alpha$.

Definition 3.2:
The family $\{B_\alpha; \alpha \in \Lambda\}$ of a subset of a space X is said to be a 0-locally finite if for each $x \in X$ there exist an 0-neighborhood N_x of x such that the set $\{\alpha \in \Lambda : N_x \cap B_\alpha \neq \emptyset\}$ is finite.

Proposition 3.3:
If $\{B_\alpha; \alpha \in \Lambda\}$ is an 0-locally finite family of subset of a space X, then there exist a family $\{C_\alpha; \alpha \in \Lambda\}$ of Bc-closed for each α, then $\{C_\alpha; \alpha \in \Lambda\}$ is an 0-locally finite.

Proof:
Let $\{B_\alpha; \alpha \in \Lambda\}$ is an 0-locally finite, for each $x \in X$, then there exist B_{α_i} 0-open set containing x such that $B_{\alpha_i} \cap B_{\alpha_j} \neq \emptyset, i = 1, \ldots, n$. Hence $B_{\alpha_i} \cap B_{\alpha_j} = \emptyset, i = 1, n + 1, n + 2, \ldots$. Hence $\{\alpha_i; B_{\alpha_i} \subseteq \emptyset, i = 1, n + 1, n + 2, \ldots\}$ is an 0-locally finite.

Proposition 3.4:
Let (X, τ) be a topological space and $A \subseteq X$. If A_α is an 0-locally finite, then $\overline{A_\alpha}^{Bc}$ is an 0-locally finite.

Proof:
Let $\{A_\alpha; \alpha \in \Lambda\}$ is an 0-locally finite, for each $x \in X$, then there exist 0-open set G_x containing x such that $G_x \cap A_\alpha \neq \emptyset, i = 1, \ldots, n$. Hence $G_x \cap A_\alpha = \emptyset, i = 1, n + 1, n + 2, \ldots$. Hence $G_x \cap A_\alpha = \emptyset, i = 1, 2, \ldots$. Then $G_x \cap \overline{A_\alpha}^{Bc} = \emptyset, i = 1, n + 1, n + 2, \ldots$. Hence $\overline{G_x \cap A_\alpha}^{Bc} = \emptyset, i = 1, 2, \ldots$. Therefore, $\overline{G_x \cap A_\alpha}^{Bc}$ is an 0-locally finite.

Proposition 3.5:
Let $\{A_\alpha; \alpha \in \Lambda\}$ is an 0-locally finite Bc-closed family of a space X then $\overline{A_\alpha}^{Bc} = \bigcup_{\alpha \in \Lambda} A_\alpha^{Bc}$.

Proof:
Since $A_\alpha \subseteq \bigcup_{\alpha \in \Lambda} A_\alpha$, then $\overline{A_\alpha}^{Bc} \subseteq \bigcup_{\alpha \in \Lambda} A_\alpha^{Bc}$ by theorem (1.23) and hence $\overline{A_\alpha}^{Bc} \subseteq \bigcup_{\alpha \in \Lambda} A_\alpha^{Bc}$. To prove that $\bigcup_{\alpha \in \Lambda} A_\alpha^{Bc} \subseteq \bigcup_{\alpha \in \Lambda} A_\alpha^{Bc}$. Let $x \in \bigcup_{\alpha \in \Lambda} A_\alpha^{Bc}$. Since $\{A_\alpha; \alpha \in \Lambda\}$ is an 0-locally finite, then there exists an 0-open set G_x containing x such that $G_x \cap A_\alpha \neq \emptyset$ for only a finite member of α say $\alpha_1, \ldots, \alpha_n$. Since $x \notin \bigcup_{\alpha \in \Lambda} A_\alpha^{Bc}$ for each $\alpha \in \Lambda$, then $x \notin A_\alpha^{Bc}$ and $x \notin A_\alpha$ for each $\alpha \in \Lambda$ by proposition (1.27). Thus there exists an 0-open set U_x which contain x such that $U_x \cap A_\alpha = \emptyset$ for each $\alpha \neq \alpha_1, \ldots, \alpha_n$. Let $x \in U_x \cap A_\alpha = \emptyset$. Then $x \notin \bigcup_{\alpha \in \Lambda} A_\alpha^{Bc}$ and hence $\overline{A_\alpha}^{Bc} = \bigcup_{\alpha \in \Lambda} A_\alpha^{Bc}$.

