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Abstract: Digital music has become prolific in the web in recent decades. Automated recommendation systems are necessary for users 
to discover music they love and for artists to reach suitable audience. When manual annotations and user preference data is lacking 
(e.g. for new artists) these systems must rely on content based methods. Besides powerful machine learning tools for classification and 
retrieval, a key elements for successful recommendation is the audio content representation. Good representations should catch 
informative musical patterns in the audio signal of songs. These representations should be to the point, to enable efficient (low storage, 
easy indexing, fast search) management of huge music repositories, and should also be easy and fast to assess, to enable real-time 
interaction with a user supplying new songs to the system. Before designing new audio features, the usage of traditional local features 
are explored, while adding a stage of encoding with a pre-computed codebook and a stage of pooling to get compact vectorial 
representations. 
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1. Introduction 
 
Digital music has become more accessible and abundant on 
the web and large scale systems for recommendation and 
exploration have become more popular. Since the availability 
of manual annotations and user preference data is limited 
(e.g. for new, unfamiliar, artists) industrial recommendation 
systems must incorporate content basedmethods, which 
interpret the actual audio content of music items and extract 
meaningful information from it. Content-based systems store 
information describingthe items, and retrieve items that are 
similar to those knownto be liked by the user. Items are 
typically representedby n-dimensional feature vectors. 
 
The most successful approaches to a wide variety of 
recommendation tasks including not just music, but books, 
movies, etc.- use collaborative filters (CF). Systems based on 
collaborative filters exploit the “wisdom of crowds” to infer 
similarities between items, and recommend new items to 
users by representing and comparing these items in terms of 
the people who use them. Within the domain of music 
information retrieval, recent studies have shown that CF 
systems consistently outperform alternative methods for 
playlist generation and semantic annotation. However, 
collaborative filters suffer from the dreaded “cold start” 
problem: a new item cannot be recommended until it has 
been purchased, and it is less likely to be purchased if it is 
never recommended. Thus, only a tiny fraction of songs may 
be recommended, making it difficult for users to explore and 
discover new music.  
 
The cold-start problem has motivated researchers to improve 
content-based recommendation systems. Content-based 
systems operate on music representations that are extracted 
automatically from the audio content, eliminating the need 
for human feedback and annotation when computing 
similarity. While this approach naturally extends to any item 
regardless of popularity, the construction of features and 
definition of similarity in these systems are frequently ad-hoc 
and not explicitly optimized for the specific task [1]. 
 

In the past decade much research was dedicated to 
constructing content based systems for music information 
retrieval (MIR) tasks such as music classification (to artist, 
genre, etc.), semantic annotation (auto-tagging) and retrieval 
(query-by-tag) and music similarity for song-to-song 
recommendation. The focus was mostly on machine learning 
algorithms that utilize basic audio features to perform the 
MIR task. 
 
2. Literature Review 
 
2.1 Sparse Coding (SC) 
 
M. D. Plumbley et al.[16], has presented their work, which 
describe an approach to musical audio analysis basedon a 
search for sparse representations, where any coefficient in 
such a representation has only a small probability of being 
far from zero. For music, it is not surprising that a musical 
audio signal would be generated from a small number of 
possible notes active at any one time, and hence allow a 
sparse representation. For example, for a standard pianothere 
are 88 possible notes that could be played, with each note 
producing a particular sound at a particular pitch. However, 
in most piano pieces only a few (e.g. up to 4–6) of the notes 
are played at any one time, typically limited by the chords 
(sets of simultaneous notes) desired by the composer, as well 
as the physical limit on the number of fingers available to the 
pianist. This leads to the idea that music is sparse, in the 
sense that at a given time instant most of the available notes 
are not sounding. 

 
2.2 Deep Belief Networks (DBN) 
 
Lee et al.[17] reported the first study that applies DBN to 
MIR problems. Using the features learnt by DBN 
outperforms standard acoustic features such as spectrogram 
and MFCC for both genre classification and 
singeridentification. DBN is probabilistic, multilayer 
neuralnetwork that processes information by multiple levels 
of transformation and abstraction, as different areas of cortex 
in the mammal brain perform [18]. The idea of DBN is to 
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form a hierarchical signal processing paradigm that mimics 
how people organize and perceive music information. Many 
variants of DBN, such as convolutional DBN, conditional 
DBN, and convolutional neural networks (CNN), have also 
been utilized for MIR 

