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Abstract: This paper considers a batch gradient method with 𝑳𝑳𝟏𝟏 𝟐𝟐⁄  regularization for Pi –sigma neural networks. In origin, by 
introducing an  𝑳𝑳𝟏𝟏 𝟐𝟐⁄  regularization term involves absolute value and is not differentiable into the error function. A key point of this 
paper, specifically, the smoothing  𝑳𝑳𝟏𝟏 𝟐𝟐⁄  regularization is a term proportional to the norm of the weights. The role of the smoothing  𝑳𝑳𝟏𝟏 𝟐𝟐⁄  
regularization term is to control the magnitude of the weights and to improve the generalization performance of the networks. The 
weights are proved to be bounded during the training process, thus the conditions that are required for convergence analysis of batch 
gradient method in literature are simplified. 
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1. Introduction 
 
In fact, higher order neural networks (HONN) have been 
widely applied in many applications such as intention to 
enhance the nonlinear descriptive capacity of the feed 
forward multilayer perceptron networks [1 - 6]. Pi-sigma 
neural network (PSNN) is a class of higher-order feed 
forward polynomial neural network and is known to provide 
inherently more powerful mapping abilities than traditional 
feed forward neural networks. The (PSNN) modules are 
widely used for pattern classification and approximation 
problems [7 - 9]. By  adding a penalty term of the error 
function [10 - 16]. The penalty has become a common 
practice to make the network weights keeping bounded 
during the training process. The boundedness of the weights 
is an obvious fact when a convergence training method ‘’ 
such as the quadratic programming used in support vector 
machines in [17] is used to minimize the cost function with 
penalty term. When using online gradient method to 
minimize the cost of error function with regularization 
penalty term, the boundedness of weights is not obvious 
because the decrease of the cost function and convergence of 
the method during the learning process are usually obtained 
by first condition the network weights are bounded. Recently, 
most of the studies have been focused on the L1\2 
regularization penalty term adding to the error function usual 
is not smooth at the origin, which causes difficulty in the 

convergence analysis to speed this drawback, we use the 
modified L1\2 regularization term is proposed by the usual one 
at the origin [18, 19], in [18] the L1\2 regularization term is 
introduced into the batch gradient learning algorithm for the 
pruning of FNN.  Some convergence analyses of the online 
gradient method (OGM for short) with fixed order inputs 
(OGM_F) and with special stochastic inputs (OGM_SS) for 
PSNN were respectively presented in [20,21]. Especially, 
convergence analysis of the online gradient learning 
algorithm with L1\2 regularization term for the pruning of 
FNN [19]. However, in [19 - 21] obtain both the weak and 
strong convergence results. The main purpose of this paper , 
in doing so, by prove that the weights are indeed bounded 
deterministically in the batch gradient learning algorithm 
process by adding a smoothing L1\2 regularization, a term 
proportional to the norm of the weights. That the weights of 
the network will keep bounded in the training process. 
 
The rest of this paper is organized as follows. The network 
model and the batch gradient method with smoothing L1\2 
regularization are described in the section. The convergence 
of this algorithm is discussed and a convergence theorem is 
established in section 3. and conclusion in section 4. 
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PSNN and Randomized Batch gradient with smoothing 
L1\2 regularization 
 
Structure of PSNN:  
 
Consider a three- layer network consisting of 𝑃𝑃 input node, 𝑁𝑁 
hidden nodes, and 1-output nodes. Suppose that by 𝜔𝜔𝑘𝑘 =
�𝜔𝜔𝑘𝑘1, … ,𝜔𝜔𝑘𝑘𝑘𝑘 �

𝑇𝑇 ∈ 𝑅𝑅𝑘𝑘  be the weight vector between the input 
units and the hidden unit(𝑘𝑘 = 1,2, … ,𝑁𝑁). 
𝜉𝜉𝑗𝑗 = �𝜉𝜉1

𝑗𝑗 , 𝜉𝜉2
𝑗𝑗 , … 𝜉𝜉𝑘𝑘

𝑗𝑗 � ∈ ℝ𝑘𝑘 , stands for input vector. To simplify 
the presentation, we write all the weight parameters in a 
compact form = (𝜔𝜔1

𝑇𝑇 , … ,𝜔𝜔𝑁𝑁
𝑇𝑇 ) ∈ 𝑅𝑅𝑁𝑁𝑃𝑃  . The weights on the 

connections between the product node and the summation 
node are fixed to one. We have included a special input unit 
𝜉𝜉𝑃𝑃 = −1 , corresponding to the biases 𝜔𝜔𝑛𝑛𝑘𝑘  . Let 𝑔𝑔:ℝ → ℝ be 
a transfer function for the hidden and output node, which is 
typically, but not necessarily, a sigmoid function. For any 
given input 𝜉𝜉 and weight 𝜔𝜔 , the output of the network is 

𝑦𝑦 = 𝑔𝑔 ��(𝜔𝜔𝑖𝑖 . 𝜉𝜉𝑗𝑗 )
𝑁𝑁

𝑖𝑖=1

�  (1) 

Randomized Batch gradient method for PSNN 
 
In general, the batch gradient method is a simple and efficient 
learning method for feed-forward neural networks. Usually 
PSNN and the networks with pi-sigma building blocks are 
also trained by it but with randomized modification. 

 
𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅 𝟏𝟏 ：A pi − sigms neural network 

 
Let {𝑥𝑥𝑗𝑗 , 𝑜𝑜𝑗𝑗 }𝑗𝑗=1

𝐽𝐽 ⊂ 𝑅𝑅𝑘𝑘 × 𝑅𝑅 is a given of training samples. The 
usual mean square error function for the network is 

𝐸𝐸�(𝜔𝜔) =
1
2
��𝑜𝑜𝑗𝑗 − 𝑔𝑔 ��(𝜔𝜔𝑖𝑖 . 𝜉𝜉𝑗𝑗 )

𝑁𝑁

𝑖𝑖=1

��

2

 = �𝑔𝑔𝑗𝑗

𝐽𝐽

𝑗𝑗=1

��(𝜔𝜔𝑖𝑖 . 𝜉𝜉𝑗𝑗 )
𝑁𝑁

𝑖𝑖=1

�  (2)
𝐽𝐽

𝑗𝑗=1

 

Where 𝑔𝑔𝑗𝑗 (𝑡𝑡) = 1
2
�𝑜𝑜𝑗𝑗 − 𝑔𝑔(𝑡𝑡)�

2
 (1 ≤ 𝑗𝑗 ≤ 𝐽𝐽, 𝑡𝑡 ∈ ℝ). 

 
Batch gradient with 𝑳𝑳𝟏𝟏 𝟐𝟐⁄ regularization （BG L½） 
 
We denote the error function with L1/2 regularization penalty 
term is 

 𝐸𝐸(𝜔𝜔) =
1
2
��𝑜𝑜𝑗𝑗 − 𝑔𝑔 ��(𝜔𝜔𝑖𝑖 . 𝜉𝜉𝑗𝑗 )

𝑁𝑁

𝑖𝑖=1

��

2

 
𝐽𝐽

𝑗𝑗=1

+  𝜆𝜆 �|𝜔𝜔𝑘𝑘 |1 2⁄
𝑁𝑁

𝑘𝑘=1

 

= �𝑔𝑔𝑗𝑗

𝐽𝐽

𝑗𝑗=1

��(𝜔𝜔𝑖𝑖 . 𝜉𝜉𝑗𝑗 )
𝑁𝑁

𝑖𝑖=1

� +  𝜆𝜆 �|𝜔𝜔𝑘𝑘 |1 2⁄
𝑁𝑁

𝑘𝑘=1

 (3) 

The gradient of error function with L1/2 regularization respect 
to the weight vector 𝜔𝜔𝑘𝑘  (𝑘𝑘 = 1,2, …𝑁𝑁) is 

𝐸𝐸𝜔𝜔𝑘𝑘
( 𝜔𝜔) = �𝑔𝑔𝑗𝑗′ ��(𝜔𝜔𝑖𝑖 . 𝜉𝜉𝑗𝑗

𝑁𝑁

𝑖𝑖=1

)�
𝐽𝐽

𝑗𝑗=1

�(𝜔𝜔𝑖𝑖 . 𝜉𝜉𝑗𝑗 )
𝑁𝑁

𝑖𝑖=1
𝑖𝑖≠𝑘𝑘

𝜉𝜉𝑗𝑗 +
 𝜆𝜆 𝑠𝑠𝑔𝑔𝑛𝑛 (𝜔𝜔𝑘𝑘)

2 |𝜔𝜔𝑘𝑘 |1 2⁄  (4) 

Starting from an arbitrary initial weight𝑊𝑊0, the batch 
gradient method with L1\2 regularization update the weights 
iteratively by: 

