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Abstract: In this paper we introduce a new lifetime distribution by the Poisson distribution with drifted supporting set {1,2,3,...} is used 
for extending the families of the linear exponential distribution. The properties of this distribution are discussed in this paper. The 
maximum likelihood estimates of the unknown parameters are obtained.  
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1. Introduction  
 
Probability distributions are often used in survival analysis 
for modeling data, because they offer insight into the nature 
of various parameters and functions, particularly the failure 
rate (or hazard) function. Throughout the last decades, a 
considerable amount of research was devoted to the creation 
of lifetime models with more than the classical increasing 
and decreasing hazard rates; apparently, the motivation for 
this trend was to provide with more freedom of choice in the 
description of complex practical situations [1–6]. 
  
The linear exponential (LE) distribution, having exponential 
and Rayleigh distributions as sub-models, is a very well 
known distribution for modeling lifetime data and for 
modeling phenomenon with linearly increasing failure rates. 
However, the LE distribution does not provide a reasonable 
parametric fit for modeling phenomenon with decreasing, 
non linear increasing, or non-monotone failure rates such as 
the bathtub shape, which are common in firmware reliability 
modeling, biological studies, see Lai et al. [7]and Zhang et 
al. [8]. 
 
In [9], a method is given, which uses the Poisson distribution 
is used to add a new parameter to the exponential and 
Weibull distributions. 
  
In this paper, we introduce a new distribution with three 
parameters, referred to as the Poisson distribution is used to 
add a new parameter to the linear exponential distribution. 
Several properties are derived, such as density, failure rate, 
inverse failure rate, mean lifetime, moments, residual 
lifetime, Furthermore, estimation by maximum likelihood  
 
2. The New Reliability Function 
 

The linear failure rate distribution ),( βαLFRD with 
the parameters 0α and 0β , will be denoted by, 
has the following reliability function[9]  
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The probability density function (pdf) corresponding to 
),;( βαtF  is given by 
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Let F  be a one-parameter survival function and N be a 
Poisson random variable with 
parameter λ, having the drifted supporting set {1,2,3,...}, or 
equivalently let M be a 
Poisson variable with parameter λ and N = M + 1. For all 
t∈R, define a new reliability function by [10]. 
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or equivalently reliability function and cumulative density 
function (cdf) by  
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For the new reliability function, it is true that )(tG is 

decreasing in λ, as λ becomes nearer 0, )(tG takes after 

)(tF , otherwise we have RttFtG ∈≤ ),()(  

The cdf of a new three parametric exponential family as 
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and the reliability function is 
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Let the distribution function ),;( βαtF  in (1) have a 
density function ),;( βαtf  and denote its failure rate 

function by ),;(/),;( βαβα tFtf  , and similarly of 

),,;( λβαtG  by failure rate function ),,;( λβαtz . The 
pdf corresponding to ),,;( λβαtG  is given by 
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and the failure rate function is 
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 For some values of λ, α  and β, the density functions 
),,;( λβαtg are drawn in Figure 1 and their reliability 

functions ),,;( λβαtG  are drawn in Figure 2. 

 
 

 Figure 1: Probability density functions ),,;( λβαtg for 
α=1, β=2.5, λ=3 (solid line), α=0, β=2.5, λ=3 (dashed line), 

and α=1, β= 0, λ=3 (dotted line). 
 

 
Figure 2: Reliability functions ),,;( λβαtG  for α=1, 
β=2.5, λ=3 (solid line), α=0, β=2.5, λ=3 (dashed line), and 

α=1, β= 0, λ=3 (dotted line). 
 

respectively. Recently, it is observed, see [11], that the 
reversed hazard function plays an important role in the 
reliability analysis. The reversed hazard function of the 

),,;( λβαtG is 
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The mean residual lifetime for a new three parametric exponential family distribution is given by [12] 
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3. Statistical Properties 
 
In this section we provide some of basic statistical 
properties of the ),,;( λβαtg . 
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3.1. Quintile, median and mode 
 
The quintile  of the ),,;( λβαtg  is the real solution 

of the following equation: ),,;( λβαqtG -q=0 

thus 
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Using (11), the median of the ),,;( λβαtg  can be 
obtained, by setting q =1/2, then 
for α=1, β=2.5, λ=3 , we find 0.0463196 t0.5 ≈   

. 

The mode of ),,;( λβαtg  can be obtained as a solution 
of the following non-linear equation with respect to t. 
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It is not possible to obtain the explicit solution in the 
general case. It has to be obtained numerically. For 
different special cases, the explicit forms may be 
obtained. 
 

