
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

User-Friendly Keyword Based Search on XML Data

Jeetendra G. Kapase1, Sharmila M. Shinde2

1Computer Engineering Department, JSCOE, Pune University, India

2Head of Computer Engineering Department, JSCOE, Pune University, India

Abstract: XML data is independent of platform. Therefore it’s mainly used across system in order to exchange information. So
searching XML data based on keyword is an important task. Considering current or existing system to find XML data based on given
keyword, a user need to know XML query language to create keyword query, submit the query for processing and get the results. In this
approach user having limited knowledge about XML data and XML query language, often feels complex and difficult to find require
keyword in XML data and sometimes they has to use try and see approach to get relevant information. To overcome problem with
existing system, Feng and Li proposed system to search XML data based fuzzy type-ahead searching methodology. This methodology
has advantage as high quality and fast searching using effective index structure and top-k algorithm. In this paper we studied existing
system and we proposed new framework for keyword based search over XML data by using forward index structure methods to enhance
fuzzy type ahead search. The proposed system thus makes XML search user friendly and efficient. This proposed prototype will be
effective and feasible to design and develop real world based XML data search application.

Keywords: fuzzy search, forward index structure, keyword search, LCT, MCT, Top-k algorithm, user-friendly, XML Data.

1. Introduction

XML data form is widely used and accepted due to its
platform independent feature. Existing system uses XML
query languages such as XQuery and XPath to find XML
data. This is powerful tool but it’s complex and less friendly
to non-database users. For example, XQuery doc
(“books.xml”)/bookstore/book / [price<30], such XML
queries are difficult to write and need good knowledge of
XML query languages. There are many researcher who
contributed to above challenges pertaining to search XML
data [1], [2], [3], [4], [5], [6], [7], [8], [9],[14] with keyword
oriented application which are user friendly and efficient to
use. Where user just needs to think and type the desire
keyword to be searched over XML data and the result is in
the form of XML data based files containing data in XML
elements to be searched. The proposed keyword based
search approach is quite simple and does not require
database query language expert users. Keyword search is
widely accepted methodology to access information. In a
traditional keyword-search system over XML data, a user
creates a XML query, submits it to the system for
processing, and retrieves relevant answers from XML data.
This approach requires knowledge about XML data structure
and data content. In the case where user who has limited
knowledge, feels difficult to adopt this approach. Sometimes
user will require trying few possible keywords; this could be
tedious and time consuming activity.

Keyword based search becomes challenging task on XML
data as there is hierarchical data relationship of XML data
elements. In this paper, we study, a Fuzzy type-ahead search
method in XML data [1]. It searches the XML data on the fly
as user’s type in query keywords, even in the presence of
minor errors of their keywords. It provides a friendly
interface for users to explore XML data, and can
significantly save users typing effort. In this Paper, we study
important research challenges that arise naturally in
computing system. The main challenge is with addressing
search efficiency. Each user query with multiple keywords

searched needs to be answered fast and efficiently. To
achieve our goal, we study effective index structures and
top-k algorithms to answer keyword queries in XML data.
The fuzzy type ahead search in xml data returns the
approximate results.

Figure 1: Parent-Child based XML tree structure

We study the effective ranking function and early
termination techniques. In this paper we proposed technique
to improve the keyword based fuzzy type ahead search on
XML data by using forward index structure based method.
The proposed system thus makes XML search user friendly
and efficient. This proposed prototype will be effective and
feasible to design and develop real world based XML data
search application.