𝜔𝜔𝑘𝑘
𝑚𝑚𝐽𝐽 +𝑗𝑗 =  𝜔𝜔𝑘𝑘

𝑚𝑚𝐽𝐽 +𝑗𝑗−1 − ηm∆j  𝜔𝜔𝑘𝑘
𝑚𝑚𝐽𝐽+𝑗𝑗−1 ,𝑚𝑚 = 0,1,2, … (5) 

and 

∆𝑗𝑗𝜔𝜔𝑘𝑘
𝑚𝑚𝐽𝐽 +𝑗𝑗−1 = 𝑔𝑔𝑗𝑗′ ��(𝜔𝜔𝑖𝑖

𝑚𝑚𝐽𝐽 +𝑗𝑗−1. 𝜉𝜉𝑗𝑗
𝑁𝑁

𝑖𝑖=1

)��(𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 +𝑗𝑗−1. 𝜉𝜉𝑗𝑗 )

𝑁𝑁

𝑖𝑖=1
𝑖𝑖≠𝑘𝑘

𝜉𝜉𝑗𝑗 +
 𝜆𝜆 𝑠𝑠𝑔𝑔𝑛𝑛 (𝜔𝜔𝑘𝑘

𝑚𝑚𝐽𝐽 +𝑗𝑗−1)

2 𝐽𝐽 �𝜔𝜔𝑘𝑘
𝑚𝑚𝐽𝐽 +𝑗𝑗−1�

1 2⁄  (6) 

Where 𝑘𝑘 = 1,2, , …𝑁𝑁 ；  and 𝜂𝜂𝑚𝑚 > 0 represents the learning 
rate. 
Smoothing L1\2 regularization (BGSL1\2) 
A modified L1\2 regularization term is proposed by smoothing 
the usual one at the origin, resulting in the following error 
function with a smoothing L1\2 regularization penalty term: 

𝐸𝐸(𝜔𝜔) = �𝑔𝑔ℓ

𝐽𝐽

ℓ=1

��(𝜔𝜔𝑖𝑖 . 𝜉𝜉𝑗𝑗 )
𝑁𝑁

𝑖𝑖=1

� +  +𝜆𝜆 �𝑓𝑓(𝜔𝜔𝑘𝑘)1 2⁄
𝑁𝑁

𝑘𝑘=1

 (7) 

Where 𝑓𝑓(𝑥𝑥) is a smooth function that approximates |𝑥𝑥|. for 
definiteness and simplicity, we choose 𝑓𝑓(𝑥𝑥) as a piecewise 
polynomial function: 

𝑓𝑓(𝑥𝑥) = �
|𝑥𝑥| 𝑖𝑖𝑓𝑓 |𝑥𝑥| ≥ 𝑎𝑎 

−
1

8𝑎𝑎3 𝑥𝑥
4 +

3
4𝑎𝑎

𝑥𝑥2 +
3
8

 , 𝑖𝑖𝑓𝑓 |𝑥𝑥| < 𝑎𝑎 (8) 
 

� 

Where a is a small positive constant. Then it is easy to get 
𝑓𝑓(𝑥𝑥) ∈ �

3
8
𝑎𝑎, +∞� ,𝑓𝑓′(𝑥𝑥) ∈ [−1, 1],𝑓𝑓′′ (𝑥𝑥) ∈ �0,

3
2𝑎𝑎
�  (9) 

The gradient of the error function can be written as (4) with 

𝐸𝐸𝜔𝜔𝑘𝑘
(𝜔𝜔) =  �𝑔𝑔𝑗𝑗′ ��(𝜔𝜔𝑖𝑖 . 𝜉𝜉𝑗𝑗

𝑁𝑁

𝑖𝑖=1

)�
𝐽𝐽

𝑗𝑗=1

�(𝜔𝜔𝑖𝑖 . 𝜉𝜉𝑗𝑗 )
𝑁𝑁

𝑖𝑖=1
𝑖𝑖≠𝑘𝑘

𝜉𝜉𝑗𝑗  +  
𝜆𝜆 𝑓𝑓′(𝜔𝜔𝑛𝑛𝑘𝑘 )

 2𝐽𝐽 𝑓𝑓 (𝜔𝜔𝑘𝑘)1 2⁄  (10) 

Where 𝜆𝜆 > 0 is a penalty parameter and 𝑘𝑘 = 1,2,3, …𝑁𝑁. 
 Starting from an arbitrary initial weight𝑊𝑊0, the batch 
gradient method with L1\2 regularization update the weights 
iteratively by 

𝜔𝜔𝑘𝑘
𝑚𝑚𝐽𝐽 +𝑗𝑗 =  𝜔𝜔𝑘𝑘

𝑚𝑚𝐽𝐽 +𝑗𝑗−1 − ηm∆j  𝜔𝜔𝑘𝑘
𝑚𝑚𝐽𝐽+𝑗𝑗−1 ,𝑚𝑚 = 0,1,2, … (11) 

and 

∆𝑗𝑗𝜔𝜔𝑘𝑘
𝑚𝑚𝐽𝐽 +𝑗𝑗−1 = 𝑔𝑔𝑗𝑗′ ��(𝜔𝜔𝑖𝑖

𝑚𝑚𝐽𝐽 +𝑗𝑗−1. 𝜉𝜉𝑗𝑗
𝑁𝑁

𝑖𝑖=1

)��(𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 +𝑗𝑗−1. 𝜉𝜉𝑗𝑗 )

𝑁𝑁

𝑖𝑖=1
𝑖𝑖≠𝑘𝑘

𝜉𝜉𝑗𝑗 +
𝜆𝜆 𝑓𝑓′(𝜔𝜔𝑘𝑘

𝑚𝑚)
2 𝐽𝐽 𝑓𝑓(𝜔𝜔𝑘𝑘

𝑚𝑚)1 2⁄  (12) 

Where 𝑘𝑘 = 1,2,3, …𝑁𝑁 ；  and 𝜂𝜂𝑚𝑚 > 0 represents the learning 
rate 
 
2. Main Results 
 
Suppose that K is any positive integer and consider the 
Euclidean space ℝ𝐾𝐾. For 𝑥𝑥 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝐾𝐾) 𝑇𝑇 and 𝑦𝑦 =
(𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝐾𝐾) 𝑇𝑇, we define 𝑥𝑥.𝑦𝑦 = ∑ 𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖𝐾𝐾

𝑖𝑖=1  , and ‖𝑥𝑥‖2 =
(𝑥𝑥 . 𝑥𝑥)2 , the following assumptions in this paper are 
described below: 
 
Assumption (A1) 
 
 �𝑔𝑔𝑗𝑗 (𝑡𝑡)�, �𝑔𝑔𝑗𝑗′ (𝑡𝑡)� ,�𝑔𝑔𝑗𝑗′′ (𝑡𝑡)� (𝑗𝑗 = 1,2, … . , 𝐽𝐽) are uniformly bounded for 
𝑡𝑡 ∈ ℝ . 
Assumption (A2) 
 0 < 𝜂𝜂𝑚𝑚 < 1, i.e., ∑ 𝜂𝜂𝑚𝑚∞

𝑚𝑚=0 < ∞, 
Assumption (A3) 
 𝜂𝜂 and 𝜆𝜆 are chosen to satisfy 0 < 𝜂𝜂 < 1

𝜆𝜆+𝐶𝐶1
 , where 

 𝐶𝐶1 =
𝜆𝜆𝜆𝜆
𝐽𝐽

(1 + 𝐶𝐶3𝜂𝜂0)2  + 𝐶𝐶4𝑁𝑁 +
1
2
𝐶𝐶𝐶𝐶5

2(1 + 𝑁𝑁𝐶𝐶3𝜂𝜂𝑚𝑚)2 +
1
2
𝐽𝐽𝐶𝐶(𝑁𝑁+1)(𝑁𝑁 − 1)𝐶𝐶4

2 

𝐶𝐶2 = 𝑚𝑚𝑎𝑎𝑥𝑥�𝐶𝐶7 + 𝐶𝐶7𝐶𝐶2,𝑗𝑗−1 𝑁𝑁(𝑗𝑗 − 1)𝜂𝜂0 ,𝐶𝐶2,𝑗𝑗−1� (13) 
 
Assumption (A4)  
The set Ω0 ∈ {𝑤𝑤 ∈  Ω:𝐸𝐸𝑤𝑤(𝑤𝑤) = 0} Contains finite points, where Ω 
is closed bounded region such that {𝜔𝜔𝑚𝑚 } ⊂ Ω . 
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Theorem 3.1 (boundedness Theorem).  
 
Suppose that the weight sequence {ωm } is generated by the 
algorithm (11) for any initial valueω0, that (A1) is valid, and 
then {ωm } is uniformly bounded. 
 
Theorem 3.2 (convergence Theorem).  
 
Suppose that the error function is given by (7), that the 
weight sequence {𝜔𝜔𝑚𝑚 } is generated by the algorithm (11) for 
any initial value𝜔𝜔0, and Assumption (A1) is valid.  
Then we have 
 (𝑎𝑎) 𝐸𝐸�𝜔𝜔(𝑚𝑚+1)𝐽𝐽 � ≤ 𝐸𝐸(𝜔𝜔𝑚𝑚𝐽𝐽 ),  
 (𝑏𝑏) There is 𝐸𝐸∗ ≥ 0 such that lim𝑚𝑚→∞ 𝐸𝐸(𝜔𝜔𝑚𝑚𝐽𝐽 ) = 𝐸𝐸∗ ; 
 (𝑐𝑐)  lim

𝑚𝑚→∞
�∆𝑗𝑗𝑚𝑚𝜔𝜔𝑖𝑖

𝑚𝑚𝐽𝐽 � = 0, lim
𝑚𝑚→∞

‖𝐸𝐸𝜔𝜔(𝜔𝜔𝑚𝑚𝐽𝐽 )‖ = 0. 

