
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 1, January 2015
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Benefits of Test Automation for Agile Testing

Manu GV1, Namratha M2, Pradeep3

1Technical Lead-Testing Calsoft Labs, Bangalore, India
2Assistant Professor, BMSCE, Bangalore, India

3Software Engineer, Cerner, Bangalore, India

Abstract: Software testing is essential and most important for any application to work correctly under customer requirements. Proper
testing techniques must be adopted to suit the application and so as to enhance the performance and ease the maintain ability. In this
paper, we present agile methodology of testing which is the most popular now since it takes into consideration the changing customer
needs. A comparison of agile testing with V model is also presented. Automation testing using the Open source tool Selenium is
compared with manual testing techniques which were used earlier. Test Automation today is developing as a separate discipline and
organizations are now thinking towards automating application, to have a better cost benefit in the long run. But there are many
challenges which an organization has to face when they want to automate their application.

Keywords: Agile testing, Automation, Continuous integration, Customer feedback, Selenium, V-model

1. Introduction

Software testing is the process of evaluation of a soft-ware
item to detect differences between given input and
expected output and also to assess the feature of a
software item. Testing assesses the quality of the product.
Software testing is a process that should be done during
the development process for better quality software. In
other words software testing is a verification and
validation process.

Verification is the process to make sure the product sat-
isfies the conditions imposed at the start of the
development phase. In other words, to make sure the
product behaves the way we want it to. Validation is the
process to make sure the product satisfies the specified
requirements at the end of the development phase. In other
words, to make sure the product is built as per customer
requirements.

If software testing is carried out completely on the early
stages in the product life cycle then software production
will be more inexpensive in the long run period. Software
bugs can be found at any moment of time in the life cycle,
from such early stages as conversations about the potential
architecture to such late stages as a client calling the
support desk regarding an error he has met. As time passes
and the life cycle of product progresses it becomes
increasingly more expensive to fix software bugs.

2. Agile Testing

Agile as the name refers implies something to do very
quickly. Hence Agile Testing [1] refers to validate the
client requirements as soon as possible and make it
customer friendly. As soon as the build is out, testing is
expected to get started and report the bugs quickly if any
found. As a Tester, we need to provide our thoughts on the
client requirements rather than just being the audience at
the other end. Emphasis has to be laid down on the quality
of the deliverable in spite of short timeframe which will
further help in reducing the cost of development and your
feedbacks will be implemented in the code which will

avoid the defects coming from the end user. In the modern
economy, it is often difficult or impossible to predict how
a computer-based system e.g., a web-based application
will evolve as time passes. Market conditions change
rapidly, end-user needs evolve, and new competitive
threats emerge without warning. In many situations, you
won't be able to define requirements fully before the
project begins. You must be agile enough to respond to a
fluid business environment. Fluidity implies change, and
change is expensive. Particularly if it is uncontrolled or
poorly managed, One of the most compelling
characteristics of the agile approach is its ability to reduce
the costs of change throughout the software process. Does
this mean that recognition of challenges posed by modern
realities causes to discard valuable software engineering
principles, concepts, methods, and tools? Absolutely not,
like all engineering disciplines, software engineering
continues to evolve. It can be adapted easily to meet the
challenges posed by a demand for agility.

2.1 Benefits of Agile Testing

1. Development and testing activities are concurrent.
2. Everyone work as a team towards a common goal and

everyone is responsible for the quality.
3. Continuous integration [2] and customer feedback.
4. Less risk of squeezed time period.
5. Working software is developed and delivered to the

customer frequently and documented.

2.2 Challenges of Agile Testing

1. Inadequate Test Coverage - With continuous integration

and changing requirements, it can be easy to miss criti-
cal tests for any requirement. This can be mitigated by
linking tests to user stories for better insight into test
coverage and analyzing specific metrics to identify
traceability and missing test coverage. Another cause of
missing test cover-age is due to code being changed that
was not anticipated. To mitigate that source code
analysis is needed to identify modules that were
changed to ensure that all changed code is properly
tested.

Paper ID: SUB15454 1786

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 1, January 2015
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

2. Code Broken Accidentally due to Frequent Builds -
Since code is changed and compiled daily, the
likelihood of code breaking existing features is much
higher. To attack this issue you must have a way of
running a series of tests against each build. Since most
of us are resource con-strained, it is not practical to have
testers do this daily so we must rely on automated
testing to do this for us.

3. Early Detection of Defects [3] - Defects are
substantially more expensive to fix later in the
development cycle. In other words, if you find a defect
during requirements definition, it is much cheaper to fix
and has less impact on future coding than those found
late in the testing cycle or even worse, in production. To
resolve this issue, your team can do frequent code
reviews to spot issues early. Another option is to run
static analysis tools on your source code -- these are
great at finding missing error routines, coding standard
derivations, and data type mismatch errors that can crop
up in production.

