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Abstract: In this paper, we introduce metric on a subset of a fuzzy linear space and some of its properties are discussed. In the sequel, 
we proved that a norm on a fuzzy linear space (in sense of C. P. Santhosh and T. V. Ramakrishnan [1]) induces a metric of fuzzy linear 
spaces (in our sense). 
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1. Introduction 
 
How to define a fuzzy metric is one of the fundamental 
problems in fuzzy mathematics which is widely used in 
fuzzy optimization and pattern recognition. Different 
authors introduced different notion of metric on a fuzzy set 
from different view point. K.C. Wong [2] defined fuzzy 
point and discussed some topological properties. Zike 
Dong [3] defined Pseudo- metric spaces with metric 
defined between fuzzy points rather than between fuzzy 
sets. Nai-Hung Hsu [4] introduced fuzzy metric space with 
metric defined between fuzzy points. Gu Wenxiang and Tu 
Lu [5] introduced notions of fuzzy field and fuzzy linear 
spaces over fuzzy field. Thereafter, C. P. Santhosh and 
T.V. Ramakrishna [1] introduced the concept of norm and 
inner product on fuzzy linear spaces. This paper is an 
attempt to define a metric of fuzzy set (fuzzy linear space 
over fuzzy field) contained in fuzzy linear spaces so that a 
norm defined by [1] induces a metric on fuzzy linear 
spaces. 
 
2. Brief summary of Fuzzy Field and Fuzzy 

Linear Spaces 
 
In this paper, F represents ℜ the set of all real numbers, or 
ℂ the set of all complex numbers. 
 
Definition 2.1 [5] Let F be a field and let K be fuzzy set in 
F with membership function μ . Suppose the following 
conditions hold 
 
(1) μ(x + y) ≥  min {μ(x), μ(y)} 
(2). μ(−x) ≥  μ(x) 
(3). μ(xy) ≥  min {μ(x), μ(y)} (4). μ(x��) ≥  μ(x) 
 
Then we call K is a fuzzy field in F( fuzzy field of F) and it 
is denoted by (K, F) 
 
Proposition 2.2 [5] If (K, F) is a fuzzy field of F, then  
 
(1). μ(0) ≥  μ(x) , x ∈ F (2). μ(1) ≥  μ(x) , x ≠ 0 
 
Proposition 2.3 [1] If (K, F) is a fuzzy field of F, then  
 
(1). μ(x) =  μ(−x), x ∈ F (2). μ(x��) =  μ(x) , x ≠ 0 
 

Proposition 2.4 [5] Let K and F be fields and f: F ⟶  K be 
homomorphism. Suppose (X, F) is fuzzy a field of F and 
(Y, K) is a fuzzy field of K. Then  
 
(i) (f(X), K) is a fuzzy filed of K. (ii) (f ��(Y), F) a fuzzy 
field of F. 
 
Definition 2.5 [5] Let F be a field and let K be fuzzy set in 
F with membership function μ. 
 
Let X be a linear space over field F and U be a fuzzy set in 
X with membership function Τ. Suppose the following 
conditions hold: 
 
(1) Τ(x + y) ≥ min{Τ(x), Τ(y)} (2) Τ(−x) ≥ Τ(x) 
(3) Τ(λx) ≥ min{μ(λ), Τ(x)} (4) μ(1) ≥ Τ(0) 
 
Then we call (U, X) fuzzy linear space over fuzzy field 
(K, F).  
Proposition 2.6 [1,5] If (U, X) is fuzzy linear space over 
fuzzy field (K,F).Then 
(1) μ(0) ≥  Τ(x) (2) Τ(−x) = Τ(x) (3) Τ(0) ≥ Τ(x) 
 
Proposition 2.7 [5] Let X and Y be linear spaces over 
field F, let f: X ⟶ Y be linear transformation. If (U, X) and 
(V, Y) are fuzzy linear spaces over fuzzy field (K, F),then  
 
(i) (f(U), Y) is a fuzzy linear spaces over fuzzy field of 
(K, F). 
(ii) (f ��(V), X) a fuzzy linear space over fuzzy field of 
(K, F). 
 
Proposition 2.8 [1] let {(K�, F)} be a fuzzy field over F, let 
{(V�, X�)}���

�  be sequence of fuzzy linear spaces over 
(K�, F), then (V�xV�x. . . xV� , X�xX�x. . . xX� ) is fuzzy 
linear space. 
 
Proposition 2.9 [6] Let U�, U�, … , U� be fuzzy sets in 
X�, X�, … , X� respectively, then the Cartesian product is a 
fuzzy set in the product space X�xX�x … x X�, with 
membership function Τ�����...���(x) = min�Τ��

(x�)�: 
Where x = (x�, x�, . . . , x�), x� ∈ X� 
 
3. Fuzzy Metric of Fuzzy Linear Spaces 
 
In this section, a metric will be defined on a set contained 
in fuzzy linear space. 
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Notation: Throughout this section, the following notations 
will be used: 
 
(i) (U, X) a fuzzy linear spaces over fuzzy field (K, F) with 
membership functions of U and K, Τ and μ respectively 
(ii) . A is non empty fuzzy subset of X, we mean that 
A ⊆  X and Τ(x) ≠  0 for every x ∈ A. 
 
Definition3.2 Let (K, F) be fuzzy field in F , X be linear 
spaces over F, and let (U, X) be fuzzy linear spaces over 
(K, F).  
 
Let ∅ ≠  A ⊆  U. A function, d: Ax A ⟶[0, ∞) satisfying 
the following conditions: 
(1) μ(d(x, y)) ≥ ΤAx A(x, y) 
(2) d(x, y) ≥ 0 and d(x, y)  = 0 if and only if x = y 
(3) d(x, y) = d(y, x)for all x, y ∈ A 
(4) d(x, y) ≤  d(x, z) + d(z, y) for all x, y , z ∈ A. 
 
Then d is said to be fuzzy metric on (A, U) (fuzzy metric 
on A) and((A, U), d) is called fuzzy metric space.  
 
Example 3.3 Let X be a linear space over F, and let (U,X) 
be a fuzzy linear spaces over a fuzzy field (K, F). Let A be 
a nonempty subset of X. Consider a discrete metric 

d, d: A x A ⟶ [0, ∞) given by d(x, y) = �1 if x ≠  y
0 if x =  y

  . Then 

((A, U), d) is a fuzzy metric space. 
 
Proof: Clearly, d is metric on A , and hence it satisfies 
conditions (2)-(4) of definition 3.2. So, it suffices to verify 
definition 3.2(1). But,  

μ�d(x, y)� = �μ(1)if x ≠  y
μ(0) if x =  y

  .By definition 2.5(4) and 

proposition 2.6(1), we have μ(1) ≥  Τ(x) and μ(0) ≥
 Τ(x). Thus, μ(1) ≥  Τ�� �(x, y) and μ(0) ≥  Τ�� �(x, y). 
Therefore, ((A, U), d) is fuzzy metric space. 
 
A fuzzy metric as in example 3.3 will be referred as a 
discrete fuzzy metric on (A, U). 
 
Example 3.4 Let (F, ℛ) be a fuzzy filed in ℛ. If 
d: ℛxℛ ⟶ [0, ∞) is a mapping defined by  
�(�, �) = |� − �| ,then ((F,ℛ),d) is a fuzzy metric space. 
 
Proof: Since d satisfies (2)-(4) of definition 3.2, we need to 
verify definition 3.2(1).But 

���(�, �)� = ��(|� − �|) =  �(� − �) �� � ≥  �
�(� − �) �� � < �

  

= �(� − �) ≥  ��� {�(�), �(−�)} 
= ��� {�(�), �(�)} = ��� �(�, �) 
 
Therefore, ((�, ℛ), �) is fuzzy metric space. 
 
We may define convergence of sequences in ((�, �), �) as 
follows. 
 
Definition 3.5 Let ((�, �), �) be fuzzy metric spaces. A 
sequence {��} is said to be convergent to { �0} (denoted 
by ����⟶∞ �� = ��) with respect to fuzzy metric d if and 
only if given � > 0,there exists a positive integer N such 

that for all � ≥  �, ���(��, ��)� ≥ ����(��, ��) and 
�(��, ��) < � 
 
Remark 3.6 If limit of a sequence exists it is unique. 
 
Definition 3.7 Let ((�, �), �) be a fuzzy metric spaces. A 
sequence {��} is said to be Cauchy sequence with respect 
to d if and only if given ∈> 0, there is a positive integer � 
such that for all m, � ≥  �, �(��, ��) < � and 
���(��, ��)� ≥ ����(��, ��). 
 
Definition 3.8 A fuzzy metric space ((�, �), �) is said to 
be complete if and only if every Cauchy sequence of 
((�, �), �) has a convergent subsequence. 
 
Theorem 3.9 If a fuzzy metric space ((�, �), �) is 
complete then (�, �) is complete metric space 
 
Proof: The result follows from definition 3.2. 
 
Theorem 3.10 Suppose �(��, ��), ������

�
 is the sequence 

fuzzy metric spaces over fuzzy fields (��, �) for each 
i=1,2,3,...,n, then (���. . . � ��, ���. . . � ��) is a fuzzy 
metric space. 
 
Proof: Consider a mapping �: ���. . . � �� ⟶ [0, ∞) given 
by  
�(�, �) = ∑ ��(��, ��)�

��� , Where � = (��, ��, . . . , ��),y=
(��, ��, . . . , ��). Then d is metric on ���. . . � ��. Hence, it 
satisfies (2)-(4) of definition 3.2. Therefore, it suffices to 
verify definition 3.2(1). Now suppose ��� and ���  are 
membership functions of �� and �� for all � = 1,2, . . . , � 
respectively. Then, 
 ���(�, �)� = �(∑ ��(��, ��)�

��� ) 
 ≥ ��� {�(��(��, ��), ����(��, ��)�, . . . , ����(��, ��)�} 
 
≥
��� {��� � ��(��, ��), ��� � ��

(��, ��), . . . , ��� � ��
(��, ��)} 

 
≥
��� {�������(��), ���(��)�, . . . , �������(��), ���(��)� }  
 
=
��� {���{���(��), . . . , ���(��)}, ��� {���(��), . . . , ���(��)}
} 
 
= ��� {� ������…���(�), � ������…���(�)} =
� ������…���(�, �) 
 
Hence, ( (������ … ���, ����� … ���), �) is a fuzzy 
metric space. 
 
Example 3.11 Let (�, ℛ) be a fuzzy field of ℛ. A function 
d:ℛ� ⟶ [0 , ∞) given by 
 �(�, �) =  ∑ |�� − ��|�

��� , where � = (��, ��, . . . , ��), � =
(��, ��, . . . , ��) defines a metric on (��, ��, . . . , ��, ℛ�). 
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Proof: The result follows from example 3.4 and theorem 
3.10. 
 
Theorem 3.12 Let X and Y be linear spaces over the field 
F. Let (�, �) be fuzzy linear spaces over fuzzy field 
(�, �), and let A be a non empty subset of X and B be a 
non empty subset of �. If �: � ⟶ � is a bijective 
mapping, then the following statements are equivalent 
 
(1). (�, �) is fuzzy metric space. 
(2). (f(V),B) is fuzzy metric space.  
 
Proof:(1) ⟹ (2): Let ((�, �), ��) be fuzzy metric space. 
Let ��: �� � ⟶ [0, ∞) be given by ��(��, ��) =
��(��, ��), where �� = �(��), � = 1,2. Then clearly d_B 
defines a metric on B. Moreover, 
 �(��(�, �)) = �(��(�, �): � = ��, � = ��) 
 ≥ ��� �((�, �) = ��� {�(�), �(�)} 
 = ��� {��(�)(�(�)), ��(�)(�(�))} 
 = ��(�)� �(�)(�, �) = ��� �(�, �) 
(2) ⟹ 1: Let (�(�), �,  ��) be a fuzzy metric space. Let 
��: �� � ⟶ [0, ∞) given by 
��(��, ��) = ��(��, ��), ��  = �(��), � = 1,2 . Clearly  �� 
defines metric on A. Moreover, 
 ����(��, ��)� = �(��(��, ��): �� = �(��), � = 1,2) 
 ≥ ��(�)� �(�)(��, ��) 
 = ��� {��(�)(��), ��(�)(��)} 
 = ��� {�(��), �(��)} = ��� �(��, ��). 
 
Now we will give an example of fuzzy linear spaces 
without non trivial metric on it; even though, the universal 
spaces are metric spaces. 
 
Example 3.13 Let (�, ℛ) fuzzy field with membership 
function � such that  
 

�(�) = �
1 �� � = ±1, � = 0

�
�

 �� � ≠ 0, ±1
  . Let � be a metric linear 

space over �. Let � be a fuzzy set with membership 
function � such that �(�) =  1 for all � ∈ �, then (�, �) is 
fuzzy linear space. However, there is no nontrivial fuzzy 
metric, d on (U,X) which satisfies definition 3.2(1).  
 
C.P. Santhosh and T. V. Ramakrishan [1] introduced a 
norm on Fuzzy linear spaces. Now we will show that, this 
norm induces metric on the same fuzzy linear spaces in 
our sense. 
 
Definition 3.14 [1] Let (�, �) be fuzzy field in � , � be 
linear spaces over �, and let (�, �) be fuzzy linear spaces 
over (�, �).  
 
A norm on (�, �) is a function, ||. ||: � ⟶ [0, ∞) satisfies 
the following conditions: 
 
(1). �(||�||) ≥  �(�) 
(2). ||�|| ≥  0 and ||�||  = 0 if and only if � = 0 
(3) ||��|| = |�|||�|| for all � ∈ � 
(4) ||� − �|| ≤  ||�|| + ||�|| for al� �, � ∈ �. 
 

A pair (U,X,|| ||) is called fuzzy normed linear space. 
 
Theorem 3.15 Let (�, �) be a fuzzy normed linear space 
over a fuzzy field (�, �) .Then (�, �) is fuzzy linear 
metric space. 
 
Proof: Let of (�, �, || ||) be a normed space, let Τ and μ be 
membership functions of fuzzy set � in � and � in � 
respectively.  
 
Consider a mapping, �: �� � ⟶ [0, ∞] given by �(�, �) =
||� − �||. Clearly � defines metric on �. Hence it satisfies 
(2) − (4) of definition 3.2. So, we will verify only 
definition �3.2(1). Since �(|� − �|) ≥ �(� − �) by 
definition 3.14(1), and �(� − �) ≥  ���{�(�), �(−�)} 
by( definition 2.5(1)), we have 
 
���(�, �)� = ���|� − �|�� ≥ �(� − �)

≥ ���{�(�), �(−�)} 
=  ��� {�(�), �(�)} = ��� �(�, �) 
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