Moreover, if Assumption (A4) is valid, then we have the 
strong convergence: 
 (𝑑𝑑) There exists 𝜔𝜔∗ ∈ Ω0 such that lim𝑚𝑚→∞ 𝜔𝜔𝑚𝑚 = 𝜔𝜔∗. 
 
Proofs 
  
 The next two lemmas will be used to prove our convergence 
result. Their proofs are omitted since they are quite similar to 
those of lemma 3.5 in [22] and Theorem 3.5.10 in [23], 
respectively. 
 
Lemma 4.1  
 
Suppose that the learning rate 𝜂𝜂𝑚𝑚  satisfies (A2) and that the 
sequence {𝑎𝑎𝑚𝑚 }(𝑚𝑚 ∈ ℕ) satisfies 𝑎𝑎𝑚𝑚 ≥ 0 
∑ 𝜂𝜂𝑚𝑚∞
𝑚𝑚=0 𝑎𝑎𝑚𝑚

𝛽𝛽 < ∞ and |𝑎𝑎𝑚𝑚+1 − 𝑎𝑎𝑚𝑚 | ≤ 𝜇𝜇𝜂𝜂𝑚𝑚  for some 
constants 𝛽𝛽 𝑎𝑎𝑛𝑛𝑑𝑑 𝜇𝜇 . Then we have lim𝑚𝑚→∞ 𝑎𝑎𝑚𝑚 = 0. 
 
Lemma 4.2  
 
Let 𝐹𝐹:Φ ⊂ 𝑅𝑅𝑘𝑘 → R (p ≥ 1) be continuous for a bounded 
closed region Φ. if the set Φ0 = {𝑥𝑥 ∈ Φ: Fx(x) = 0} has finite 
points and the sequence {𝑥𝑥𝑛𝑛} ∈ Φ 
satisfy: lim𝑛𝑛→∞‖𝐹𝐹𝑥𝑥(𝑥𝑥𝑛𝑛)‖ = 0 and lim𝑛𝑛→∞‖𝑥𝑥𝑛𝑛−1 − 𝑥𝑥𝑛𝑛‖ = 0.  
Then, there exists 𝑥𝑥∗ ∈ Φ0 such that lim𝑛𝑛→∞ 𝑥𝑥𝑛𝑛 = 𝑥𝑥∗ 
In this work, by choosing an initial 𝜂𝜂0 ∈ (0�, �1] and positive 
constant𝛽𝛽, we inductively, determine 𝜂𝜂𝑚𝑚  in (16) by (cf. [22]) 

1
𝜂𝜂𝑚𝑚+1

=
1
𝜂𝜂𝑚𝑚

+ 𝛽𝛽 ,𝑚𝑚 = 0,1,2 … . . (14) 
First, we define 𝑟𝑟𝑘𝑘𝑚𝑚 ,𝑗𝑗 = ∆𝑗𝑗𝑚𝑚𝜔𝜔𝑘𝑘

𝑚𝑚𝐽𝐽+𝑗𝑗−1 − ∆𝑗𝑗𝑚𝑚𝜔𝜔𝑘𝑘
𝑚𝑚𝐽𝐽   

𝑟𝑟𝑘𝑘
𝑚𝑚 ,𝑗𝑗 = 0 , 1 ≤ 𝑘𝑘 ≤ 𝑁𝑁,𝑚𝑚 = 0,1,2, … (15) 

and 𝑑𝑑𝑘𝑘𝑚𝑚 ,𝑗𝑗 = 𝜔𝜔𝑘𝑘
𝑚𝑚𝐽𝐽 +𝑗𝑗−1 − 𝜔𝜔𝑘𝑘

𝑚𝑚𝐽𝐽  (16) 
Then, we have 

𝑑𝑑𝑘𝑘
𝑚𝑚 ,𝑗𝑗 = 𝜂𝜂𝑚𝑚 �∆𝑡𝑡𝑚𝑚𝜔𝜔𝑘𝑘

𝑚𝑚𝐽𝐽+𝑗𝑗
𝑗𝑗

𝑡𝑡=1

= 𝜂𝜂𝑚𝑚 ��∆𝑡𝑡𝑚𝑚𝜔𝜔𝑘𝑘
𝑚𝑚𝐽𝐽 + 𝑟𝑟𝑘𝑘

𝑡𝑡 ,𝑚𝑚�
𝑗𝑗

𝑡𝑡=1

 (17) 

 1 ≤ 𝑗𝑗 ≤ 𝐽𝐽, 1 ≤ 𝑘𝑘 ≤ 𝑁𝑁,𝑚𝑚 = 0,1,2 … 
Then, by the error function (7), we have 

𝐸𝐸�𝜔𝜔(𝑚𝑚+1)𝐽𝐽 � = �𝑔𝑔𝑗𝑗 ���𝜔𝜔𝑖𝑖
(𝑚𝑚+1)𝐽𝐽 . 𝜉𝜉𝑗𝑗�

𝑁𝑁

𝑖𝑖=1

� + 𝜆𝜆�𝑓𝑓�𝜔𝜔𝑘𝑘
(𝑚𝑚+1)𝐽𝐽 �

1
2

𝑁𝑁

𝑘𝑘=1

 (18) 
𝐽𝐽

𝑗𝑗=1

 

 

𝐸𝐸(𝜔𝜔𝑚𝑚𝐽𝐽 ) = �𝑔𝑔𝑗𝑗 ���𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 . 𝜉𝜉𝑗𝑗 �

𝑁𝑁

𝑖𝑖=1

�  + 𝜆𝜆�𝑓𝑓�𝜔𝜔𝑘𝑘
𝑚𝑚𝐽𝐽 �

1
2

𝑁𝑁

𝑘𝑘=1

 (19) 
𝐽𝐽

𝑗𝑗=1

 

 
Lemma 4.3  
 
Let 𝑡𝑡 {𝜂𝜂𝑚𝑚 } 𝑏𝑏𝑏𝑏 𝑔𝑔𝑖𝑖𝑔𝑔𝑏𝑏𝑛𝑛 𝑏𝑏𝑦𝑦 (15).𝑇𝑇ℎ𝑏𝑏𝑟𝑟𝑏𝑏 ℎ𝑜𝑜𝑜𝑜𝑑𝑑 

 0 < 𝜂𝜂𝑚𝑚 < 𝜂𝜂𝑚𝑚+1 ≤ 1,𝑚𝑚 = 1,2, … … (20) 

 
𝜏𝜏
𝑚𝑚

< 𝜂𝜂𝑚𝑚 <
𝜌𝜌
𝑚𝑚

, 𝜏𝜏 =
𝜂𝜂0

1 + 𝜂𝜂0𝛽𝛽
, 𝜌𝜌 =

1
𝛽𝛽

,𝑚𝑚 = 1,2, … . . (21) 
 
Proof.  
 
This lemma is easy to validate by virtue of (15) and 𝜂𝜂0 ∈
(0�, �1], see Lemma 4 in [24] and Lemma 2.1. in [25] 
 
Lemma 4.4  
 
Suppose that (A1) and (A2) are satisfied. Then, there exists 
constants𝐶𝐶2,𝐶𝐶3,𝐶𝐶4 > 0, such that for any 𝑚𝑚 = 0,1, … 

�𝑟𝑟𝑘𝑘
𝑗𝑗 ,𝑚𝑚� ≤ 𝐶𝐶2 ���∆𝑡𝑡𝑚𝑚𝜔𝜔𝑖𝑖

𝑚𝑚𝐽𝐽 �
𝑗𝑗−1

𝑡𝑡=1

𝑁𝑁

𝑖𝑖=1

 , 2 ≤ 𝑗𝑗 ≤ 𝐽𝐽, 1 ≤ 𝑘𝑘 ≤ 𝑁𝑁 (22) 

��𝑟𝑟𝑘𝑘
𝑗𝑗 ,𝑚𝑚�

𝑗𝑗

𝑡𝑡=1

≤ 𝐶𝐶3 ���∆𝑡𝑡𝑚𝑚𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 �

𝑗𝑗

𝑡𝑡=1

𝑁𝑁

𝑖𝑖=1

 , 1 ≤ 𝑗𝑗 ≤ 𝐽𝐽, 1 ≤ 𝑘𝑘 ≤ 𝑁𝑁 (23) 

�𝑑𝑑𝑘𝑘
𝑚𝑚 ,𝑗𝑗 � ≤ 𝐶𝐶4 ���∆𝑡𝑡𝑚𝑚𝜔𝜔𝑖𝑖

𝑚𝑚𝐽𝐽 �
𝑗𝑗

𝑡𝑡=1

𝑁𝑁

𝑖𝑖=1

 ,1 ≤ 𝑗𝑗 ≤ 𝐽𝐽, 1 ≤ 𝑘𝑘 ≤ 𝑁𝑁 (24) 

 
Proof.  
 