 
2.3 Bag of Frames (BoF) 
 
J.J. Aucouturier et al [19], has presented their work on a 
codebook, where any acoustic feature vector can be replaced 
by the occurrence of codewords in the corresponding music 
signal, leading to the so-called bag-of-frames (BoF) 
representation of music. This technique assumes that a 
vocabulary consists of finite words and that documents are 
unordered sets of word occurrences. Audio events local in 
time (e.g., guitar solo or riffs) can be represented by different 
codewords in the BoF model, instead of being smeared out 
as in the case of taking mean or median pooling over the 
entire feature sequence. Moreover, as the feature 
representation is text-like, one can recast MIR as text IR and 
benefit from the lessons and techniques that have been learnt 
and developed for text. 
 
3. Song Representation 
 
The encoding-pooling schemes to get a compact 
representation for each song (or musical piece) are 
examined. The scheme is comprised of three stages: 
 
3.1 Short time frame features: each song is processed to a 

time series of low-level feature vectors ∈ ℝ𝑑𝑑×𝑇𝑇  , ( T 
time frames, with a dimensional feature vector from 
each frame). 

 
3.2 Encoding: each feature vector 𝑥𝑥𝑡𝑡  ∈  ℝ𝑑𝑑 is then encoded 

to𝑐𝑐𝑡𝑡  ∈  ℝ𝑘𝑘a code vector, using a pre-calculated 
dictionary 𝐷𝐷 ∈  ℝ𝑑𝑑×𝑘𝑘 , a codebook of “basis vectors” 
of dimension .We get the encoded song 𝐶𝐶 ∈  ℝ𝑘𝑘×𝑇𝑇  . 

 
3.3 Pooling: the coded frame vectors are pooled together to 

a single compact vector  ∈  ℝ𝑘𝑘  . 
 
This approach is known as the bag of features (BoF) 
approach: where features are collected from different patches 
of an object (small two-dimensional patches of an image, 
short time frames of a song, etc.) to form a variable-size set 
of detected features. The pooling stage enables us to have a 
unified dimension to the representations of all songs, 
regardless of the songs’ durations. A common way to pool 
the low-level frame vectors together is to take some statistic 
of them, typically their mean. 
 
 
 
 
 
 
 
 
 
 

4. Musical Features 
 
Audio pre-processing required transforming the audio data 
into a format suitable for similarity estimation. 
 
4.1 Feature Extraction 
 
Feature extraction is the process of computing a compact 
numerical representation that can be used to characterize a 
segment of audio. The design of descriptive features for a 
specific application is the main challenge in building pattern 
recognition systems. Once the features are extracted standard 
machine learning techniques which are independent of the 
specific application area can be used. 
 
4.1.1 Timbral Texture Features 
The features used to represent timbral texture are based on 
standard features proposed for music-speech discrimination 
and speech recognition. The calculated features are based on 
the short time Fourier transform (STFT) and are calculated 
for every short-time frame of sound. More details regarding 
the STFT algorithm and the Mel-frequency cepstral 
coefficients (MFCC). The use of MFCC’s to separate music 
and speech [2]. 
 
4.1.2 Mel-Frequency Cepstral Coefficients 
Mel-frequency cepstral coefficients (MFCC) are perceptually 
motivated features that are also based on the STFT. After 
taking the log-amplitude of the magnitude spectrum, the FFT 
bins are grouped and smoothed according to the perceptually 
motivated Mel-frequency scaling. Finally, in order to de-
correlate the resulting feature vectors a discrete cosine 
transform is performed [2].  
 
The MFCC vectors are augmented with the following 
coefficients, which give different descriptions of the 
distribution of the magnitude spectrum of the audio [5]. 
 
• Flux: the difference between consecutive spectra. 
• Centroid: the centre of gravity of the spectrum. 
• RMS: the Euclidean norm of the spectrum. 
• Entropy: the entropy of the spectrum. 
• Variance: the estimated sample variance of the spectrum. 
• Skew: the estimated sample skew of the spectrum. 
• Kurtosis: the estimated sample kurtosis of the spectrum. 
• Roll-off: the point on the frequency scale below which 

85% of the total amplitude lies. 
 