2. Related Work

Bast and Weber [10][11] proposed complete search in
textual document based on type less, find more, which
document, which can find relevant answer by allowing query

Paper ID: 02014886 2751

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

keyword appear at any place in the document. However, this
does not support approximate search, which can’t allow
minor error between query keyword and result. S Ji, G. Li
and Feng proposed efficient interactive fuzzy search on
textual document [12]. It allows user to search data on the
fly, this framework allows user to explore data even in
presence of minor errors. We also studied type-ahead search
on relational databases [13]. Lowest common ancestor
(LCA) of keyword query in the LCA of set of content node
corresponding to all the keyword in the query. Many
algorithms for XML keyword search use the notation of
LCA [7]. To improve search efficiency and result quality,
Xu and papkonstantiou [7] proposed Exclusive Lowest
Common Ancestor (ELCA). Type-ahead search is also main
part to specify matching relevant keywords into result
statement even in the presence of minor error, output is
approximate results [15]. The limitation of XML query is
hard to understand to user and require query expert users [1].
To solve the minor error keyword search problem and
matching particular word into query type-ahead search [1].
[1] Minimal cost tree (MCT) is for each node, sub tree is
defined for corresponding answer to the query with paths to
the node of tree that include searching keyword. J Chen,
Lyad A. Kanjb showed how top-k algorithm works on XML
database and how ranking of keyword helps in effective
manner [16]. G Li, Chen Li, J Feng and L Zhou define how
to retrieve particular keyword present in XML file and how
to retrieve accurately if particular keyword is not perfectly
matching [17]. Hristidis, Koudas, Srivastava proposed
framework to identify the most specific LCA (i.e., context
elements) along with compact description minimum cost tree
(i.e., GDMCTs) [18].

We mainly focused and studied system proposed by Feng, Li
[1], type-ahead search on XML content based on fuzzy
approach, novel raking algorithm, extended trie structure,
minimal-cost tree (MCTs) to construct answers rooted,
Ranking MCT based on scores, finding top-k results. MCT

technique constructs minimal-cost tree for node in the XML
tree based predicted word, and return results having highest
score, it has limitation that Top-Bottom, Left-Right node
traversing require much time. LCA technique based
algorithm first retrieves content nodes in XML data that
contains input keyword using inverted indices. Then LCA of
content node is identified and takes sub trees as the answer
of the keyword. Limitation of LCA is that it may select less
relevant sub tree based on the keyword, to address this
limitation, many method have been proposed. Guo et al. [19]
and Xu and Papakonstantinou [20] proposed exclusive
lowest common ancestor (ELCA). Limitation LCA method is
they use the “AND” semantic between keywords and ignore
answers that contains some partial part of keywords and also
need to find candidates first before ranking them, and this
approach not efficient for computing the results. In fuzzy
based type ahead technique computation time is at higher
end in multi keyword search scenario.

3. Implementation

3.1 Proposed Framework

The proposed system framework is an enhancement to
techniques introduced in [1].The main motive of proposed
system is to improve XML data search efficiency. This helps
user to make efficient processing of XML keyword search
without knowledge of data content in XML data sources and
non-database expert can easily retrieve results based given
inputs. The main advantage of proposed system is its user-
friendly interface design. New framework makes use of
forward index structure approach in order to obtain top-k
results with less processing time and populate the results.
Additional feature in new system is that it supports
approximate keywords search even presence of minor error.
Keywords ‘India’, ‘ndia’, ‘Idia’, ‘Indi’ will return same
result.

Figure 2: Proposed System Model (Framework).

Paper ID: 02014886 2752

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

The proposed system uses forward indexing concept that
creates indexing in the pre-processing step (step 2). This
forward index helps to improve keyword based query
processing. System take input from the user interface in the
form single or multiple keywords as input (step 4). Here data
source are XML data files (i.e. text files containing XML
data) (step 1).Pre-processing step generates multiple sub
trees based keyword and calculated score (step 3). Ranking
function assigns numeric values to obtain results and
generates top-k ranking (step 7). Based on ranking score
highest or equal or zero results are filtered and displayed
(step 8).User will select require document node and result is
populated (step 9). The proposed system falls under NP-hard
class category.