By Assumption (A2), (18) and Cauchy- Schwartz inequality, 
we have 
 ���𝜔𝜔𝑖𝑖

𝑚𝑚𝐽𝐽+𝑗𝑗 . 𝜉𝜉𝑗𝑗 �
𝑁𝑁

𝑖𝑖=1

−��𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 . 𝜉𝜉𝑗𝑗 �

𝑁𝑁

𝑖𝑖=1

�

≤ ���𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽+𝑗𝑗 . 𝜉𝜉𝑗𝑗 �

𝑁𝑁−1

𝑖𝑖=1

� ��𝜔𝜔𝑁𝑁
𝑚𝑚𝐽𝐽+𝑗𝑗 − 𝜔𝜔𝑁𝑁

𝑚𝑚𝐽𝐽 �𝜉𝜉𝑗𝑗 �

+ ���𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽+𝑗𝑗 . 𝜉𝜉𝑗𝑗 �

𝑁𝑁−2

𝑖𝑖=1

�𝜔𝜔𝑁𝑁
𝑚𝑚𝐽𝐽 . 𝜉𝜉𝑗𝑗 �� ��𝜔𝜔𝑁𝑁−1

𝑚𝑚𝐽𝐽+𝑗𝑗 − 𝜔𝜔𝑁𝑁−1
𝑚𝑚𝐽𝐽 �𝜉𝜉𝑗𝑗 �…

+ ���𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 . 𝜉𝜉𝑗𝑗 �

𝑁𝑁

𝑖𝑖=1

� ��𝜔𝜔1
𝑚𝑚𝐽𝐽 +𝑗𝑗 − 𝜔𝜔1

𝑚𝑚𝐽𝐽 �𝜉𝜉𝑗𝑗 �

≤ 𝐶𝐶5 ����∆𝑡𝑡𝑚𝑚𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽�

𝑗𝑗

𝑡𝑡=1

𝑁𝑁

𝑖𝑖=1

+ ���𝑟𝑟𝑖𝑖
𝑡𝑡 ,𝑚𝑚�

𝑗𝑗

𝑡𝑡=1

𝑁𝑁

𝑖𝑖=1

 �  (25) 

Where 𝐶𝐶5 = 𝐶𝐶𝑁𝑁  (1 ≤ 𝑗𝑗 ≤ 𝐽𝐽,𝑚𝑚 = 0,1,2, … ) 
Similarly, easy to get 

���𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 +𝑗𝑗 . 𝜉𝜉ℓ�

𝑁𝑁

𝑖𝑖=1
𝑖𝑖≠𝑘𝑘

−��𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 . 𝜉𝜉𝑗𝑗 �

𝑁𝑁

𝑖𝑖=1
𝑖𝑖≠𝑘𝑘

� ≤ 𝐶𝐶6 ����∆𝑡𝑡𝑚𝑚𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 �

𝑗𝑗

𝑡𝑡=1

𝑁𝑁

𝑖𝑖=1

+ ���𝑟𝑟𝑖𝑖
𝑡𝑡 ,𝑚𝑚�

𝑗𝑗

𝑡𝑡=1

𝑁𝑁

𝑖𝑖=1

 �  (26) 

Where 𝐶𝐶6 = 𝐶𝐶𝑁𝑁−1 (1 ≤ 𝑗𝑗 ≤ 𝐽𝐽,𝑚𝑚 = 0,1,2, … ) 
By Assumption (A1), (A2), (12), (16), (26), (27) and differential 
mean value theorem, for 1 ≤ 𝑗𝑗 ≤ 𝐽𝐽, 1 ≤ 𝑘𝑘 ≤ 𝑁𝑁,𝑚𝑚 = 0,1,2, …, we 
have 

 �𝑟𝑟𝑘𝑘
𝑗𝑗 ,𝑚𝑚� = �𝜂𝜂𝑚𝑚𝑔𝑔𝑗𝑗′ ��(𝜔𝜔𝑖𝑖

𝑚𝑚𝐽𝐽+𝑗𝑗−1. 𝜉𝜉𝑗𝑗
𝑁𝑁

𝑖𝑖=1

)��(𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 +𝑗𝑗−1. 𝜉𝜉𝑗𝑗 )

𝑁𝑁

𝑖𝑖=1
𝑖𝑖≠𝑘𝑘

𝜉𝜉𝑗𝑗

− 𝜂𝜂𝑚𝑚𝑔𝑔𝑗𝑗′ ��(𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 . 𝜉𝜉𝑗𝑗

𝑁𝑁

𝑖𝑖=1

)��(𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 . 𝜉𝜉𝑗𝑗 )𝜉𝜉𝑗𝑗

𝑁𝑁

𝑖𝑖=1
𝑖𝑖≠𝑘𝑘

�  

+
𝜆𝜆
2𝐽𝐽
��

 𝑓𝑓′�𝜔𝜔𝑘𝑘
𝑚𝑚𝐽𝐽+𝑗𝑗−1�

 𝑓𝑓�𝜔𝜔𝑘𝑘
𝑚𝑚𝐽𝐽 +𝑗𝑗−1�

1 2⁄ −
 𝑓𝑓′(𝜔𝜔𝑘𝑘

𝑚𝑚 )
 𝑓𝑓(𝜔𝜔𝑘𝑘𝑚𝑚 )1 2⁄ �� 

 ≤ �𝜂𝜂𝑚𝑚𝑔𝑔𝑗𝑗′ ��(𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 . 𝜉𝜉𝑗𝑗

𝑁𝑁

𝑖𝑖=1

)���(𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 +𝑗𝑗−1. 𝜉𝜉𝑗𝑗 )

𝑁𝑁

𝑖𝑖=1
𝑖𝑖≠𝑘𝑘

−�(𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 . 𝜉𝜉𝑗𝑗

𝑁𝑁

𝑖𝑖=1
𝑖𝑖≠𝑘𝑘

� 𝜉𝜉𝑗𝑗� 

 +�𝜂𝜂𝑚𝑚𝑔𝑔𝑗𝑗′ ′�𝑡𝑡𝑗𝑗 ,𝑚𝑚���(𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽+𝑗𝑗−1. 𝜉𝜉𝑗𝑗

𝑁𝑁

𝑖𝑖=1
𝑖𝑖≠𝑘𝑘

)���(𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 +𝑗𝑗−1. 𝜉𝜉𝑗𝑗

𝑁𝑁

𝑖𝑖=1

)

−�(𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 . 𝜉𝜉𝑗𝑗 )

𝑁𝑁

𝑖𝑖=1

� 𝜉𝜉𝑗𝑗� +
𝜆𝜆
2𝐽𝐽
𝜂𝜂𝑚𝑚𝐹𝐹′′ �𝑡𝑡𝑘𝑘 ,𝑗𝑗 ��𝑑𝑑𝑘𝑘

𝑚𝑚 ,𝑗𝑗 �  
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 ≤ 𝐶𝐶7𝜂𝜂𝑚𝑚 ����∆𝑡𝑡𝑚𝑚𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 �

𝑗𝑗

𝑡𝑡=1

𝑁𝑁

𝑖𝑖=1

+ ���𝑟𝑟𝑖𝑖
𝑡𝑡 ,𝑚𝑚�

𝑗𝑗

𝑡𝑡=1

𝑁𝑁

𝑖𝑖=1

�  (27) 

Where 𝑡𝑡𝑖𝑖,𝑚𝑚 ∈ ℝ is on the line segment between 𝜔𝜔𝑖𝑖
𝑚𝑚 . 𝜉𝜉𝑗𝑗  and 

𝜔𝜔𝑖𝑖
𝑚𝑚+1. 𝜉𝜉𝑗𝑗  and 𝐶𝐶7 = 𝐶𝐶6𝐶𝐶2 + 𝐶𝐶5𝐶𝐶𝑁𝑁+1  + 𝜆𝜆𝜆𝜆 𝐽𝐽⁄ . 

By mathematical induction to prove the following formula 
�𝑟𝑟𝑘𝑘

𝑗𝑗 ,𝑚𝑚� ≤ 𝐶𝐶2,𝑗𝑗 𝜂𝜂𝑚𝑚 ���∆𝑡𝑡𝑚𝑚𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 �

𝑗𝑗−1

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

 ,2 ≤ 𝑗𝑗 ≤ 𝐽𝐽, 1 ≤ 𝑘𝑘 ≤ 𝑁𝑁 ,𝑚𝑚 = 0,1,2, … (28) 

Where 𝐶𝐶2,𝑗𝑗  constant. 
By (16) and (28), for 𝑗𝑗 = 2 the (29) is clearly established. 
Suppose that 𝑗𝑗 < 𝐽𝐽 (2 < 𝑗𝑗 ≤ 𝐽𝐽) ,(27) establish. Then, proof 
for (29) also founded. By (28) and (21), we have 

�𝑟𝑟𝑘𝑘
𝑗𝑗 ,𝑚𝑚� ≤ 𝐶𝐶7𝜂𝜂𝑚𝑚 ���∆𝑡𝑡𝑚𝑚𝜔𝜔𝑖𝑖

𝑚𝑚𝐽𝐽 �
𝐽𝐽−1

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

+ 𝐶𝐶7𝐶𝐶2,𝑗𝑗−1𝜂𝜂𝑚𝑚2 ��� ��∆𝑡𝑡1𝜔𝜔𝑖𝑖1
𝑚𝑚𝐽𝐽 �

𝐽𝐽−1

𝑡𝑡1=1

𝑁𝑁

𝑖𝑖1=1

𝐽𝐽−1

𝑡𝑡=1

𝑁𝑁

𝑖𝑖=1

 

 ≤ 𝐶𝐶2,𝑗𝑗  𝜂𝜂𝑚𝑚 ���∆𝑡𝑡𝑚𝑚𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 �

𝐽𝐽−1

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

 1 ≤ k ≤ 𝑁𝑁,𝑚𝑚 = 0,1,2, … 

Where 𝐶𝐶2,𝑗𝑗  = 𝑚𝑚𝑎𝑎𝑥𝑥�𝐶𝐶7 + 𝐶𝐶7𝐶𝐶2,𝑗𝑗−1 𝑁𝑁(𝑗𝑗 − 1)𝜂𝜂0 ,𝐶𝐶2,𝑗𝑗−1�. 
Therefore,𝑗𝑗 = 𝐽𝐽, (29) established. By the mathematical 
induction for 2 ≤ 𝑗𝑗 ≤ 𝐽𝐽 , then (29) it is also establish. 
Suppose 𝐶𝐶2 = 𝐶𝐶2,𝐽𝐽  in (23) easily to get (29). 
Next, by (16) and (23), we have 

��𝑟𝑟𝑘𝑘
𝑗𝑗 ,𝑚𝑚�

𝑗𝑗

𝑡𝑡=1

= ��𝑟𝑟𝑘𝑘
𝑗𝑗 ,𝑚𝑚�

𝑗𝑗

𝑡𝑡=2

≤�𝐶𝐶3𝜂𝜂𝑚𝑚

𝑗𝑗

𝑡𝑡=2

���∆𝑡𝑡𝑚𝑚𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 �

𝑡𝑡−1

𝑡𝑡1=1

𝑁𝑁

𝑖𝑖=1

 

 ≤ 𝐶𝐶2(𝑗𝑗 − 1)ηm ���∆𝑡𝑡𝑚𝑚𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 �

j

𝑡𝑡=1

𝑁𝑁

𝑖𝑖=1

  

≤ 𝐶𝐶3𝜂𝜂𝑚𝑚 ���∆𝑡𝑡𝑚𝑚𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 �

j

𝑡𝑡=1

𝑁𝑁

𝑖𝑖=1

 (29) 

Where 𝐶𝐶3 = 𝐶𝐶2(𝐽𝐽 − 1) and 2 ≤ 𝑗𝑗 ≤ 𝐽𝐽, 1 ≤ 𝑘𝑘 ≤ 𝑁𝑁,𝑚𝑚 = 0,1,2, … 
 Finally, (24) established on the basis of proof (25). By Lemma 
4.3 for 2 ≤ 𝑗𝑗 ≤ 𝐽𝐽, 1 ≤ 𝑘𝑘 ≤ 𝑁𝑁,𝑚𝑚 = 0,1,2, …, 
We have 

 �𝜔𝜔𝑘𝑘
𝑚𝑚𝐽𝐽+𝑗𝑗 − 𝜔𝜔𝑘𝑘

𝑚𝑚𝐽𝐽 � ≤��∆𝑡𝑡𝑚𝑚𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽�

𝑗𝑗

𝑡𝑡=1

+ �‖𝑟𝑟𝑖𝑖
𝑡𝑡,𝑚𝑚‖

𝑗𝑗

𝑡𝑡=1

 

 ≤���∆𝑡𝑡𝑚𝑚𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 �

𝑗𝑗

𝑡𝑡=1

𝑁𝑁

𝑖𝑖=1

+ 𝐶𝐶3𝜂𝜂𝑚𝑚 ���∆𝑡𝑡𝑚𝑚𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 �

𝑗𝑗

𝑡𝑡=1

𝑁𝑁

𝑖𝑖=1

 

 = �1 + 𝐶𝐶3𝜂𝜂𝑚𝑚����∆𝑡𝑡𝑚𝑚𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽�

𝑗𝑗

𝑡𝑡=1

𝑁𝑁

𝑖𝑖=1

 

 ≤ 𝐶𝐶4 ���∆𝑡𝑡𝑚𝑚𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽�

𝑗𝑗

𝑡𝑡=1

𝑁𝑁

𝑖𝑖=1

 (30) 

Where𝐶𝐶4 = 1 + 𝐶𝐶3𝜂𝜂0, the proof it is completed  
 
Proof (𝒐𝒐𝒐𝒐 𝑻𝑻𝑻𝑻𝑻𝑻𝒐𝒐𝑻𝑻𝑻𝑻𝑻𝑻 𝟏𝟏).  
 
See [19], and By the Assumption (A2), i.e., ∑ 𝜂𝜂𝑚𝑚∞

𝑚𝑚=0 < ∞, 
we can easily get that the sequence 𝑆𝑆𝑚𝑚 = 𝜂𝜂0 + 𝜂𝜂1 + ⋯+ 𝜂𝜂𝑚𝑚−1 
is convergence sequence. By the Cauchy’s test for 
convergence, for ∀ℰ > 0, there exists a positive integer 
𝑁𝑁1 ∈ ℕ, for∀𝑚𝑚 > 𝑁𝑁1 ,∀𝑘𝑘 ∈ ℕ, we have 
 �𝑆𝑆𝑚𝑚+𝑘𝑘 − 𝑆𝑆𝑚𝑚� = 𝜂𝜂𝑚𝑚 + 𝜂𝜂𝑚𝑚+1 + ⋯+ 𝜂𝜂𝑚𝑚+𝑘𝑘−1 < 𝜀𝜀 

 �𝑆𝑆𝑚𝑚+𝑘𝑘+1 − 𝑆𝑆𝑚𝑚+1� = 𝜂𝜂𝑚𝑚+1 + 𝜂𝜂𝑚𝑚+2 + ⋯+ 𝜂𝜂𝑚𝑚+𝑘𝑘 < 𝜀𝜀 
By (11), (12) and Assumption (A2) result in 

 �𝜔𝜔𝑘𝑘
𝑚𝑚𝐽𝐽 +𝑗𝑗−1 − 𝜔𝜔𝑘𝑘

𝑚𝑚𝐽𝐽 � = 𝜂𝜂𝑚𝑚�∆𝑗𝑗𝑚𝑚𝜔𝜔𝑘𝑘
𝑚𝑚𝐽𝐽 �  

≤ 𝜂𝜂𝑚𝑚 ��𝑔𝑔𝑗𝑗′ ��(𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽+𝑗𝑗−1. 𝜉𝜉𝑗𝑗

𝑁𝑁

𝑖𝑖=1

)�
𝐽𝐽

𝑗𝑗=1

�(𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 +𝑗𝑗−1. 𝜉𝜉𝑗𝑗 )

𝑁𝑁

𝑖𝑖=1
𝑖𝑖≠𝑘𝑘

𝜉𝜉𝑗𝑗�  (31) 

By Assumption (A1), there is a constant 𝐶𝐶6 > 0 such that all 
(𝑚𝑚 ∈ ℕ. ; 𝑗𝑗 = 1,2, . . , 𝐽𝐽) 

𝐶𝐶7 = 𝑠𝑠𝑠𝑠𝑘𝑘 ��𝑔𝑔𝑗𝑗′ ��(𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 +𝑗𝑗−1. 𝜉𝜉𝑗𝑗

𝑁𝑁

𝑖𝑖=1

)�
𝐽𝐽

𝑗𝑗=1

�(𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽+𝑗𝑗−1. 𝜉𝜉𝑗𝑗 )

𝑁𝑁

𝑖𝑖=1
𝑖𝑖≠𝑘𝑘

�𝜉𝜉𝑗𝑗  � �  (32) 

In addition, for all 𝑓𝑓(𝑥𝑥) ∈ �3
8
𝑎𝑎, +∞� , 𝑓𝑓′(𝑥𝑥) ∈ [−1, 1] holds. 