4.1.3 Timbral Texture Feature Vector 
The feature vector for describing timbral texture consists of 
the following features: means and variances of spectral 
centroid, roll-off, flux, zero-crossings over the texture 
window, low energy, and means and variances of the first 
five MFCC coefficients over the texture window (excluding 
the coefficient corresponding to the DC component) 
resulting in a 19-dimensional feature vector [2]. 
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Table 1: Comparison of Bag-of-Frmaes based approaches for MIR problems [20], TR indicates Transductive Learning
 

4.2 Short-Time Audio Representation 
 

A great many short-time audio representations have been 
proposed in the literature; with the magnitude spectrogram 
computed by short-time Fourier transform possibly being the 
most fundamental one. It describes the time-varying energy 
across different frequency bands in a linear frequency scale 
of the signal, consider the following other variations, 
 
1. Mel-spectrogram: Mel-spectrogram is computed by 

wrapping the linear-frequency scale into a nonlinear Mel-
scale by triangular filters. The Mel-scale is designed to 
approximate the frequency resolution of human ear, 
which is more sensitive to differences at low frequencies. 

2. Sonogram: It employs techniques such as outer-ear 
model, Bark-scale critical-bands, and spectral masking to 
better respect human loudness sensation. 

3. Constant-Q transform: Constant-Q transform replaces 
linear frequency scale by a logarithmic one to respect the 
“octave equivalence” of music perception, i.e., each 
doubling in frequency corresponds to an equal musical 
interval [4]. 

4. Chroma features: Chroma features represent of the 
harmonic content of a short-time window of audio by 
computing the spectral energy present at frequencies that 
correspond to each of the 12 notes in a standard 
chromatic scale [3]. 
 

5. Temporal Integration 
 
Temporal integration (pooling) is getting a compact 
representation of a song by generative modelling. In this 

approach the whole song is described using a parametric 
structure that models how the song’s feature vector time 
series was generated. Various generative models were used: 
 
5.1 Gaussian Mixture Model (GMM) 

 
It is a probabilistic model is one word-level distribution over 
the audio feature space for each word in our vocabulary. 
Each distribution is modelled using a multivariate Gaussian 
mixture model (GMM). The parameters of a word-level 
GMM are estimated using audio content from a set of 
training tracks that are positively associated with the word. 
Using this model, one can infer likely semantic annotations 
given a novel track and can use a text-based query to rank-
order a set of un-annotated tracks [6]. 
 
5.2 Dynamic Texture Mixture (DTM) model 

 
The dynamic texture (DT) model, a generative time series 
model that captures longer term time dependencies, for 
automatic tagging of musical content 
 
Since musical time series often show significant structural 
changes within a single song and have dynamics that are 
only locally homogeneous, a single DT would be 
insufficiently rich to model individual songs and, therefore, 
the typical musical content associated with semantic tags. To 
address this at the song-level, Barrington et al. propose to 
model the audio fragments from a single song as samples 
from a dynamic texture mixture (DTM) model, for the task 
of automatic music segmentation. Their results demonstrated 
that the DTM provides an accurate segmentation of music 
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into homogeneous, perceptually similar segments 
(corresponding to what a human listener would label as 
“chorus,” “verse,” “bridge,” etc.) by capturing temporal as 
well as textural aspects of the musical signal [7]. 
 
5.3 Multivariate Autoregressive Model (MAR) 

 
The multivariate auto regressive model handles both 
temporal and correlations among feature dimensions, which 
makes it a good candidate for feature integration. A simple 
autoregressive model was suggested simple refers to 
considering each feature dimension independently. The 
MAR model is popular in time-series modelling and 
prediction being both simple and well understood [8].  
 
5.4 Autoregressive Mixture Model (ARM)  

 
An ARM model treats a group of audio fragments as samples 
from K AR models. Specifically, for a given sequence, an 
assignment variable z ∼categorical (π1,· · · ,πK) selects one 
of the K AR models, where the ithAR model is selected with 
probability πi. The ARM model is a more appropriate 
modelling choice for an entire song. This is motivated by the 
observation that a song usually shows significant structural 
variations within its duration, and hence multiple AR 
components are necessary to model the heterogeneous 
sections [9]. 
 
5.5 Hidden Markov Model (HMM) 

 
Late temporal integration does not try to explicitly extract 
the feature dynamics. It operates at the classifier level, either 
by operating a “fusion” of successive primary decisions of 
the classifier, or by exploiting a classifier that can handle 
sequences. The usual way of combining several decisions of 
the classifier is to compute the product of the posteriors for 
each class, with the implicit assumption that the observations 
are independent. But because of this assumption, this 
approach does not capture any information about the 
temporal evolution of the features. The most popular way to 
overcome this problem is probably the use of HMM 
classifiers examples, which handle the sequentiality of the 
features by fitting a generative model to the features’ 
temporal evolution [13]. 
 