3.2 Details of System Model

In this section we showed details of proposed methods or
Techniques. Major problem associated with standard XML
query processing tool with their syntax (XPath, XQuery).
LCA and ELCA based search method [7] [20]. MCT
references are better and efficient [1]. Effective index
structure and top-k algorithm propose to achieve high
interaction speed [1].
1) LCA based method: The Lowest common ancestor (LCA)

is concept in data structure graph theory. Let T be rooted
tree with n nodes. The LCA between to two nodes u and
v is defined as the lowest node in T that has both u and v
as descendants. The LCA of u and v in T is the shared
ancestor between u and v that is located farthest from
root. This is most commonly used method to search XML
data. Contents nodes are parent (sub rooted tree) node of
the keyword. For e.g. consider keyword “db” to be
searched in XML file shown in fig1.Then the content
node are 13 and 16.Here server contains index structure
of XML file where each node is letter of keyword and
leaf node contains all node that contains keyword such
leaf node are also called as inverted list..
Procedure:
a) LCA based method retrieves content node and there

inverted list from XML data based on given
keyword.

b) Identify lowest common ancestor of content node in
inverted list.

c) Takes the rooted sub tree at LCA as answer of given
keyword.

For example: user gave “www db” as input query then
content nodes of “db” are {13, 16} and for “www” are {3}.
The LCA identified of this content node are
{12,15,2,1}.Here if we see that nodes {3,13,12,15} are more
appropriate answers compared to nodes {2,1} which are not
relevant, same is the limitation of LCA due to less relevant
and not high quality results.

2) ELCA based method: To address limitation with LCA

method, exclusive lowest common ancestor (ELCA) [21]
method is proposed. It states that an LCA method is
ELCA if it is still LCA after excluding its descendants
LCA. For example. User typed keyword as “db, tom”
then the content node for “db” are {13, 16} and for
“tom” {14, 17}, identified LCA of the content node are

{2, 12, 15, 1}. Here ELCA are {12, 15}. Rooted sub tree
is displayed which are appropriate answer of given query.
Node 2 is not an ELCA as it’s not LCA after excluding
nodes {12, 15}. To improve performance Xu and
Papakonstantinou [7] proposed binary search based
ELCA method.

3) MCT based method: To search appropriate answer based
on keyword query over XML data. For each node we
define its corresponding answer to query as its sub tree
with paths to nodes that include keywords. Such tree is
called as minimal cost tree (MCT).Different node
corresponds to different answer to keyword.

Definition (MINIMAL-COST TREES) Given XML document
D, n nodes in D, and keyword query Q = {k1,k2,…kl}, a MCT
of query Q and n node is sub tree rooted at n ,and for each
keyword ki Ɛ Q, if node n is a quasi-content node ok ki, the
sub tree includes the pivotal paths for ki and node n.

Proposed parameterized top-k result algorithm executes in
two phases. First one is structure algorithms that on a
problem instance construct a trie structure of feasible size,
and the second stage is an enumerating algorithm that
produces the top-k best solutions to the keyword based on
the structure. We studied and proposed new techniques that
support efficient enumerating algorithm. For example:
Consider the parent-child relationship tree based XML
document in Fig. 1 and user keyword query Q = {“db”,”
tom”,” www”}. Nodes {3, 13, 14, 16, and 17} are content
nodes of the three keywords; nodes {1, 2, 5, 8, 9, 12, and
15} are their quasi-content nodes. Node 3 is pivotal node for
node 2 and keyword “www”. Node 16 is pivotal node for
node 2 and keyword “db”. Node 17 is pivotal node for node
2 and keyword “tom”. The MCT of node 2 is the sub tree
rooted at node 2, which contains the paths: n2 → n3, n2 →
n15 → n16, and n2 → n15 → n17. The main advantage of this
approach is that, even if node doesn’t have descendant nodes
that it includes all the keywords of query and this node could
still be considered as appropriate answer.

4) Ranking Function: There are mainly two ranking
function to compute rank or score between node n and
keyword ki [22].

a) The case that node n contains keyword ki.
b) The case that node n doesn’t contain keyword ki but

has descendant containing ki.