3.2 Moments  
 
If T has the ),,;( λβαtg distribution, then mth moment of 
T, is given as follows: 
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for m = 1,2, . . ., where Γ(.) is the gamma function. 
 
For β=0 , α > 0: 

The moments of the new extended exponential distribution 
are given by 
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So that, the mean and variance of 
),,;( λβαtg respectively, are  
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For α =0 , β >0: The moments of the new extended Rayleigh distribution are 
given by 
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3.3. Order Statistics  
 
It will also be useful to derive the pdf of the rth order 
statistic T(r) of a random sample T1,.., Tn drawn from the 
distribution was proposed by equation (5) with parameters 
α, β and λ. From [13], the pdf of T(r) is given by 
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where B(., .) is the beta function. 
Using tth βα +=)(  , 2/)( 2tttH βα += , and 
substituting (5), (6) and (7) into (16), we get 
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4. Parameter Estimations 
 
In this section, we derive the maximum likelihood 
estimates of the unknown parameters α, β and λ of 

),,;( λβαtg based on a complete sample. Let us assume 

that we have a simple random sample T1, T2,…..,.., Tn from 
),,;( λβαtg  The likelihood function of this sample is 
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The log-likelihood function becomes 

)1ln()()()ln(lnL )(
211

21 TTnnn eYnTTT βαλλβαβα +−++−−+−+=         (21)
 
 Setting the first partial derivatives of lnL with respect α, β and λ to zero, the likelihood equations are 
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 The maximum likelihood estimates can be obtained by 
solving the non-linear equations numerically for α, β and λ. 
This can be done using Mathematica and Maple, among 
other packages. The relatively large number of parameters 
can cause problems especially when the sample size is not 
large. A good set of initial values is essential. 
  
Asymptotic Confidence Bounds: Since the MLEs of the 
unknown parameters   cannot be obtained in closed 
forms, then it is not easy to derive the exact distributions of 
the MLE of these parameters. Thus, we derive the 
approximate confidence intervals of the parameters based on 
the asymptotic distributions of the MLE of the parameters. It 
is known that the asymptotic distribution of the MLE 

 is given by see [14], 

)I N(0,  )),,(),,(( -1
0→− λβαλβα


, where -1

0I  is the 
variance covariance matrix of the unknown parameters 
(  ), where  is the inverse of the observed 
information matrix 

            (25)  
thus  
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The derivatives in  are given as follows 
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The above approach is used to derive the  confidence intervals of the parameters   as in the following 
forms 

 
 (33) 

Here,  is the upper ( ) th percentile of the standard 
normal distribution. It should be mentioned here as it was 
pointed by a referee that if we do not make the assumption 
that the true parameter vector (  ) is an interior point 
of the parameter space then the asymptotic normality results 
will not hold. If any of the true parameter value is 0, then the 
asymptotic distribution of the maximum likelihood 
estimators is a mixture distribution, see for example [15] in 
this connection. In that case obtaining the asymptotic 
confidence intervals becomes quite difficult and it is not 
pursued here. 

5. Application 
  
 In this section we use the real data were (t1, t2,…,t10) = ( 31, 
43, 56, 65, 73, 82, 96, 101, 111, 135), we assume that these 
data follow the distribution ),,;( λβαtG . First we 
compute the maximum likelihood estimator(s) for the 
parameters ( ), finally, we compute the asymptotic 

confidence intervals of the parameters (  ). 
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 The MLE of the parameters is  =  

and by substituting the MLE of unknown parameters in 
equation (25), we get estimation of the variance covariance 
matrix as  
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0.0164            109.566 -             10614.2
      104.917-          108.725            10503.8
 109.075           107.081-              10307.4
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The approximate 95% two sided confidence intervals of the 
parameters (  ) 
 

Confidence intervals 
lower Upper Parameter 

Estimation 
Significance level 

4.0571 4.0829 α a=0.05 
2.1142 2.2579 β a=0.05 
0.1515 0.6535 λ a=0.05 

 
6. Conclusion 
 
The new distribution with three parameters, referred to as 
the Poisson distribution is used to add a new parameter to 
the linear exponential distribution given in this study. We 
discussed some reliability and statistical properties of new 
distribution. In this paper we have considered the problem of 
estimation of parameters of new distribution. Procedure for 
the maximum likelihood estimation has been discussed. 
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