
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 1, January 2015
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

A Survey on Hierarchical Merge for Hadoop-A

Vaibhav Dhore1, Sonali R. Jagtap2

1Assistant Professor,Department of Computer Engineering, RMD Sinhgad School of Engineering, University of Pune, India

2Department of Computer Engineering, RMD Sinhgad School of Engineering, University of Pune, India

Abstract: Hadoop is a popular open source implementation of the Map Reduce programming model for cloud computing. However, it
faces a number of issues to achieve the best performance from the underlying systems. These include a serialization barrier that delays
the reduce phase, repetitive merges, and disk accesses, and the lack of portability to different interconnects. We describe Hadoop-A, an
acceleration framework that optimizes Hadoop with plug-in components for fast data movement, overcoming the existing limitations. A
Hierarchical merge algorithm is introduced to merge data without repetition and disk access. In addition, we are using virtual shuffling
to reduce disk access.

Keywords: Hadoop, MapReduce, virtual shuffling, hierarchical merge, Hadoop acceleration

1. Introduction

Today’s era of a Big Data processing explosive amounts of
data in a scalable, reliable and effcient manner to mine
critical knowledge for human intelligence is becoming one of
the most important challenges. For example, AT&T
currently processes close to 20 petabytes of data every 24
hours, and Google processes more than 1 petabytes of
information every hour [11]. To be able to process data-
intensive analysis in a scalable and fault-tolerant manner in a
distributed environment, Google introduced a distributed and
parallel programming model called MapReduce [12]. Due to
its ease of programming, scalability, especially highly fault-
tolerant and applicability on low-cost hardware MapReduce
paradigm has become the favor of many commercial
enterprises such as web crawling, fnancial services and
telecommunications.

Hadoop is an open-source implementation of MapReduce,
supported by leading IT companies such as Google and
Yahoo!, and widely adopted and deployed in industry on
several thousands of commodity machines. Hadoop
implements MapReduce framework with two categories of
components: a JobTracker and many TaskTrackers.
TaskTrackers are managed by the JobTracker and launched
on each computational node to perform the tasks they
receives from JobTracker. Data processing is performed in
parallel through two main functions: map and reduce. The
JobTracker is in charge of scheduling the map tasks
(MapTasks) and reduce tasks (ReduceTasks) to
TaskTrackers. It also monitors job progress, collects run-
time execution statistics, and handles possible faults and
errors through task re-execution.

2. Current Methodology

2.1 Network-Levitated Merge

In network-levitated merging algorithm. the idea is to leave
data on remote disks until it is time to merge the intended
data records. As shown in Fig. three remote segments S1, S2,
and S3 are to be fetched and merged. Instead of fetching
them to local disks, our new algorithm only fetches a small

header from each segment. Each header is especially
constructed to contain partition length, offset, and the first
pair of <key,val>. These <key,val> pairs are sufficient to
construct a priority queue (PQ) to organize these segments.
More records after the first <key,val> pair can be fetched as
allowed by the available memory. Because it fetches only a
small amount of data per segment, this algorithm does not
have to store or merge segments onto local disks. Instead of
merging segments when the number of segments is over a
threshold, we keep building up the PQ until all headers
arrive and are integrated. As soon as the PQ has been set up,
the merge phase starts. The leading <key,val> pair will be
the beginning point of merge operations for individual
segments, i.e., the merge point. This is shown in Fig. b. Our
algorithm merges the available <key,val> pairs in the same
way as is done in Hadoop. When the PQ is completely
established, the root of the PQ is the first <key,val> pair
among all segments. We extract the root pair as the first
<key,val> in the final merged data. Then we update the order
of PQ based on the first <key,val> pairs of all segments. The
next root will be the first <key,val> among all remaining
segments. It will be extracted again and stored to the final
merged data. When the available data records in a segment
are depleted, algorithm can fetch the next set of records to
resume the merge operation. In fact, our algorithm always
ensures that the fetching of upcoming records happens
concurrently with the merging of available records. As
shown in Fig. c, the headers of all three segments are safely
merged; more data records are fetched, and the merge points
are relocated accordingly. Concurrent data fetching and
merging continues until all records are merged. All
<key,val> records are merged exactly once and stored as part
of the merged results. Fig. d shows a possible state of the
three segments when their merge completes. Since the merge
data have the final order for all records, we can safely deliver
the available data to the Java-side ReduceTask where it is
then consumed by the reduce function. Further details are
available in the following section.

Paper ID: SUB15240 591

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 1, January 2015
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

2.2 Queued Shuffle, Merge, and Reduce

In Queue, MapTasks map data split as soon as they can.
When the first MAP OUTPUT FILE is available,
ReduceTasks fetch the headers and build up the PQ. These
activities are Queued. Header fetching and PQ setup are
Queued and overlapped with the map function, but they are
very lightweight, compared to shuffle and merge operations.
As soon as the last MAP OUTPUT FILE is available,
completed PQs are constructed. The full Queue of shuffle,
merge, and reduce then starts. One may notice that there is
still a serialization between the availability of the last MAP
OUTPUT FILE and the beginning of this Queue. This is
inevitable in order for Hadoop to conform to the correctness
of the apReduce programming model. Simply stated, before
all <key,val> pairs are available, it is erroneous to send any
<key,val> pair to the reduce function (for final results)
because its relative order with future <key,val> pairs is yet to
be decided.