Volume 3 Issue 10, October 2014

www.ijsr.net

1721
then $V \cap A_\alpha = \phi$, for $\alpha \in \Lambda$. Now, we have $\cap (\bigcup_{\alpha \in \Lambda} A_\alpha) = \phi$, so that since $x \in V$, then $x \notin \bigcup_{\alpha \in \Lambda} A_\alpha$, by proposition (1.24) which is a contradiction. Thus $\in \bigcup_{\alpha \in \Lambda} \bar{A}_\alpha = \bigcup_{\alpha \in \Lambda} \bar{A}_\alpha$, so that $\bar{A}_\alpha \cap \bar{A}_\beta \subseteq \bar{A}_\alpha$, then $\bigcup_{\alpha \in \Lambda} \bar{A}_\alpha = \bigcup_{\alpha \in \Lambda} \bar{A}_\alpha$.

Proposition (3.6): The union of member of 0-locally finite Bc-closed sets is Bc-closed. Proof: Let $\{A_\alpha\}_{\alpha \in \Lambda}$ be a family of 0-locally finite Bc-closed sets. Then $\bigcup_{\alpha \in \Lambda} \bar{A}_\alpha = \bigcup_{\alpha \in \Lambda} \bar{A}_\alpha = \bigcup_{\alpha \in \Lambda} A_\alpha$, by theorem (3.4) and hence $\bigcup_{\alpha \in \Lambda} A_\alpha$ is Bc-closed by theorem (1.23).

Theorem (3.7): Let $\{A_\alpha\}_{\alpha \in \Lambda}$ be a family of Bc-open subsets of a space X and let $\{B_\beta\}_{\beta \in \Gamma}$ be an 0-locally finite Bc-closed covering of X such that for each $\gamma \in \Gamma$ the set $\{\alpha \in \Lambda: B_\beta \cap A_\alpha \neq \phi\}$ is a finite. Then there exists 0-locally finite family $\{G_\alpha\}_{\alpha \in \Lambda}$ of Bc-open set of X such that $A_\alpha \subseteq G_\alpha$ for each $\alpha \in \Lambda$.

Proof: For each α, let $G_\alpha = \left(\{F_\gamma - B_\beta \cap A_\alpha = \phi\}\right)^c$. Clearly $A_\alpha \subseteq G_\alpha$ and since $\{B_\beta\}_{\beta \in \Gamma}$ is an 0-locally finite, it follow that G_α is Bc-open by proposition (3.6). Let x be a point of X, there exists an 0-neighborhood N_x of x and a finite subset k of Γ such that $N_x \cap F_\gamma = \phi$ if $\gamma \in k$. Hence $\subseteq \bigcup_{\gamma \in k} F_\gamma$. Now $F_\gamma \cap A_\alpha \neq \phi$ iff $F_\gamma \cap A_\alpha \neq \phi$. For each $\alpha \in k$ the set $\{\alpha \in \Lambda: F_\gamma \cap A_\alpha \neq \phi\}$ is a finite. Hence $\{\alpha \in \Lambda: N \cap A_\alpha \neq \phi\}$ is a finite.

Lemma (3.8): If every 0-open cover of a topological space X has an 0-locally finite Bc-closed refinement, then every 0-open cover of X has an 0-locally finite Bc-closed refinement.

Proof: Let U be 0-open cover of X, and $A = \{A_\alpha: s \in S\}$ an 0-locally finite of U and for each $x \in X$ choose an 0-neighborhood V_x of x which meets only finitely many members of A. Let F be an 0-locally finite Bc-closed refinement of the 0-open cover $\{V_x: x \in X\}$ and for each $s \in S$, let $W_s = \{(F \cap (F \cap A_\alpha)^c) \cap A_\alpha\}$, then W_s is a Bc-open and contain A_α, for each $s \in S$ and $F \in F$, we have $W_s \cap F \neq \phi$ iff $A_\alpha \cap F \neq \phi$. For each $s \in S$ take a $U_\gamma \subseteq U$ such that $A_\alpha \subseteq U_\gamma$ and let $U_s = W_s \cap U_\gamma$. The family $\{V_x\}_{x \in X}$ is a Bc-open refinement of U. Since for each $x \in X$ has an 0-neighborhood which meets only finitely many members of F and every members of F meets only finitely many members of A. Therefore, $\{V_x\}_{x \in X}$ is an 0-locally finite Bc-closed refinement of U.

Theorem (3.9): If every finite 0-open covering of a space X has an 0-locally finite Bc-closed refinement, then X is Bc-normal space.

Proof: Let X be a topological space such that each finite 0-open covering of X has an 0-locally finite Bc-closed refinement and let $A_\alpha \cap B \subseteq \bigcup_{\alpha \in \Lambda} \{A_\alpha \cap B\}$. The 0-open covering $\{A_\alpha \cup B\}$ of X has an 0-locally finite Bc-closed refinement. Let E be the union of the members of W disjoint from A and let S be the union of the members of W disjoint from B. Then E and S are Bc-closed sets and $E \cup \bar{S} = \bar{X}$. Thus if $G = (E)^c$ and $U = (S)^c$, then G, U are disjoint Bc-open sets such that $A \subseteq G, B \subseteq U$. Hence X is Bc-normal space.

Definition (3.10): A topological space X is said to be Bc-paracompact if every 0-open covering of X has an 0-locally finite Bc-open refinement.

Proposition (3.11): Let X be a Bc-paracompact space, let A be an 0-open subset of X and let B be an 0-closed set of X which is disjoint from A. If for every $x \in B$ there exist 0-open sets U_x, V_x such that $A \subseteq U_x$, $x \in V_x$ and $U_x \cap V_x = \phi$, then also there exist Bc-open sets U, V such that $A \subseteq U$, $x \in V$ and $U \cap V = \phi$.

Proof: The family $\{V_x: x \in B\} \cup \{(B)^c\}$ is an 0-open cover of B-paracompact, so that it has an 0-locally finite Bc-open refinement $\{W_y\}_{y \in \Gamma}$. Let $\Gamma = \{y \in \Gamma: W_y \cap V_x < \text{for some } x \in B\}$. If $\Gamma = \emptyset$, then $U_y \cap W_y = \phi$ for some $x \in V$ by proposition (3.4), then W_y^{bc} is an 0-locally finite Bc-closed. Therefore $A \cap W_y^{bc} = \phi$. Now, let $U = \left(\bigcup_{y \in \Gamma} W_y^{bc}\right)^c$ and $V = \bigcup_{y \in \Gamma} W_y$. Then $A \subseteq U$, $B \subseteq V$ and $U \cap V = \phi$.

Proposition (3.12): If X is a Bc-paracompact θT_2-space, then X is Bc-regular.

Proof: Let $x \in \text{X}$ and F be an 0-closed set in X such that $x \notin F$. Then for each $y \in F$ there exists 0-open sets U_y, V_y such that $x \notin U_y$, $y \in V_y$. It follow from proposition (3.11) there exists Bc-open sets U and V such that $x \subseteq U$, $F \subseteq V$ and $U \cap V = \phi$. Thus X is Bc-regular.

Proposition (3.13): Let X be a topological space. If each 0-open covering of X has an 0-locally finite Bc-closed refinement, then X is Bc-paracompact Bc-normal Space.