5.6 Hierarchical Dirichlet Process (HDP) 

 
The Hierarchical Dirichlet Process (HDP) [8] is a model of 
grouped data, which is more appropriate than the DPMM for 
modelling songs represented as a collection of MFCCs. 
Rather than associate each song with a single table in the 
restaurant, each song is represented as a group of features 
which sit at a song-specific “local” restaurant. The dishes for 
this restaurant, however, are drawn from a “global” set of 
dishes. Thus, each song is represented as a distribution over 
latent components, but the population of latent components 
is shared across songs. Similarity between songs can be 
defined according to the similarity between their 
corresponding distributions over components. The generative 
process underlying the HDP can be understood with the 
Chinese Restaurant Franchise (CRF) [14]. 

5.7 Product Probability Kernel (PPK) 
 
The product probability kernel introduced measures the 
distance between probability models of the feature vectors. 
Other divergence based kernels have been suggested, for 
measuring a similar distance. With the product probability 
kernel, a closed form solution can be determined for e.g. a 
mixture of Gaussian, furthermore, the PPK fulfils the 
requirement for a kernel to be positive semi-definite [8]. 
 
6. Dictionary Training 

 
For Sparse coding methods the problem of finding the 
optimal dictionary codewords and code coefficients is a 
smooth but jointly non-convex problem. The training of the 
dictionaries (codebooks) is performed with the online 
learning algorithm. 
 
6.1 Codebook Generation  
 
As The following codebook generation methods are 
considered [4]:  
1. K-means: generates a codebook by grouping the training 

data into k clusters according to l2 distance, with each 
cluster center corresponding to a codeword. Regard k-
means as the baseline as it is by far the most common 
codebook generation method in the literature. Since the 
amount of training data is usually huge (e.g., for each 
song there are thousands of frame-level feature vectors), 
for scalability we adopt the mini-batch k-means algorithm 
for clustering. 

2. ODL: The online dictionary learning algorithm. While k-
means can be thought as adapting the codebook to the 
training data for the l2 distance encoder, ODL adapts the 
codebook to training data for sparse coding. Due to the 
consideration of sparse representation, ODL is potentially 
powerful than k-means, but its computational cost is 
relatively higher. Note that ODL does not use a non-
negativity constraint.  

3. SDL: The proposed supervised dictionary learning 
algorithm. Hypothetically it outperforms ODL for 
supervised tasks. As a slight abuse of terminology, use 
SDL to indicate the version without using non-negativity 
constraint. 

4. Exemplar: based method directly uses all or a subset of 
the training data as codewords to construct a dictionary. It 
has been shown useful for audio tasks such as music 
genre classification and automatic speech recognition. 
Exemplar-based method is conceptually opposite to the 
previous ones as it does not adapt the codebook for 
encoding. Its computational cost is low as no learning is 
needed. 

 
6.2 Codeword Encoding 
 
The following two encoding methods are used [4]: 
1. L2: based encoding, or vector quantization, is perhaps the 

most common way for codeword encoding. It encodes a 
given signal x by solving the following constrained 
minimization problem, 

 
 α∗ = arg min||α||0=1 ||x − Dα ||2,                 (1) 
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where|| ⋅ ||0denotes the zero norm, or the number ofnonzero 
elements. In other words, only one codewordthat is closest to 
the signal is selected for encoding. 
 
2. L1: based encoding obtains a sparse coding α of x by 

solving Equation.  
 𝛼𝛼∗ = 𝑎𝑎𝑎𝑎𝑎𝑎 min

𝛼𝛼

1
2
�|𝑥𝑥 − 𝐷𝐷𝛼𝛼 |�

2
2 +  𝜆𝜆�|𝛼𝛼|�

1
.             (2) 

 
It can select multiple, but just a few, codewords for encoding 
and assign a membership αk∈[0; 1] for each selected 
codeword. We use LARS-lasso to achieve L1-based 
encoding for it has a C-based implementation that is efficient 
and publicly available. 

 
7. Encoding 
 
Encoding of low-level features using pre-calculated 
codebook was examined for audio and music. This section 
makes a brief review of the main encoding techniques used 
in codebook generation for music retrieval.  

 
7.1 Encoding with the LASSO 
 
The least absolute shrinkage and selection operator (the 
LASSO) was suggested as an optimization criterion for 
linear regression that selects only few of the regression 
coefficients to have effective magnitude, while the rest of the 
coefficients are either shrunk or even nullified. The LASSO 
does that by balancing between the regression error (squared 
error) and an norm penalty over the regression coefficients, 
which typically generates sparse coefficients. Usage of the 
LASSO’s regression coefficients as a representation of the 
input is often referred to as “sparse coding”[11]. The 
encoding of a feature vector xt using the LASSO criterion is: 
 

𝑐𝑐𝑡𝑡 = 𝑎𝑎𝑎𝑎𝑎𝑎 min
𝑐𝑐∈ℝ𝑘𝑘

1
2
�|𝑥𝑥𝑡𝑡 − 𝐷𝐷𝑐𝑐 |�

2
2 +  𝜆𝜆�|𝑐𝑐|�

1
.                 (3) 

 
Intuitively it seems that such a sparse linear combination 
might represent separation of the music signal to meaningful 
components (e.g. separate instruments). However, this is not 
necessarily the case since the LASSO allows coefficients to 
be negative and the subtraction of codewords from the linear 
combination has little physical interpretability when 
describing how musical sounds are generated. To solve the 
LASSO optimization problem we use the alternating 
direction method of multipliers (ADMM) algorithm. 

 
7.2 Encoding with Vector Quantization (VQ) 

 
In vector quantization (VQ) a continuous multi-dimensional 
vector space is partitioned to a discrete finite set of bins, each 
having its own representative vector. The training of a VQ 
codebook is essentially a clustering that describes the 
distribution of vectors in the space. During encoding, each 
frame’s feature vector is quantized to the closest codeword in 
the codebook, meaning it is encoded as , a sparse binary 
vector with just a single “on” value, in the index of the 
codeword that has smallest distance to it (we use Euclidean 
distance)[12]. It is also possible to use a softer version of 
VQ, selecting for each feature vector the nearest neighbors 

among the codewords, creating a code vector ct with τ “on” 
values and k-τ “off” values: 

 
𝑐𝑐𝑡𝑡(𝑗𝑗) = 1

𝜏𝜏
𝟙𝟙�𝐷𝐷𝑗𝑗 ∈  𝜏𝜏 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑜𝑜𝑜𝑜 𝑥𝑥𝑡𝑡�,       (4) 

 
𝑗𝑗 ∈  {1,2, … , 𝑘𝑘}. 

 
The hard threshold of selecting just one codeword will result 
in distorted, noise-sensitive code, while using top 
quantization will be more robust ([1],[10]). 
 
7.3 Encoding with Cosine Similarity (CS) 

 
An alternative to VQ another form of encoding, where each 
dictionary codeword is being used as a linear filter over the 
feature vectors: instead of calculating the distance between 
each feature vector and each codeword (as done in VQ), 
which calculate a similarity between them—the (normalized) 
dot product between the feature vector and the 
codeword:

〈𝑥𝑥𝑡𝑡 ,𝐷𝐷𝑗𝑗 〉

||𝑥𝑥𝑡𝑡 ||2
,.The codewords act as pattern matching 

filters, where frames with close patterns get higher response. 
 
For each frame, selecting the closest (by Euclidean distance) 
codeword is equivalent to selecting the codeword with 
largest CS with the frame. So CS can serve as a softer 
version of VQ. The L2 normalization of each frame (to get 
CS instead of unnormalized dot product) is important to 
avoid having a bias towards frames that have large 
magnitudes, and can dominate over all other frames in the 
pooling stage [15]. 
 
8. Conclusion 
 
In this paper, encoding techniques are explained for the 
codebook generation for compact representation. 
Collaborative filters form the basis of state-of-the-art 
recommendation systems, but cannot directly form 
recommendations or answer queries for items which have not 
yet been consumed or rated. By optimizing content-based 
similarity from a collaborative filter, we provide a simple 
mechanism for alleviating the cold-start problem and 
extending music recommendation to novel or less known 
songs. 
 
Increasing the codebook size results in improved 
performance for all the encoding methods. The LASSO and 
CS are inconsistent with regard to the preferred pooling 
method (mean or max-abs). For all the encoding methods the 
performance deteriorates when the encoding parameter has 
too high or too low values. While the LASSO and CS can 
suffer sharp decrease in performance when adjusting their 
parameters, VQ is more robust, having smooth and 
controlled change in performance when adjusting its density 
parameter τ. 
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