3. Propose Methodology

3.1 System Architecture of Hadoop-A

Fig. shows the architecture of Hadoop-A. Two new
userconfigurable plug-in components, MAP OUTPUT
FILESupplier and Net-Merger, are introduced to leverage
RDMA-capable interconnects and enable alternative data
merge algorithms. Both MAP OUTPUT FILESupplier and
NetMerger are threaded C implementations. The choice of C
over Java is to avoid the overhead of the Java Virtual
Machine (JVM) in data processing and allow flexible choice
of new connection mechanisms such as RDMA, which is not
yet available in Java. A primary requirement of Hadoop-A is
to maintain the same programming and control interfaces for
users. To this end, we design the MAP OUTPUT
FILESupplier and NetMerger plugins as native C programs
that can be launched by TaskTrackers. A user can choose to
enable or disable the acceleration, which is controlled by a
parameter in the configuration file. Hadoop programs can
run without any change when the Hadoop-A plug-in is
activated.

3.2 Memory Scalability

Although network-levitated merge is capable of efficiently
supporting most Hadoop production jobs (jobs with _10 GB
input make up _92 percent of total jobs),there is a potential
issue of coping with extremely large data sets. In the
network-levitated merge algorithm, data are fetched from the
remote MAP OUTPUT FILE and stored a block before
being merged to its staging buffer applications with exascale
data sets, the linear growth of memory requirement does not
promise good scalability.

For better scalability in the future, a hierarchical merge
algorithm is needed to organize memory buffers. Then, we
can activate the data shuffling for only one branch of the tree
and leave the other branch temporarily inactive, i.e., not
holding any data in memory. Fig. shows a general idea with a
two-level tree organization. At the very bottom, a linear
array (called treeset) is used to sort the incoming segments
based on their size. Once the number of segments goes over
a threshold, the segments are moved into a leaf priority
queue (LPQ). More segments will lead to the creation of
more LPQs. After all segments have arrived, the remaining
segments in treeset are moved to the last LPQ. All LPQs are
then organized into a root priority queue (RPQ), which
merges data from LPQs into an dditional staging buffer. The
segments are spread into many small LPQs . Virtual
shuffling is applied to apReduce through hierarchical merge
technique using a two-level hierarchy of priority queues. At
the very bottom, alinear array (called treeset) is used to sort
the incoming segments based on their size. Once the number
of segments goes over a threshold, the segments are moved
into a Child Priority Queue (CPQ). More segments will lead
to the creation of more CPQs. After all segments have
arrived, the remaining segments in treeset are moved to the
last CPQ. All CPQs are then organized into a root priority
queue (RPQ), which merges data from CPQs into and
additional staging buffer. The segments are spread into many
small CPQs. The novelty of Hierarchical Merge is to
minimize the number of merges down to 2 and yet keep the
merging process in memory.

Paper ID: SUB15240 592

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 1, January 2015
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

3.3 Virtual Shuffling for Data Movement in Hadoop -A
Map Reduce

Virtual shuffling strategy to enable efficient moving of data
for Map Reduce programs. Figure shows the general idea.
Instead of moving data segments to local disks before
starting the reduce function, virtual shuffling allows a
Reduce Task to fetch only a minimal set of segment
attributes and create a virtual segment table that records the
actual locations of remote segments. Virtual shuffling delays
the actual movement of data until the Reduce Task requests
data to be reduced. At that point, virtual shuffling employs
on-demand merging to fetch data in small blocks into
memory, merge and send them directly to the reduce
function. In doing so, virtual shuffling greatly reduces the
number of disk accesses of physical shuffling, and enables
efficient data movement.

4. Conclusion

We have examine Hadoop-A as an extensible acceleration
framework that can allow plug-in components to address all
hadoop issues. By introducing a new hierarchical merge
algorithm that merges data without touching disks and
designing a full Queue of shuffle, merge, and reduce phases
for Reduce Tasks, we have successfully accomplished an
accelerated Hadoop framework, Hadoop-A also using virtual
shuffling we can reduce disk access .

References

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified

Data Processing on Large Clusters,” Proc. Sixth Symp.
Operating System Design and Implementation (OSDI
’04), pp. 137-150, Dec. 2004.

[2] Apache Hadoop Project, http://hadoop.apache.org/,
2013.

[3] D. Jiang, B.C. Ooi, L. Shi, and S. Wu, “The
Performance of MapReduce: An In-Depth Study,” Proc.
VLDB Endowment, vol. 3, no. 1, pp. 472-483, 2010.

[4] C. Ranger, R. Raghuraman, A. Penmetsa, G.R. Bradski,
and C. Kozyrakis, “Evaluating MapReduce for Multi-
Core and Multiprocessor Systems,” Proc. IEEE 13th
Int’l Symp. High Performance Computer Architecture
(HPCA ’07), pp. 13-24, 2007.

[5] Y. Mao, R. Morris, and F. Kaashoek, “Optimizing
MapReduce for Multicore Architectures,” Technical
Report MIT-CSAIL-TR-2010- 020, Massachusetts Inst.
of Technology, May 2010.

[6] R. Chen, H. Chen, and B. Zang, “Tiled-MapReduce:
Optimizing Resource Usages of Data-Parallel
Applications on Multicore with Tiling,” Proc. 19th Int’l
Conf. Parallel Architectures and Compilation
Techniques (PACT ’10), pp. 523-534, 2010.

[7] S. Babu, “Towards Automatic Optimization of
MapReduce Programs,” Proc. First ACM Symp. Cloud
Computing (SoCC ’10),pp. 137-142, 2010.

[8] Global arrays toolkit,
http://www.emsl.pnl.gov/docs/global.

[9] Report on experimental language X10,
http://dist.codehaus.org/x10/documentation/languagespe
c/x10-170.pdf (2008).

[10] A. Shet, V. Tipparaju, R. Harrison, Asynchronous
programming in upc: A case study and potential for
improvement, in: Workshop on Asynchrony in the
PGAS Programming Model Collocated with ICS 2009,
2009.

Paper ID: SUB15240 593

http://creativecommons.org/licenses/by/4.0/�

