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Abstract: Hadoop is a popular open source implementation of the Map Reduce programming model for cloud computing. However, it 
faces a number of issues to achieve the best performance from the underlying systems. These include a serialization barrier that delays 
the reduce phase, repetitive merges, and disk accesses, and the lack of portability to different interconnects. We describe Hadoop-A, an 
acceleration framework that optimizes Hadoop with plug-in components for fast data movement, overcoming the existing limitations. A 
Hierarchical merge algorithm is introduced to merge data without repetition and disk access. In addition, we are using virtual shuffling 
to reduce disk access. 
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1. Introduction 
 
Today’s era of a Big Data processing explosive amounts of 
data in a scalable, reliable and effcient manner to mine 
critical knowledge for human intelligence is becoming one of 
the most important challenges. For example, AT&T 
currently processes close to 20 petabytes of data every 24 
hours, and Google processes more than 1 petabytes of 
information every hour [11]. To be able to process data-
intensive analysis in a scalable and fault-tolerant manner in a 
distributed environment, Google introduced a distributed and 
parallel programming model called MapReduce [12]. Due to 
its ease of programming, scalability, especially highly fault-
tolerant and applicability on low-cost hardware MapReduce 
paradigm has become the favor of many commercial 
enterprises such as web crawling, fnancial services and 
telecommunications. 
 
Hadoop is an open-source implementation of MapReduce, 
supported by leading IT companies such as Google and 
Yahoo!, and widely adopted and deployed in industry on 
several thousands of commodity machines. Hadoop 
implements MapReduce framework with two categories of 
components: a JobTracker and many TaskTrackers. 
TaskTrackers are managed by the JobTracker and launched 
on each computational node to perform the tasks they 
receives from JobTracker. Data processing is performed in 
parallel through two main functions: map and reduce. The 
JobTracker is in charge of scheduling the map tasks 
(MapTasks) and reduce tasks (ReduceTasks) to 
TaskTrackers. It also monitors job progress, collects run-
time execution statistics, and handles possible faults and 
errors through task re-execution. 
 
2. Current Methodology  
 
2.1 Network-Levitated Merge 
 
In network-levitated merging algorithm. the idea is to leave 
data on remote disks until it is time to merge the intended 
data records. As shown in Fig. three remote segments S1, S2, 
and S3 are to be fetched and merged. Instead of fetching 
them to local disks, our new algorithm only fetches a small 

header from each segment. Each header is especially 
constructed to contain partition length, offset, and the first 
pair of <key,val>. These <key,val> pairs are sufficient to 
construct a priority queue (PQ) to organize these segments. 
More records after the first <key,val> pair can be fetched as 
allowed by the available memory. Because it fetches only a 
small amount of data per segment, this algorithm does not 
have to store or merge segments onto local disks. Instead of 
merging segments when the number of segments is over a 
threshold, we keep building up the PQ until all headers 
arrive and are integrated. As soon as the PQ has been set up, 
the merge phase starts. The leading <key,val> pair will be 
the beginning point of merge operations for individual 
segments, i.e., the merge point. This is shown in Fig. b. Our 
algorithm merges the available <key,val> pairs in the same 
way as is done in Hadoop. When the PQ is completely 
established, the root of the PQ is the first <key,val> pair 
among all segments. We extract the root pair as the first 
<key,val> in the final merged data. Then we update the order 
of PQ based on the first <key,val> pairs of all segments. The 
next root will be the first <key,val> among all remaining 
segments. It will be extracted again and stored to the final 
merged data. When the available data records in a segment 
are depleted, algorithm can fetch the next set of records to 
resume the merge operation. In fact, our algorithm always 
ensures that the fetching of upcoming records happens 
concurrently with the merging of available records. As 
shown in Fig. c, the headers of all three segments are safely 
merged; more data records are fetched, and the merge points 
are relocated accordingly. Concurrent data fetching and 
merging continues until all records are merged. All 
<key,val> records are merged exactly once and stored as part 
of the merged results. Fig. d shows a possible state of the 
three segments when their merge completes. Since the merge 
data have the final order for all records, we can safely deliver 
the available data to the Java-side ReduceTask where it is 
then consumed by the reduce function. Further details are 
available in the following section. 
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2.2 Queued Shuffle, Merge, and Reduce 
 
In Queue, MapTasks map data split as soon as they can. 
When the first MAP OUTPUT FILE is available, 
ReduceTasks fetch the headers and build up the PQ. These 
activities are Queued. Header fetching and PQ setup are 
Queued and overlapped with the map function, but they are 
very lightweight, compared to shuffle and merge operations. 
As soon as the last MAP OUTPUT FILE is available, 
completed PQs are constructed. The full Queue of shuffle, 
merge, and reduce then starts. One may notice that there is 
still a serialization between the availability of the last MAP 
OUTPUT FILE and the beginning of this Queue. This is 
inevitable in order for Hadoop to conform to the correctness 
of the apReduce programming model. Simply stated, before 
all <key,val> pairs are available, it is erroneous to send any 
<key,val> pair to the reduce function (for final results) 
because its relative order with future <key,val> pairs is yet to 
be decided. 
 
3. Propose Methodology 
 
3.1 System Architecture of Hadoop-A 
 
Fig. shows the architecture of Hadoop-A. Two new 
userconfigurable plug-in components, MAP OUTPUT 
FILESupplier and Net-Merger, are introduced to leverage 
RDMA-capable interconnects and enable alternative data 
merge algorithms. Both MAP OUTPUT FILESupplier and 
NetMerger are threaded C implementations. The choice of C 
over Java is to avoid the overhead of the Java Virtual 
Machine (JVM) in data processing and allow flexible choice 
of new connection mechanisms such as RDMA, which is not 
yet available in Java. A primary requirement of Hadoop-A is 
to maintain the same programming and control interfaces for 
users. To this end, we design the MAP OUTPUT 
FILESupplier and NetMerger plugins as native C programs 
that can be launched by TaskTrackers. A user can choose to 
enable or disable the acceleration, which is controlled by a 
parameter in the configuration file. Hadoop programs can 
run without any change when the Hadoop-A plug-in is 
activated. 
 

 
 
3.2 Memory Scalability 
 
Although network-levitated merge is capable of efficiently 
supporting most Hadoop production jobs (jobs with _10 GB 
input make up _92 percent of total jobs ),there is a potential 
issue of coping with extremely large data sets. In the 
network-levitated merge algorithm, data are fetched from the 
remote MAP OUTPUT FILE and stored a block before 
being merged to its staging buffer applications with exascale 
data sets, the linear growth of memory requirement does not 
promise good scalability. 
 
For better scalability in the future, a hierarchical merge 
algorithm is needed to organize memory buffers. Then, we 
can activate the data shuffling for only one branch of the tree 
and leave the other branch temporarily inactive, i.e., not 
holding any data in memory. Fig. shows a general idea with a 
two-level tree organization. At the very bottom, a linear 
array (called treeset) is used to sort the incoming segments 
based on their size. Once the number of segments goes over 
a threshold, the segments are moved into a leaf priority 
queue (LPQ). More segments will lead to the creation of 
more LPQs. After all segments have arrived, the remaining 
segments in treeset are moved to the last LPQ. All LPQs are 
then organized into a root priority queue (RPQ), which 
merges data from LPQs into an dditional staging buffer. The 
segments are spread into many small LPQs . Virtual 
shuffling is applied to apReduce through hierarchical merge 
technique using a two-level hierarchy of priority queues. At 
the very bottom, alinear array (called treeset) is used to sort 
the incoming segments based on their size. Once the number 
of segments goes over a threshold, the segments are moved 
into a Child Priority Queue (CPQ). More segments will lead 
to the creation of more CPQs. After all segments have 
arrived, the remaining segments in treeset are moved to the 
last CPQ. All CPQs are then organized into a root priority 
queue (RPQ), which merges data from CPQs into and 
additional staging buffer. The segments are spread into many 
small CPQs. The novelty of Hierarchical Merge is to 
minimize the number of merges down to 2 and yet keep the 
merging process in memory. 
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3.3 Virtual Shuffling for Data Movement in Hadoop -A 
Map Reduce 
 