Proof: Let U be an 0-open covering of X and let $\{A_\alpha\}_{x \in \Lambda}$ be an 0-locally finite Bc-closed refinement of X. Since $A_\alpha \subseteq \Lambda$, is an 0-locally finite, for each point $x \in X$ has an 0-neighborhood G_x such that $\{\alpha \in \Lambda: G_x \cap \alpha \neq \phi\}$ is a finite. If $\{B_\beta\}_{\beta \in \Gamma}$ is an 0-locally finite Bc-closed refinement of the 0-open covering $\{G_\alpha\}_{x \in X}$, then for each $\gamma \in \Gamma$ the set $\{\alpha \in \Lambda: B_\beta \cap \alpha \neq \phi\}$ is a finite. It follows from theorem (3.9), that there exist an 0-locally finite family $\{A_\alpha\}_{x \in \Lambda}$ of Bc-open sets, such that $A_\alpha \subseteq \Lambda$ for each $x \in X$ and A_α be a member of U such that $A_\alpha \subseteq \Lambda$ for each $\alpha \in \Lambda$.
Then \((V_{\alpha}\cap U_{\alpha})_{\alpha\in A}\) is an \(\theta\)-locally finite Bc-open refinement of \(X\). Thus \(X\) is Bc-paracompact, so that \(X\) is Bc-normal space by theorem(3,9).

Theorem(3.14):

Bc*-regular space is Bc-paracompact Bc-normal if and only if each \(\theta\)-open covering has an \(\theta\)-locally finite Bc-closed refinement.

Proof:

Suppose that \(X\) is Bc-paracompact Bc-normal space and let \((A_{\alpha})_{\alpha\in A}\) be an \(\theta\)-open covering of \(X\). Since \(X\) is Bc*-regular, there exists an \(\theta\)-open set \(V_{x}\) such that \(x \in V_{x} \subseteq \overline{V_{x}}^{\text{Bc}} \subseteq A_{\alpha}\) for some \(\alpha\). The family \((A_{\alpha}: x \in X)\) is an \(\theta\)-open cover of \(X\) and since \(X\) is Bc-paracompact, then there exists an \(\theta\)-locally finite Bc-open refinement \(W = \{W_{x}: x \in X\}\) of \((A_{\alpha}: x \in X)\). Hence \(\overline{W_{x}}^{\text{Bc}} \subseteq \overline{V_{x}}^{\text{Bc}} \subseteq A_{\alpha}\), then \(\{\overline{W_{x}}^{\text{Bc}}: x \in X\}\) is an \(\theta\)-locally finite Bc-open refinement of \((A_{\alpha})_{\alpha\in A}\). Conversely, from theorem(3,13).

Theorem(3.15):

Let \(X\) be any Bc*-regular space , the following condition are equivalent:

1) \(X\) is Bc-paracompact.
2) Every \(\theta\)-open cover of \(X\) has an \(\theta\)-locally finite refinement.
3) Every \(\theta\)-open cover of \(X\) has a Bc-closed \(\theta\)-locally finite refinement.

Proof:

1\(\rightarrow\)2

Let \(X\) be a Bc-paracompact space, then every \(\theta\)-open cover of \(X\) has an \(\theta\)-locally finite refinement.

2\(\rightarrow\)3

Let \(U\) be an \(\theta\)-open covering of \(X\). Since \(X\) is Bc*-regular, there exists an \(\theta\)-open set \(V_{x}\) such that \(x \in V_{x} \subseteq \overline{V_{x}}^{\text{Bc}} \subseteq U_{\alpha}\). The family \(V = \{V_{x}: x \in X\}\) is an \(\theta\)-open cover of \(X\), by (2) \(V\) has an \(\theta\)-locally finite refinement. Hence \(\{\overline{V_{x}}^{\text{Bc}}: x \in X\}\) is an \(\theta\)-locally finite Bc-open refinement of \(U\).

3\(\rightarrow\)1

By lemma(3,14).

Lemma(3,16):

Let \(X\) be any Bc*-regular Bc-paracompact space. Then every Bc-open cover \((G_{s}: s \in S)\) has an \(\theta\)-locally finite Bc-open refinement \((U_{s}: s \in S)\) such that \(\overline{U_{s}}^{\text{Bc}} \subseteq G_{s}\) for each \(s \in S\).

Proof:

Let \((G_{s}: s \in S)\) be any Bc-open cover of \(X\). For \(x \in X, x \in G_{s}\), for some \(s \in S\) and since \(X\) is Bc*-regular, hence by proposition(3,16), there exists an \(\theta\)-open cover \(W = \{W_{x}: x \in X\}\) and \(\overline{W_{x}}^{\text{Bc}} \subseteq G_{s}\). Since \(X\) is Bc-paracompact, then \(W\) has an \(\theta\)-locally finite Bc-open refinement \((A_{h}: h \in H)\) for each \(h \in H\) choose \(s(h) \in S\) such that \(\overline{A_{h}}^{\text{Bc}} \subseteq G_{s(h)}\) and let \(U_{s} = \overline{U_{s}}^{\text{Bc}} \subseteq \overline{A_{h}}^{\text{Bc}} \subseteq G_{s}\). Since \(s(h) := A_{h} \subseteq \overline{U_{s}}^{\text{Bc}} = \overline{U_{s}}^{\text{Bc}} \subseteq \overline{A_{h}}^{\text{Bc}} \subseteq G_{s}\), then \((U_{s}: s \in S)\) is an \(\theta\)-locally finite Bc-open refinement of \((G_{s}: s \in S)\) such that \(\overline{U_{s}}^{\text{Bc}} \subseteq G_{s}\) for each \(s \in S\).

Definition(3,17):

Let \(X\) be a topological space and \(A \subseteq X\). \(A\) is said to be Bc-density set if \(\overline{A}^{\text{Bc}} = X\).

Definition(3,18):

A topological space \(X\) is said to be Bc-Lindelof if every Bc-open cover of \(X\) has a countable sub cover.

Theorem(3,19):

Let \(X\) be any Bc*-regular Bc-paracompact space such that there exists an \(\theta\)-open Bc-dense Bc-Lindelof set , then \(X\) is a Bc-Lindelof space.

Proof:

Let \(U = \{U_{x}: x \in S\}\) be any Bc-open cover of \(X\). For each \(x \in X, x \in U_{x}\), for some \(s \in S\). By lemma(3,16), there exists a Bc-open \(\theta\)-locally finite refinement \((V_{x}: s \in S)\) of \(U\) such that \(\overline{V_{x}}^{\text{Bc}} \subseteq U_{x}\), for each \(s \in S\). Then \(\{V_{x}(A): s \in S\}\) is Bc-open cover of \(X\), by proposition(1,13). Since \(A\) is Bc-Lindelof , there exists a countable set \(S_{\alpha} \subseteq S\) such that \(A = \bigcup_{s \in S_{\alpha}} V_{s}\). Hence \(X = \overline{A}^{\text{Bc}} = \overline{\bigcup_{s \in S_{\alpha}} V_{s}}^{\text{Bc}} = \bigcup_{s \in S_{\alpha}} \overline{V_{s}}^{\text{Bc}} \subseteq \bigcup_{s \in S_{\alpha}} U_{x},\) hence \(X\) is Bc-Lindelof.

Lemma(3,20):

If \(U\) is an \(\theta\)-open covering of a topological space product \(X \times Y\) of a Bc-paracompact space \(X\) and an \(\theta\)-compact space , then \(U\) has a refinement of the form \(\{V_{x}^{\alpha} \times G_{\alpha}: i = 1,\ldots, n_{a}\}\), where \(\{G_{\alpha}: \alpha \in A\}\) is an \(\theta\)-locally finite Bc-open covering of \(X\), and for each \(\alpha\), \(G_{\alpha} = \{G_{\alpha}(i) = 1,\ldots, n_{a}\}\) is a finite \(\theta\)-open covering of \(Y\).

Proof:

Let \(x\) be a point of \(X\). Since \(Y\) is an \(\theta\)-compact there exists an \(\theta\)-open neighborhood \(W_{x}\) of \(x\) and a finite \(\theta\)-open covering \(G_{\alpha}\) of \(Y\) such that \(W_{x} \times G_{\alpha}\) is contained in some member of \(U\) if \(G_{\alpha} \in G_{\alpha}\). Let \(\{V_{x}^{\alpha}: \alpha \in A\}\) be an \(\theta\)-locally finite Bc-open refinement of open covering \(\{W_{x}^{\alpha}: x \in X\}\) of the Bc-paracompact space \(X\). For \(\alpha \in A\) choose \(x \in X\) such that \(V_{x}^{\alpha} \subseteq W_{x}^{\alpha}\) and let \(G_{\alpha} = \{G_{\alpha}(i) = 1,\ldots, n_{a}\}\). Then \(\{V_{x}^{\alpha}\}\) is a Bc-open refinement of \(U\).