By the updating (31), we have 

�𝜔𝜔𝑘𝑘
𝑚𝑚𝐽𝐽 +𝑗𝑗 − 𝜔𝜔𝑘𝑘

𝑚𝑚𝐽𝐽 +𝑗𝑗−1� ≤ 𝜂𝜂𝑚𝑚 ���𝑔𝑔𝑗𝑗′ ��(𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 +𝑗𝑗−1. 𝜉𝜉𝑗𝑗

𝑁𝑁

𝑖𝑖=1

)�
𝐽𝐽

𝑗𝑗=1

��𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 +𝑗𝑗−1. 𝜉𝜉𝑗𝑗 �

𝑁𝑁

𝑖𝑖=1
𝑖𝑖≠𝑘𝑘

𝜉𝜉𝑗𝑗  

+
𝜆𝜆 𝑓𝑓′(𝜔𝜔𝑘𝑘

𝑚𝑚𝐽𝐽 +𝑗𝑗−1)
2𝐽𝐽 𝑓𝑓(𝜔𝜔𝑘𝑘

𝑚𝑚𝐽𝐽 +𝑗𝑗−1)1 2⁄ �� 

≤ 𝜂𝜂𝑚𝑚 �𝐶𝐶7 +
𝜆𝜆

3𝑎𝑎
√6𝑎𝑎�  ≤  𝜂𝜂𝑚𝑚𝐶𝐶6 (33) 

Where 𝐶𝐶6 = 𝐶𝐶7 + (𝜆𝜆 3𝑎𝑎⁄ )√6 𝑎𝑎 . Then 
 �𝜔𝜔𝑘𝑘

(𝑚𝑚+1)𝐽𝐽+𝑗𝑗 − 𝜔𝜔𝑘𝑘
𝑚𝑚𝐽𝐽+𝑗𝑗 � ≤ �𝜔𝜔𝑘𝑘

(𝑚𝑚+1)𝐽𝐽+𝑗𝑗 − 𝜔𝜔𝑘𝑘
(𝑚𝑚+1)𝐽𝐽+𝑗𝑗−1�

+ �𝜔𝜔𝑘𝑘
(𝑚𝑚+1)𝐽𝐽+𝑗𝑗−1 − 𝜔𝜔𝑘𝑘

(𝑚𝑚+1)𝐽𝐽+𝑗𝑗−2� + ⋯
+ �𝜔𝜔𝑘𝑘

(𝑚𝑚+1)𝐽𝐽+1 − 𝜔𝜔𝑘𝑘
(𝑚𝑚+1)𝐽𝐽 � + �𝜔𝜔𝑘𝑘

𝑚𝑚𝐽𝐽 +𝐽𝐽 − 𝜔𝜔𝑘𝑘
𝑚𝑚𝐽𝐽 +𝑗𝑗−1�

+ �𝜔𝜔𝑘𝑘
𝑚𝑚𝐽𝐽 +𝑗𝑗−1 − 𝜔𝜔𝑘𝑘

𝑚𝑚𝐽𝐽 +𝑗𝑗−2� + ⋯+ �𝜔𝜔𝑘𝑘
𝑚𝑚𝐽𝐽+𝑗𝑗+1 − 𝜔𝜔𝑘𝑘

𝑚𝑚𝐽𝐽 +𝑗𝑗 �
≤ (𝑗𝑗𝜂𝜂𝑚𝑚+1 + (𝐽𝐽 − 𝑗𝑗)𝜂𝜂𝑚𝑚 )𝐶𝐶6 (34) 

Since 
 �𝜔𝜔𝑘𝑘

(𝑚𝑚+𝑘𝑘)𝐽𝐽+𝑗𝑗 − 𝜔𝜔𝑘𝑘
𝑚𝑚𝐽𝐽+𝑗𝑗 � ≤ �𝜔𝜔𝑘𝑘

(𝑚𝑚+𝑘𝑘)𝐽𝐽+𝑗𝑗 − 𝜔𝜔𝑘𝑘
(𝑚𝑚+𝑘𝑘−1)𝐽𝐽+𝑗𝑗 �

+ �𝜔𝜔𝑘𝑘
(𝑚𝑚+𝑘𝑘−1)𝐽𝐽+𝑗𝑗 − 𝜔𝜔𝑘𝑘

(𝑚𝑚+𝑘𝑘−2)𝐽𝐽+𝑗𝑗 � + ⋯
+ �𝜔𝜔𝑘𝑘

(𝑚𝑚+1)𝐽𝐽+𝑗𝑗 − 𝜔𝜔𝑘𝑘
𝑚𝑚𝐽𝐽+𝑗𝑗 � 

 ≤ 𝐶𝐶6𝑗𝑗�𝜂𝜂𝑚𝑚+𝑘𝑘 + 𝜂𝜂𝑚𝑚+𝑘𝑘−1 + ⋯ . +𝜂𝜂𝑚𝑚+1�
+ 𝐶𝐶2(𝐽𝐽 − 𝑗𝑗)�𝜂𝜂𝑚𝑚+𝑘𝑘−1 + 𝜂𝜂𝑚𝑚+𝑘𝑘−2 + ⋯ . +𝜂𝜂𝑚𝑚�  
≤ 𝐽𝐽𝐶𝐶6𝜀𝜀 (35) 

Therefore, the weight sequence �𝜔𝜔𝑘𝑘
𝑚𝑚 J+j� is a convergence 

sequence. 
 By the properties of convergence sequence, �𝜔𝜔𝑘𝑘

𝑚𝑚𝐽𝐽+𝑗𝑗 � must be 
a bounded sequence, so we get �𝜔𝜔𝑘𝑘

𝑚𝑚𝐽𝐽+𝑗𝑗 � (𝑚𝑚 = 0,1, … , 𝑘𝑘 =
1,2,..,𝑃𝑃, 𝑗𝑗=1,2,..,𝐽𝐽 is also bounded. Then we obtain the 
uniform boundedness of the weight sequence �𝜔𝜔𝑘𝑘

𝑚𝑚𝐽𝐽+𝑗𝑗 � . 
Namely, there exists a constant 𝜆𝜆 > 0 such that 

�𝜔𝜔𝑘𝑘
𝑚𝑚𝐽𝐽 +𝑗𝑗 � ≤ 𝜆𝜆, ,𝑚𝑚 = 0,1,2, … ; 1 ≤ 𝑗𝑗 ≤ 𝐽𝐽; 1 ≤ 𝑘𝑘 ≤ 𝑃𝑃 (36) 

Naturally, there also exists a constant 𝜆𝜆� > 0 such that 
�∆𝑘𝑘𝑚𝑚𝜔𝜔𝑘𝑘

𝑚𝑚𝐽𝐽+𝑘𝑘� ≤ 𝜆𝜆�  ， 𝑘𝑘 = 1,2, … . . , 𝐽𝐽. (37) 
This proof is completed. 
 
Proof �𝒐𝒐𝒐𝒐 𝑻𝑻𝑻𝑻𝑻𝑻𝒐𝒐𝑻𝑻𝑻𝑻𝑻𝑻 𝟐𝟐�.  
 
Using Taylor expansion to first and second orders, we have 

 �(𝜔𝜔𝑖𝑖
(𝑚𝑚+1)𝐽𝐽 . 𝜉𝜉𝑗𝑗

𝑁𝑁

𝑖𝑖=1

) = �(𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 . 𝜉𝜉𝑗𝑗

𝑁𝑁

𝑖𝑖=1

) + ���(𝜔𝜔𝑖𝑖
(𝑚𝑚+1)𝐽𝐽 . 𝜉𝜉𝑗𝑗

𝑁𝑁

𝑖𝑖=1
𝑖𝑖≠𝑘𝑘

) �𝜔𝜔𝑘𝑘
(𝑚𝑚+1)𝐽𝐽 − 𝜔𝜔𝑘𝑘

𝑚𝑚𝐽𝐽 � 𝜉𝜉𝑗𝑗�
𝑁𝑁

𝑘𝑘=1

 

 +
1
2

� � � 𝑡𝑡𝑖𝑖 ,𝑚𝑚 ,𝑗𝑗

𝑁𝑁

𝑖𝑖=1
𝑖𝑖≠𝑘𝑘1,𝑘𝑘2

���𝜔𝜔𝑘𝑘1

(𝑚𝑚+1)𝐽𝐽 − 𝜔𝜔𝑘𝑘1
𝑚𝑚𝐽𝐽 ����𝜔𝜔𝑘𝑘2

(𝑚𝑚+1)𝐽𝐽 − 𝜔𝜔𝑘𝑘2
𝑚𝑚𝐽𝐽 ��

𝑁𝑁

𝑘𝑘1,𝑘𝑘2=1
𝑘𝑘1≠𝑘𝑘2

 𝜉𝜉𝑗𝑗  (38) 

Where 𝑡𝑡𝑖𝑖,𝑚𝑚 ,𝑗𝑗 ∈ ℝ is on the line segment between 𝜔𝜔𝑖𝑖
𝑚𝑚 . 𝜉𝜉𝑗𝑗  and 

𝜔𝜔𝑖𝑖
𝑚𝑚+1. 𝜉𝜉𝑗𝑗 . Again applying the Taylor expansion and noting 

(11) and (38), we have 
𝑔𝑔𝑗𝑗 ��(𝜔𝜔𝑖𝑖

𝑚𝑚𝐽𝐽+𝑗𝑗 . 𝜉𝜉𝑗𝑗
𝑁𝑁

𝑖𝑖=1

)� = 𝑔𝑔𝑗𝑗 ��(𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 . 𝜉𝜉𝑗𝑗

𝑁𝑁

𝑖𝑖=1

)� 

 +𝑔𝑔𝑗𝑗′ ��(𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 . 𝜉𝜉𝑗𝑗

𝑁𝑁

𝑖𝑖=1

)����(𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽+𝑗𝑗 . 𝜉𝜉ℓ

𝑁𝑁

𝑖𝑖=1
𝑖𝑖≠𝑘𝑘

)�𝜔𝜔𝑘𝑘
𝑚𝑚𝐽𝐽 +𝑗𝑗 − 𝜔𝜔𝑘𝑘

𝑚𝑚𝐽𝐽 �𝜉𝜉𝑗𝑗�
𝑁𝑁

𝑘𝑘=1

 

 + 
1
 2

� � � 𝑡𝑡𝑖𝑖 ,𝑚𝑚 ,𝑗𝑗

𝑁𝑁

𝑖𝑖=1
𝑖𝑖≠𝑘𝑘1,𝑘𝑘2

���𝜔𝜔k1

𝑚𝑚𝐽𝐽+𝑗𝑗 − 𝜔𝜔𝑘𝑘1
𝑚𝑚𝐽𝐽 ����𝜔𝜔𝑘𝑘2

𝑚𝑚𝐽𝐽 +𝑗𝑗 − 𝜔𝜔𝑘𝑘2
𝑚𝑚𝐽𝐽 �� 𝜉𝜉𝑗𝑗

𝑁𝑁

𝑘𝑘1,𝑘𝑘2=1
𝑘𝑘1≠𝑘𝑘2

 

 + 
1
2
𝑔𝑔𝑗𝑗′′ �𝑡𝑡𝑖𝑖 ,𝑚𝑚���(𝜔𝜔𝑖𝑖

𝑚𝑚𝐽𝐽+𝑗𝑗 . 𝜉𝜉𝑗𝑗
𝑁𝑁

𝑖𝑖=1

) −�(𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 . 𝜉𝜉𝑗𝑗

𝑁𝑁

𝑖𝑖=1

)�

2

 (39) 
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Where 𝑡𝑡𝑖𝑖,𝑚𝑚 ∈ ℝ is on the line segment between 𝜔𝜔𝑖𝑖
𝑚𝑚 . 𝜉𝜉𝑗𝑗  

and𝜔𝜔𝑖𝑖
𝑚𝑚+1. 𝜉𝜉𝑗𝑗 , by combination (7), (11), and (12) and (39), we 

have 

𝐸𝐸�𝜔𝜔(𝑚𝑚+1)𝐽𝐽 � − 𝐸𝐸(𝜔𝜔𝑚𝑚𝐽𝐽 ) ≤ −
1
𝜂𝜂𝑚𝑚

���∆𝑗𝑗𝑚𝑚𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 �

2
𝐽𝐽

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

 

 +
𝜆𝜆
2𝐽𝐽
���

𝑓𝑓′�𝜔𝜔𝑘𝑘
𝑚𝑚𝐽𝐽 �

 𝑓𝑓�𝜔𝜔𝑘𝑘
𝑚𝑚𝐽𝐽 �

1 2⁄ + F′′ �𝑡𝑡𝑛𝑛 ,𝑘𝑘 ,𝑚𝑚 �𝑑𝑑𝑘𝑘
𝑚𝑚 ,𝑗𝑗
�

𝐽𝐽

ℓ=1

𝑁𝑁

𝑘𝑘=1

�𝜔𝜔𝑘𝑘
(𝑚𝑚+1)𝐽𝐽 − 𝜔𝜔𝑘𝑘

𝑚𝑚𝐽𝐽 � 

 +𝛿𝛿1 + 𝛿𝛿2 + 𝛿𝛿3 (40) 
Where  

 𝛿𝛿1 = �𝑔𝑔𝑗𝑗′ ��(𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 . 𝜉𝜉𝑗𝑗

𝑁𝑁

𝑖𝑖=1

)����(𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 . 𝜉𝜉𝑗𝑗

𝑁𝑁

𝑖𝑖=1
𝑖𝑖≠𝑛𝑛

)�𝜔𝜔𝑘𝑘
(𝑚𝑚+1)𝐽𝐽 − 𝜔𝜔𝑘𝑘

𝑚𝑚𝐽𝐽 �𝜉𝜉𝑗𝑗�
𝑁𝑁

𝑘𝑘=1

𝐽𝐽

ℓ=1

 

  𝛿𝛿2 = �  
1
2
𝑔𝑔𝑗𝑗′′ �𝑡𝑡𝑖𝑖 ,𝑚𝑚′ � ��(𝜔𝜔𝑖𝑖

(𝑚𝑚+1)𝐽𝐽 . 𝜉𝜉𝑗𝑗
𝑁𝑁

𝑖𝑖=1

) −�(𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 . 𝜉𝜉𝑗𝑗

𝑁𝑁

𝑖𝑖=1

)�

2𝐽𝐽

ℓ=1

 

 𝛿𝛿3  =
1
 2
�𝑔𝑔𝑗𝑗′ ��(𝜔𝜔𝑖𝑖

𝑚𝑚𝐽𝐽 . 𝜉𝜉𝑗𝑗
𝑁𝑁

𝑖𝑖=1

)� � � � 𝑡𝑡𝑖𝑖 ,𝑚𝑚 ,𝑗𝑗

𝑁𝑁

𝑖𝑖=1
𝑖𝑖≠𝑘𝑘1,𝑘𝑘2

���𝜔𝜔k1

(𝑚𝑚+1)𝐽𝐽
𝑁𝑁

𝑘𝑘1,𝑘𝑘2=1
𝑘𝑘1≠𝑘𝑘2

𝐽𝐽

ℓ=1

− 𝜔𝜔𝑘𝑘1
𝑚𝑚𝐽𝐽 ����𝜔𝜔𝑘𝑘2

(𝑚𝑚+1)𝐽𝐽 − 𝜔𝜔𝑘𝑘2
𝑚𝑚𝐽𝐽 �� 𝜉𝜉𝑗𝑗  

Where 𝑡𝑡𝑖𝑖,𝑚𝑚′  𝑎𝑎𝑛𝑛𝑑𝑑 𝑡𝑡𝑛𝑛 ,𝑘𝑘 ,𝑚𝑚 ,𝑗𝑗  lies in between 𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 . 𝑥𝑥𝑗𝑗  

and𝜔𝜔𝑖𝑖
(𝑚𝑚+1)𝐽𝐽 . 𝑥𝑥𝑗𝑗 , and from (23), (24) and (45), 𝜆𝜆 =

√6
�𝑎𝑎3

 ,𝑎𝑎𝑛𝑛𝑑𝑑 𝐹𝐹(𝑥𝑥) ≡ �𝑓𝑓(𝑥𝑥)�
1
2 . Note that 

 𝐹𝐹′(𝑥𝑥) =
𝑓𝑓′(𝑥𝑥)

2�𝑓𝑓(𝑥𝑥)
 

 𝐹𝐹′′ (𝑥𝑥) =
2𝑓𝑓′′ (𝑥𝑥).𝑓𝑓(𝑥𝑥) − [𝑓𝑓′(𝑥𝑥)]2

4[𝑓𝑓(𝑥𝑥)]
3
2

 

 ≤
𝑓𝑓′′(𝑥𝑥)

2�𝑓𝑓(𝑥𝑥)
≤

√6
2√𝑎𝑎3

 

By (25), (30) and Lemma 4.3 for 1 ≤ 𝑗𝑗 ≤ 𝐽𝐽, 1 ≤ 𝑘𝑘 ≤ 𝑁𝑁,𝑚𝑚 =
0,1,2, …, and Cauchy- Schwartz Theorem, we have 
𝜆𝜆
2𝐽𝐽
𝐹𝐹′′ �𝑡𝑡𝑛𝑛 ,𝑘𝑘 ,𝑚𝑚 ���∑ ∑ �𝑑𝑑𝑘𝑘

𝑚𝑚 ,𝑗𝑗 �𝐽𝐽
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1 .�𝜔𝜔𝑘𝑘

(𝑚𝑚+1)𝐽𝐽 −𝜔𝜔𝑘𝑘
𝑚𝑚𝐽𝐽 ���

≤ 𝜆𝜆𝜆𝜆���𝑑𝑑𝑘𝑘
𝑚𝑚 ,𝑗𝑗 �。

𝐽𝐽

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

�𝜔𝜔𝑘𝑘
(𝑚𝑚+1)𝐽𝐽 − 𝜔𝜔𝑘𝑘

𝑚𝑚𝐽𝐽 � 

 ≤
 𝜆𝜆𝜆𝜆
𝐽𝐽
𝐶𝐶4

2 ���∆𝑗𝑗𝑚𝑚𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 �

2
𝐽𝐽

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

  

≤ 𝐶𝐶10 ���∆𝑗𝑗𝑚𝑚𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 �

2
𝐽𝐽

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

 (41) 

  
Where 𝐶𝐶10 = 𝜆𝜆𝜆𝜆(1 + 𝐶𝐶3𝜂𝜂0)2/𝐽𝐽 and 𝑡𝑡𝑛𝑛 ,𝑘𝑘 ,𝑚𝑚  lies in between 
𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 . 𝑥𝑥𝑗𝑗  and 𝜔𝜔𝑖𝑖