Virtual shuffling strategy to enable efficient moving of data 
for Map Reduce programs. Figure shows the general idea. 
Instead of moving data segments to local disks before 
starting the reduce function, virtual shuffling allows a 
Reduce Task to fetch only a minimal set of segment 
attributes and create a virtual segment table that records the 
actual locations of remote segments. Virtual shuffling delays 
the actual movement of data until the Reduce Task requests 
data to be reduced. At that point, virtual shuffling employs 
on-demand merging to fetch data in small blocks into 
memory, merge and send them directly to the reduce 
function. In doing so, virtual shuffling greatly reduces the 
number of disk accesses of physical shuffling, and enables 
efficient data movement. 

 

 
 
4. Conclusion 
 
We have examine Hadoop-A as an extensible acceleration 
framework that can allow plug-in components to address all 
hadoop issues. By introducing a new hierarchical merge 
algorithm that merges data without touching disks and 
designing a full Queue of shuffle, merge, and reduce phases 
for Reduce Tasks, we have successfully accomplished an 
accelerated Hadoop framework, Hadoop-A also using virtual 
shuffling we can reduce disk access . 
 

References 
 
[1] J. Dean and S. Ghemawat, “MapReduce: Simplified 

Data Processing on Large Clusters,” Proc. Sixth Symp. 
Operating System Design and Implementation (OSDI 
’04), pp. 137-150, Dec. 2004. 

[2] Apache Hadoop Project, http://hadoop.apache.org/, 
2013. 

[3] D. Jiang, B.C. Ooi, L. Shi, and S. Wu, “The 
Performance of MapReduce: An In-Depth Study,” Proc. 
VLDB Endowment, vol. 3, no. 1, pp. 472-483, 2010. 

[4] C. Ranger, R. Raghuraman, A. Penmetsa, G.R. Bradski, 
and C. Kozyrakis, “Evaluating MapReduce for Multi-
Core and Multiprocessor Systems,” Proc. IEEE 13th 
Int’l Symp. High Performance Computer Architecture 
(HPCA ’07), pp. 13-24, 2007. 

[5] Y. Mao, R. Morris, and F. Kaashoek, “Optimizing 
MapReduce for Multicore Architectures,” Technical 
Report MIT-CSAIL-TR-2010- 020, Massachusetts Inst. 
of Technology, May 2010. 

[6] R. Chen, H. Chen, and B. Zang, “Tiled-MapReduce: 
Optimizing Resource Usages of Data-Parallel 
Applications on Multicore with Tiling,” Proc. 19th Int’l 
Conf. Parallel Architectures and Compilation 
Techniques (PACT ’10), pp. 523-534, 2010. 

[7] S. Babu, “Towards Automatic Optimization of 
MapReduce Programs,” Proc. First ACM Symp. Cloud 
Computing (SoCC ’10),pp. 137-142, 2010. 

[8] Global arrays toolkit, 
http://www.emsl.pnl.gov/docs/global. 

[9] Report on experimental language X10, 
http://dist.codehaus.org/x10/documentation/languagespe
c/x10-170.pdf (2008). 

[10] A. Shet, V. Tipparaju, R. Harrison, Asynchronous 
programming in upc: A case study and potential for 
improvement, in: Workshop on Asynchrony in the 
PGAS Programming Model Collocated with ICS 2009, 
2009.  

Paper ID: SUB15240 593

http://creativecommons.org/licenses/by/4.0/�



