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1. Introduction

A good amount of work to determine the degree of
approximation of function belonging to the class. W(L, ,&(t))
by Ceasaro, Norlund, Euler means has been done by several
mathematician like Qureshi [ 8 ] ,Lal and Singh [ 4 ], Nigam
[ 6 ], Dhakal [ 1]. In present work we determined the degree
of approximation of the conjugate of function f belongs to,
W(L,, &(t)) using ( E, 2) (C, 1) means Conjugate Fourier
Series.

Let f be 2m periodic integrable over (- @, ) in the sense of
Lebesgue then its Fourier Series is given by
fx)= ?-i-z;'f:l(cos nx + sin nx) (1.1)
with partial sum S, (x). The conjugate Fourier series of (1.1)
is given by
Y (sinnx — cos nx) (1.2)

with partial sum S,, (x).
1

L, —norm is defined by [Ifllr = (f"If GOl dx) 1= 1
(1.3)

The degree of approximation E,, (f) of a function f € L, is
given by

E,(f) = min|lt, — £, (1.4)
A function f € Lipa if f(x +t) — f(t) = o(|t|*) for
0<x< 1 (1.5)

A function f € Lip(a,r) for

1
r

0<x<2m,(f7If G+ ) = FOI dx)" = o(It]%) (1.6)
For0 <x<landr = 1.

Given a positive increasing function &(t) and an integer

r=>1,f(x) € Lip(§(t), )

1
r

(M 1f G+ 0 = F@OI dx) = 0(&WV) (1.7)

and that. fs(x) € W(L, §(v)) if

(foznlf(x +t) — f(O)|"sinfT xdx); =0(¢t) L =o0r=
1 (1.8)

If B = 0 then W (L, &(t)) reduces to the class Lip( §(t),r) if
E(t) =)t® then Lip(&(t),r) reduces to the class Lip( o, 1)
and if v - oo then Lip(a,7) reduces to class Lipa. We
observe that Lip xC Lip(x,r) € Lip(§(t),r) <
W(L,§)). for0 <x< 1,7 > 1.

Let Y0’ u,, be a given infinite series with the sequence of its
n'*partial sum {s,}. The (C,1) transform is defined as the
n**partialsum of (C,1) summability and is given by

_ SO+S1+S52+-Sn _

t
n n+1

(1.9)

1 n
—0Sg > Ssasn — oo,
n+12k—0 k

If (E,q) = Ef = —

n n n—k
n = arqn k=0(k) q S, > sasn — oo,

(1.10)

Then the infinite series Y5’ u,, is said to be summable (E,q)
to a definite numbers.

2. Main Results

Theorem — If f conjugate to a 2m- periodic function belongs
to W(L,¥&(t)) class then its degree of approximation by
(E,2) (C,1) means of conjugate Fourier series is given by

[E03 - 71l, = o[+ 7 ()]

n+1

Q2.1

Provided &(t) satisfies the following condition {?} be a

non-increasing sequence
1

{ fo"% (%) sinfrt dt}; =o (%) 22
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and { [ (M) dt}; =o{(n+1)°}  (23)

=R

Uniformaly in x. Where & is an arbitrary number such that
s(1— 8)—1>0,-+-=1and (E,C)} as defined (E.2)
(C,1) means of conjugate Fourier series and f(x) =

1 r2m t
- Zfo Y (t) cot (E) dt
For the proof of our theorem following lemmas are required.

Lemmal. - |N,, (t)l—o()for0<t<—

n+1

Proof-For0 <t < ﬁ sin (5) >0 (5) and |cos ntl <1.

1 i(n)znkl Zcos(v+2)t
3ng k k+1 t

INa (0] =

k=0 v=0 SI%
n ke 1 1 cos (17+ )t

S ( )2” Zv 0 sin%

k- |cos (v+—)t|
nzo(n) 2" ! mZv 0 |smt|
1
=3 (n) 2n k+1

1

-0 (;)-

Lemma 2. —-For0 <a<b <0,0<t<mand any n we
_— 1

have |[N,(t)| = o H .

Proof )
N 1 _g—q1 1 cos (WD)t
INa ()] = [z 20 () 2" g Xhmo | <
2
n\ on—-k-1 L(17+1)t
3"t ()2 k+1Re{ v=0¢ } <
1
Foo(p) 277 o Re(Thop ™}
1
31t O(n) anke 1 Re{Zv 0™} <
3nt (n) 2ne 1k+1 Re{X=oe™}| +
3¢ (n) 2nks 1k+1Re{Zu oew} (25)

Now cons1der first term of (2.5) we get

3nt (n) Zn k— 1k+1Re{Zv Oetv}
- (n) on—k- 1k+1Re{Zv 01}| |ewt|
n
3ntl 527 (2.6)

Again second terms of (2.5) we get

e ro(() 2n R = Re{Th e} <
(n) on—k- 1’;1 OTrZik |Zv oewt|
3Tlt- (n) 2"’ = 1

From (2.5) (2.6) and (2.7 we get
|N—n(t)| < % (n) on—k-1 4 . n:T(Z) on—k-1

=0 H T= —t. Where 7 denotes the greatest integer not

nt

1
greater than -

Proof — Let $,(x) be partial sum of conjugate Fourier series
then we have

$200) = f(x) = —f YO ——

The (C,1) transform of sn(x) is given by CF —
cos (k+ )t

2n(n+1)f ll)()

Now the (E,2) (C,l) transform of §,(x) by (E,C)} we can
write

EOn — f(0)

n k
_ %Z (Z) Jn-k-1 w(tz . Jlr : {Z cos (v

k=0 0 siny v=0
+ ! tedt
)

+1 T
=f w(t>1v7(t>dt=|[ +f ]lw(twn(t)dt
.

cos (n+ )t

feo =

=1, + I, (Say)
Applying Holder inequality and 1 (t)e w(L,, £(t)) and from
(2.2), lemma 1 and second mean value theorem for integral
we have

L1
1

fn+1 tlll}(t)lSln'Bt J’n+1 f(t)l N, (t)l dt
O tsmﬁt

- o<n11> [0y of
ol G| [

—(2+B)s+ n+1i
:0{<nj—1)5<nj—1)} {—t 2 1 1

2+pB)s+1 .
=0 [(n j— 1) ¢ (n j— 1) (n +11)2+B_%
-ofon v 1)
-ofn i)

Applying holder inequality |sint| < 1,sint = (%) from
(2.3) and lemma 2 second mean value theorem for integral,

11

I
s‘(t)l N, (t)l} dt]
=0{(n+ 1)5}[ tl (Qﬁ} dtl
n+1

t~ 5sm5t

f t_sllﬂ(t)lsmﬁt
G

=0{(n+ 1%} [fg“{i( {yl,} y—z] Putting t = 1/y
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1
s

B 1 (n + 1)5(1+,8—<S)—1 _ ns(6—1—3)+1
_0{(+1)6f(n+1)} s+p-6) -1 ]

-ofe el s

ofe o)
o{m+ 1P ()] (2.10)

From (2.8) (2.9) and (2.10) we have| (E;C)L — f| =
o{tn+1)f*7¢ (=)}

n+1
1

o _ 27 _ 7 T
1@k -l ={[ | @0 - 11" s

1
-oftrr o () oef

1 1
=ofor e (o)
(+ 17w ¢ n+1
This completes the proof.
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