Proposition(3,21):

The product of a Bc-paracompact space and an \(\theta\)-compact space is a Bc-paracompact space.

Proof:

Let \(X\) be a Bc-paracompact space and \(Y\) be an \(\theta\)-compact space and let \(U\) be an \(\theta\)-open covering of the topological product \(X \times Y\). Then by lemma(3,20) \(U\) has a Bc-open refinement of the form \(\{V_{x}^{\alpha} \times G_{\alpha}(i): i = 1,\ldots, n_{a}\}\), where \(\{G_{\alpha}(i): i \in A\}\) is an \(\theta\)-locally finite Bc-open refinement of \(Y\), for each \(i \in A\). Therefore, \(X \times Y\) is a Bc-paracompact space.

Definition(3,22):

A space \(X\) is said to be nearly Bc-paracompact space if each \(\theta\)-regular open covering of \(X\) has an \(\theta\)-locally finite Bc-open refinement.
Lemma (3.23):
Let X be any almost Bc^*-regular nearly Bc-paracompact space. Then every Bc-regular open cover $\{G_s : s \in S\}$ has an θ-locally finite Bc-regular open refinement $\{V_s : s \in S\}$ such that $V_s \subseteq G_s$ for each $s \in S$.

Proof:
Let $\{G_s : s \in S\}$ be any Bc-regular open cover of X. For $x \in X, x \in G_s$, for some $s \in S$ and since X is almost Bc^*-regular, hence by proposition (2.10), there exists an θ-regular open cover $W = \{W_x : x \in X\}$ and $W_x^{BC} \subseteq G_s$. Since X is nearly Bc-paracompact, then W has an θ-locally finite Bc-open refinement $\{A_h : h \in H\}$ for each $h \in H$ choose $s(h) \in S$ such that $A_h^{BC} \subseteq G_{s(h)}$ and let $U_s = \bigcup_{s(h)=s} A_h$. Since $U_{s(h)=s} = \bigcup_{s(h)=s} A_h^{BC} = \bigcup_{s(h)=s} A_h^{BC} \subseteq G_s$, then $U_s \subseteq \bigcup_{s(h)=s} U_{s(h)=s}^{BC}$, hence $U_s \subseteq \bigcup_{s(h)=s} U_{s(h)=s}^{BC} \subseteq \bigcup_{s(h)=s} U_{s(h)=s}^{BC} \subseteq G_{s(h)}$. Let $V_s = \bigcup_{s(h)=s} U_{s(h)=s}^{BC}$, then $\{V_s : s \in S\}$ is an θ-locally finite Bc-regular open refinement of $\{G_s : s \in S\}$ such that $V_s^{BC} \subseteq G_s$ for each $s \in S$.

Theorem (3.24):
For any space X, the following are equivalent:
1) X is nearly Bc-paracompact.
2) Every θ-regular open cover of X has a Bc-regular open θ-locally finite refinement.
3) Every θ-regular open cover of X has a Bc-regular closed θ-locally finite refinement.

Proof:
1\Rightarrow2
Let \mathcal{U} be any θ-regular open cover of X, then \mathcal{U} has an θ-locally finite Bc-open refinement \mathcal{V}. Consider the family $\mathcal{W} = \{\bigcup_{s(h)=s} U_{s(h)=s}^{BC} : V \in \mathcal{V}\}$ is an θ-locally finite Bc-regular open refinement of \mathcal{U}.
2\Rightarrow3
It is clear since every Bc-regular open set is Bc-regular closed set.
3\Rightarrow1
From lemma (3.8).

References