First case: n contains keyword ki the relevance/score of node
n and keyword ki is computed by

Where,
 tf (ki, n) – number of occurrences of ki in sub tree rooted n.
idf (ki) – It is the ratio of number nodes n in XML data to
number of nodes contain keyword ki
ntl (n) – length of node n /nmax length, nmax=node with
max number of terms
 s - Constant set to 0.2 (assumption based)
Assume user entered a query containing keyword “db”, so
ranking function will return,

Paper ID: 02014886 2753

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

SCORE1 (13, db) = ln (1+1)*ln (27/2)
 --------------------- = 1.52
 (1- 0.2)+ (0.2*1)

Second case: node n doesn’t contain keyword ki but its
descendant has ki; ranking function to compute the score
between n and ki is derived by,

Where,
 - Set of pivotal nodes
α - constant set to 0.8 (assumption based)

- Distance between node n and pivotal node p
Assume the user entered query “db”, so ranking function
will return,
SCORE2 (12, db) = (0.8)*score1 (13, db)
 = 0.8 *1.52 = 1.21

5) Ranking for fuzzy search: Given a query Q= {k1, k2…kl}

with keyword in terms of fuzzy search, a MCT may not
contain the exact input keywords, but contain predicted
words for each keyword. Let predicted words be {w1,
w2... wl} the best similar prefix of wi could be considered
to be most similar to ki .The function to identify or
quantify the similarity between ki and wi is given by
below

Where ed – edit distance, ai – similar prefix, wi – predicted
word, γ – constant (assumption based)

6) Compute top-k results progressively: The trie based index

structure is used to compute the results. The leaf node
inverted list contains the content nodes and quasi contend
nodes, scores/rank of the keyword. For computing top-k
answers heap based method [1] is used which uses the

Figure 3: Extended tier structure

Partial virtual inverted lists which contain the higher score
nodes so to avoid the union of lists on the fly which is
expensive provision.
Procedure:
a) Sort scores in the inverted lists.

b) Inverted list is too long then partial virtual list considered
heap based.

c) Construct MAX heap, such that node contain <node,
score> form.

d) The top node of MAX heap is the highest score of node
and is deleted with heap adjusted.

e) Deleted node with score value <= T (threshold) are taken
into result set and return result set if top-k answers are
retrieved.

For example: assume user entered the query “db”. The
inverted list of “db” contains the nodes {13, 16, 12,15,9, 2,
8, 1, and 5}.The scores of all these nodes computed by
above two ranking functions are {1.52, 1. 52, 1.21, 1.21,0.
9728, 0, 495, 0.77, 0, 396, 0.6225 } respectively. These
scores need to be sorted and MAX heap is constructed and a
threshold is fixed be 10(assumption based) so the top
elements of MAX heap are < (13, 1.52>, <16, 1.52>, <12,
1.21>, <15, 1.21> the top-k results are retrieved. This
technique is more effective and efficient.

7) Improvement Using Forward Index structure method:

We proposed and implemented the forward index
structure method to improve search performance. We
made use of “random access” based on this method to do
an early termination of algorithms. That is, given an
XML element and an input keyword, we can get the
corresponding score of the keyword and the element
using the forward index structure, without accessing
inverted lists. Fagin et al. have proved that threshold-
based algorithm using random access is optimal and
efficient over all algorithms that correctly find the top-k
results [1]. Thus, we implemented a forward index
structure to implement random access.
Procedure
a) Construct a trie structure to maintain the keyword

contained in the element on XML file.
b) Each leaf node in the forward index keeps score of

element e to the corresponding keyword of the leaf
node.

c) Given partial keyword we can efficiently check
element e contains a word having similar prefixes

Figure 4: The forward index approach for element, Element

contains keywords {“saad,” “search,” “segi,” and
“sigmod.”}

Paper ID: 02014886 2754

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

The time complexity of sorted access O (1) and for random
access is O(ed * AN), where ed is edit distance threshold and
AN is active number of nodes [27]. Suppose ed * A > I, we
will not maintain forward index, where I is average inverted
list length. The main advantage of forward index avoids
unnecessary element access compare to extended trie
structure. Similarly, we can use forward index approach to
improve search efficiency and performance.

4. Results

User interface (UI) a system implemented using java (JDK
6.0) language using swing and applets concept. As shown in
Fig 5. Use initially need to ‘Create Index Structure’ pre-
processing step of creating forward index. Single or multiple
keyword input is accepted.

Figure 5: User Interface of implemented system

As experimental result we have compared search time of
existing method extended index with our implemented
system based on forward index method and found that new
method has shown good performance improvement, blue
bars indicates existing system search time and light brown
bar indicates new system. XML file having 50 records where
two keyword search time comparison is shown in Fig. 6.
And XML file having 1000 records where single keyword
search time comparison is shown in Fig. 7.

Figure 6: Search time comparison, XML file with 50

records.

Figure 7: Search time comparison, XML file with 1000

records.

We can see that with implemented new system do not have
extra memory cost on system, it has similar memory
requirement as compared to existing system, table 1 shows
the experimental results and required memory cost.

Table 1: Data sets and Index memory cost

Forward index strcture based method showed better search
time and effciency with no change in result quality and
approximate keyword search aswell takes less search time.
Experiment shown that this new proposed techniquie can be
applied to real world XML search application. Comparative
result can be verified from table 2.

Table 2: Data sets and Search cost (ms)

5. Conclusion and Future Scope

In this paper we studied the problems associated with
searching XML data. We enhanced framework proposed
Feng and Li [1], [17], fuzzy type-ahead search mechanism.
We proposed user-friendly and efficient keyword based
XML searching system without prior knowledge of XML
data. We studied and implemented LCA, ELCA and MCT
based combined approach to improve searching using
forward index tree formation technique. We studied and
implemented ranking function for two different cases. The
indexing and forward indexing approach structure we used

Paper ID: 02014886 2755

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

improves the performance of search process. The proposed
system framework is useful and feasible to be used with real
world search systems that operate on XML data sources.

6. Acknowledgment

I express true sense of gratitude towards my project guide
Prof. S.M. Shinde, head of computer department for his
invaluable co-operation and guidance that she gave me
throughout my project. I like to specially thank our P.G
coordinator Prof. M.D.Ingle for inspiring me and providing
me all the lab facilities, which made project work very
convenient and easy. I would also like to express my
appreciation and thanks to JSCOE principal Dr. M.G. Jadhav
and all my friends who knowingly or unknowingly have
assisted me throughout my hard work.

References

[1] Jianhua Feng and Guoliang Li, “Efficient Fuzzy Type-

Ahead Search in XML Data”. IEEE Transactions on
Knowledge and Data Engineering, Vol. 24, NO. 5,
MAY 2012.

[2] L. Guo, F. Shao, C. Botev, and J.Shanmugasundaram,
“Xrank: Ranked Keyword Search over Xml
Documents,” Proc. ACM SIGMOD Int’l Conf.
Management of Data, pp. 16-27, 2003.

[3] Y. Xu and Y. Papakonstantinou, “Efficient Keyword
Search for Smallest Lcas in XML Databases,” Proc.
ACM SIGMOD Int’l Conf. Management of Data, pp.
537-538, 2005.

[4] C. Sun, C.Y. Chan, and A.K. Goenka,“MultiwaySlca-
Based Keyword Search in Xml Data,” Proc. Int’l Conf.
World Wide Web (WWW), pp. 1043-1052, 2007.

[5] Z. Liu and Y. Chen, “Identifying Meaningful Return
Information for Xml Keyword Search,” Proc. ACM
SIGMOD Int’l Conf. Management of Data, pp.329-340,
2007.

[6] Y. Li, C. Yu, and H.V. Jagadish, “Schema-Free
XQuery,” Proc. Int’l Conf. Very Large Data Bases
(VLDB), pp. 72-83, 2004.

[7] Y. Xu and Y. Papakonstantinou, “Efficient LCA Based
Keyword Search in XML Data,” Proc. Int’l Conf.
Extending Database Technology: Advances in Database
Technology (EDBT), pp. 535-546, 2008.

[8] G. Li, C. Li, J. Feng, and L. Zhou, “Sail Structure-
Aware Indexing for Effective and Progressive Top-k
Keyword Search over XML Documents,” Information
Sciences, vol. 179, no. 21,pp. 3745-3762, 2009.

[9] G. Li, J. Feng, J. Wang, and L. Zhou, “Effective
Keyword Search for Valuable lcas over XML
Documents,” Proc. Conf. Information and Knowledge
Management (CIKM), pp. 31-40, 2007.

[10] H. Bast and I. Weber, “The Complete search Engine:
Interactive, Efficient, and towards Ir & db Integration,”
Proc. Biennial Conf. Innovative Data Systems Research
(CIDR), pp. 88-95, 2007.

[11] H. Bast and I. Weber, “Type Less, Find More: Fast
Auto completion Search with a Succinct Index,” Proc.
Ann. Int’l ACM SIGIR Conf. Research and
Development in Information Retrieval (SIGIR), pp.364-
371, 2006.

[12] S. Ji, G. Li, C. Li, and J. Feng, “Efficient Interactive
Fuzzy Keyword Search,” Proc. Int’l Conf. World Wide
Web (WWW), pp. 371-380, 2009.

[13] G. Li, S. Ji, C. Li, and J. Feng, “Efficient Type-Ahead
Search on Relational Data: A Tastier Approach,” Proc.
ACM SIGMOD Int’l Conf. Management of Data, pp.
695-706, 2009.

[14] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv,“Xsearch:
A Semantic Search Engine for Xml,” Proc. Int’l Conf.
Very Large Data Bases (VLDB), pp. 45-56, 2003. L.Li,
H. wang, J. LI, H.Gao” Efficient algorithm for skyline
top-k keyword queries on XML streams” Harbin
Institute of Technology.

[15] G. Li, S.Ji,C.Li and J.Feng,”Efficient type-ahead search
on Relational Data: A Tastier Approach” proc. ACM
SIGMOD Int’l conf. Management of data,2009

[16] G. Li, J. Feng, and L. Zhou, “Interactive Search in Xml
Data,” Proc. Int’l Conf. World Wide Web (WWW), pp.
1063-1064, 2009.

[17] V. Hristidis, N. Koudas, Y. Papakonstantinou, and D.
Srivastava, “Keyword Proximity Search in Xml Trees,”
IEEE Trans. Knowledge and Data Eng., vol. 18, no. 4,
pp. 525-539, Apr. 2006.

[18] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram,
“Xrank: Ranked Keyword Search over Xml
Documents,” Proc. ACM SIGMOD Int’l Conf.
Management of Data, pp. 16-27, 2003.

[19] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram,
“Xrank: Ranked Keyword Search over Xml
Documents,” Proc. ACM SIGMOD Int’l Conf.
Management of Data, pp. 16-27, 2003.

[20] Z. Bao, T.W.Chen and J. Lu,” Effective XML Keyword
search with relevance oriented Ranking”, proc. Int’l
conf. Data Eng. (ICDE)2009

[21] Z. Liu and Y. Chen, “Identifying Meaningful Return
Information for Xml Keyword Search,” Proc. ACM
SIGMOD Int’l Conf. Management of Data, pp. 329-
340, 2007.

Author Profile

Jeetendra G. Kapase is Student of ME Computer
Engineering, Jayawantrao Sawant College of
Engineering, Hadapsar, Pune University, India.

Prof. Sharmila M. Shinde is serving as Asssistant
Professor, Head of Computer Engineering
Departement, Jayawantrao Sawant College of
Engineering, Hadapsar, Pune University, India.

Paper ID: 02014886 2756