(𝑚𝑚+1)𝐽𝐽 . 𝑥𝑥𝑗𝑗  
By Assumption (A1), (A2), (12) and (25), we have 

 |𝛿𝛿1| ≤
1
𝜂𝜂𝑚𝑚

���  
𝐽𝐽

𝑗𝑗=1

�𝑔𝑔𝑗𝑗′ ��(𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 . 𝜉𝜉𝑗𝑗

𝑁𝑁

𝑖𝑖=1

)��(𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 . 𝜉𝜉𝑗𝑗

𝑁𝑁

𝑖𝑖=1
𝑖𝑖≠𝑘𝑘

)𝜉𝜉𝑗𝑗
𝑁𝑁

𝑖𝑖=1

+
𝜆𝜆
2𝐽𝐽

𝑓𝑓′�𝜔𝜔𝑘𝑘
𝑚𝑚𝐽𝐽 � 

 𝑓𝑓�𝜔𝜔𝑘𝑘
𝑚𝑚𝐽𝐽 �

1 2⁄ �� �𝜔𝜔𝑘𝑘
(𝑚𝑚+1)𝐽𝐽 − 𝜔𝜔𝑘𝑘

𝑚𝑚𝐽𝐽 � 

 ≤ 𝐶𝐶11 ���∆𝑗𝑗𝑚𝑚𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 �

2
𝐽𝐽

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

 (42) 

Where𝐶𝐶11 = 𝐶𝐶4𝑁𝑁𝐽𝐽. 
By Assumption (A1), (21), (24), and (26) for  
𝑚𝑚 = 0,1,2, … ., we have 

 |𝛿𝛿2| ≤
1
2
𝐶𝐶𝐶𝐶5

2(1 + 𝑁𝑁𝐶𝐶3𝜂𝜂𝑚𝑚)2 ���∆𝑗𝑗𝑚𝑚𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 �

2
𝐽𝐽

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

 

≤ 𝐶𝐶12 ���∆𝑗𝑗𝑚𝑚𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 �

2
𝐽𝐽

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

 (43) 

Where𝐶𝐶12 = 1
2
𝐶𝐶𝐶𝐶5

2(1 + 𝑁𝑁𝐶𝐶3𝜂𝜂𝑚𝑚)2. 
Using Assumption (A1), (A2), (25) and Cauchy- Schwartz 
Theorem, we get 

 |𝛿𝛿2| ≤
1
2
𝐶𝐶𝑁𝑁−1 ��� � ��𝜔𝜔k1

(𝑚𝑚+1)𝐽𝐽 − 𝜔𝜔𝑘𝑘1
𝑚𝑚𝐽𝐽 ��𝜔𝜔𝑘𝑘2

(𝑚𝑚+1)𝐽𝐽 − 𝜔𝜔𝑘𝑘2
𝑚𝑚𝐽𝐽 � 𝜉𝜉𝑗𝑗 �

𝑁𝑁

𝑘𝑘1,𝑘𝑘2=1
𝑘𝑘1≠𝑘𝑘2

𝐽𝐽

𝑗𝑗=1

�� 

 ≤
1
2
𝐽𝐽𝐶𝐶𝑁𝑁+1 � � �𝑑𝑑𝑘𝑘1

𝑚𝑚 ,𝑗𝑗 �
𝑁𝑁

𝑘𝑘1,𝑘𝑘2=1
𝑘𝑘1≠𝑘𝑘2

𝐽𝐽

ℓ=1

. �𝑑𝑑𝑘𝑘2

𝑚𝑚 ,𝑗𝑗 � 

 ≤
1
2
𝐽𝐽𝐶𝐶(𝑁𝑁+1)(𝑁𝑁 − 1)𝐶𝐶4

2 �����∆𝑗𝑗𝑚𝑚𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 �

𝐽𝐽

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

�

2𝑁𝑁

𝑘𝑘=1

 

 ≤ 𝐶𝐶13 ���∆𝑗𝑗𝑚𝑚𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 �

2
𝐽𝐽

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

 ,𝑚𝑚 = 0,1,2, … (44) 

Where𝐶𝐶13 = 𝐽𝐽𝐶𝐶(𝑁𝑁+1)(𝑁𝑁 − 1)𝐶𝐶4
2/2. 

Substituting (41) - (44) into (40), then, we have 
 𝐸𝐸�𝜔𝜔(𝑚𝑚+1)𝐽𝐽 � − 𝐸𝐸(𝜔𝜔𝑚𝑚𝐽𝐽 ) ≤ �−

1
𝜂𝜂𝑚𝑚

+ 𝐶𝐶10 + 𝐶𝐶11 + 𝐶𝐶12 + 𝐶𝐶13����∆𝑗𝑗𝑚𝑚𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 �

2
𝐽𝐽

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

 

 ≤ −�
1
𝜂𝜂𝑚𝑚

− 𝐶𝐶1����∆𝑗𝑗𝑚𝑚𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 �

2
𝐽𝐽

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

 

 ≤ 0. (45) 
This completes the proof to statement (𝑖𝑖) of theorem 3.2. 
 
Proof to (𝒊𝒊𝒊𝒊) of theorem 3.2. 
 
From the conclusion of (𝑖𝑖) , we know that the nonnegative 
sequence {𝐸𝐸(𝑊𝑊𝑚𝑚)} is monotone. However, it is also bounded 
below. Hence there must exist 𝐸𝐸∗ ≥ 0 such 
thatlim𝑘𝑘→∞ 𝐸𝐸(𝑊𝑊𝑚𝑚) = 𝐸𝐸∗. The proof to (𝑖𝑖𝑖𝑖) it thus 
completed. 
 
Proof to (𝒊𝒊𝒊𝒊𝒊𝒊) of theorem 3.2.  
 
It is follows from Assumption (A4) that 𝛽𝛽 > 0. Taking 
𝛽𝛽 = 1

𝜂𝜂𝑚𝑚
− 𝐶𝐶1 and using (45), we suppose that 𝜆𝜆 is positive 

integer, we have 
 𝐸𝐸�𝑊𝑊(𝜆𝜆+1𝐽𝐽)� ≤ 𝐸𝐸(𝑊𝑊𝜆𝜆𝐽𝐽 ) − 𝛽𝛽���∆𝑗𝑗𝑚𝑚𝜔𝜔𝑖𝑖

𝜆𝜆𝐽𝐽 �
2

𝐽𝐽

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

≤ ⋯

≤ 𝐸𝐸(𝑊𝑊0) − 𝛽𝛽 ����∆𝑗𝑗𝑚𝑚𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 �

2
𝐽𝐽

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

𝜆𝜆

𝑚𝑚=0

. 
Since𝐸𝐸(𝑊𝑊𝑚𝑚+1) ≥ 0, we have 

 𝛽𝛽 ����∆𝑗𝑗𝑚𝑚𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 �

2
𝐽𝐽

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

𝜆𝜆

𝑚𝑚=0

≤  𝐸𝐸(𝜔𝜔0) ≤ ∞. 
Let𝜆𝜆 → ∞, then 

 ����∆𝑗𝑗𝑚𝑚𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 �

2
𝐽𝐽

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

∞

𝑚𝑚=0

<
1
𝛽𝛽
𝐸𝐸(𝑊𝑊0) < ∞. 

Thus results in 

 lim
𝑚𝑚→∞

���∆𝑗𝑗𝑚𝑚𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 �

2
𝐽𝐽

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

= 0. 

From (10) - (12) and (A1) it is easily get 
lim
𝑚𝑚→∞

�∆𝑗𝑗𝑚𝑚𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 � = 0, lim

𝑚𝑚→∞
�𝐸𝐸𝜔𝜔𝑘𝑘

(𝜔𝜔𝑚𝑚𝐽𝐽 )� = 0 (46) 
The proof to (𝑖𝑖𝑖𝑖𝑖𝑖) is thus completed. 
 
Proof to (𝒊𝒊𝒊𝒊) of theorem 3.2.  
 
Note that the error function 𝐸𝐸(𝑊𝑊) defined in (7) is 
continuous and differentiable. According to (46), (A5) and 
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Lemma 4.2, we can easily get the desired results, i.e., there 
exists a point 𝜔𝜔∗ ∈ Ω0 such that 

lim
𝑚𝑚→∞

�𝜔𝜔𝑖𝑖
𝑚𝑚𝐽𝐽 � = 𝜔𝜔𝑖𝑖

∗  
This completes the proof to (𝑖𝑖𝑔𝑔) 
 
3. Conclusions 
 
In this paper, we investigate a Batch Gradient Method with 
Smoothing 𝐿𝐿1 2⁄  Regularization for Pi-sigma Neural 
Networks. The Smoothing 𝐿𝐿1 2⁄  Regularization is a term 
proportional to the magnitude of the weights. We prove under 
moderate conditions that the weights of the networks are 
keeping bounded in the learning process. The both weak and 
convergence results require the boundedness of the weights is 
precondition. 
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