Inadequate API Testing - Most software is now designed
with a service orientated architecture that exposes their
APIs publicly so that other developers can extend the
solution. For those of us developing APIs, it can be easy
to overlook API testing because of the complexity of
doing it. Many testers do not have the skills to test APIs
because it normally requires strong coding skills to do so.
To prevent missing API tests, there are tools that allow
testers to test the API without strong coding skills, so this
is a great way to ensure that these services are fully tested.

Performance Bottlenecks - As software becomes more
mature, complexity normally increases. This complexity
adds more lines of code which introduces performance
issues if the developer is not focused on how their changes
are impacting end-user performance. To solve this issue,
you must first know what areas of your code are causing
performance issues and how performance is being
impacted over time. Load testing tools can help identify
slow areas and can track performance over time to more
objectively document performance from release to release.

3. Strategies of Agile Testing

1. Early Software Testing:

 We want to test as early as possible because the

potential impact of a defect rises exponentially over
time (this isn't always true, but it's something to be
concerned about). In fact, many agile developers
prefer a test-first approach.

 We want to test as often as possible, and more
importantly, as effectively as possible, to increase the
chance that you'll find defects. Although this
increases your costs in the short term, studies have
shown that greater investment in testing reduces the
total cost of ownership of a system due to improved
quality.

 We want to do just enough testing for our situation
such as Commercial banking software requires a
greater in-vestment in testing.

 Pair testing [4], just like pair programming and
modeling with others, is an exceptionally good idea.

2. Testing Throughout the Lifecycle:

Figure 1: Test activities during the agile lifecycle

Testing activities vary throughout the lifecycle. During
Iteration 0, we perform initial setup tasks. This includes
identifying the people who will be on the external testing
team, identifying and potentially installing testing tools. If
the project has a deadline, we would want to identify the
date into which our project must enter the End Game.

A significant amount of testing occurs during construction
iterations—agilists test often, test early, and usually test
first. This is confirmatory testing against the stakeholder's

current intent and is typically milestone-based at the unit
level. This is a great start, but it's not the entire testing
picture. Regardless of the style, our true goal should be to
test, not to plan to test, and certainly not to write
comprehensive documentation about how you intend to
hopefully test at some point. Agilists still do planning, and
we still write documentation, but our focus is on high-
value activities such as actual testing.

Paper ID: SUB15454 1787

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 1, January 2015
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

During the End Game, we may be required to per-form
final testing efforts for the release, including full sys-tem
and acceptance testing. The testing effort is greatly

reduced at the End Game since rigorous testing is done at
initial stages only.

3. Testing During Construction Iteration:

Figure 2: Incremental testing throughout the agile development lifecycle.

There are two aspects to confirmatory testing: agile
acceptance testing and developer testing, both of which
are automated to enable continuous regression testing
throughout the lifecycle. Confirmatory testing is the agile
equivalent of testing to the specification, and we consider
acceptance tests to be the primary part of the requirements
specification and our developer tests to be the primary part
of the design specification. Both of these concepts are
applications of the agile practice of single sourcing
information whenever possible.

Agile acceptance testing is a mix of traditional functional
testing and traditional acceptance testing because the
development team and their stakeholders are doing it
collaboratively. Developer testing is a mix of traditional
unit testing and traditional class integration testing. Our
goal is to look for coding errors, perform at least coverage
if not full path testing, and to ensure that the system meets
the cur-rent intent of its stakeholders. Developer testing is
often done in a test-first manner, where a single test is
written and then sufficient production code is written to
fulfill that test. This test-first approach is considered a
detailed design activity first and a testing activity second.

Automation is an important aspect of construction testing
due to the increased need for regression testing on

evolutionary projects. It is possible to generate acceptance
test cases from use cases and scenario definitions or from
process diagrams such as UML activity diagrams or flow

4. Investigative Testing:

Investigative testers describe potential problems in the
form of defect stories—the agile equivalent of a defect
report. A defect story is treated as a form of
requirement—it is estimated and prioritized and put on
your requirements stack. The need to fix a defect is a type
of requirement, so it makes perfect sense to address it just
like any other requirement. As we would expect, during
the End Game the only requirement type that we're
working on is defect stories. Good investigative testing
efforts reveal any problems [6] that developers missed
long before they become too expensive to address. It also
provides feedback to management that the team is
successfully delivering high-quality working software on
a regular basis.

Let us consider a particular scenario of purchasing a
product which can be schematically represented using
UML notation as shown below. Let us now see how agile
testing is useful in this case.

Paper ID: SUB15454 1788

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 1, January 2015
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

4. Using Selenium for Automation Testing

The main challenges associated with automation testing
are:

1. Selection of Automation Tool – Today there are n

number of automation tools available in the market and
choosing a good automation tool is one of the major
challenges that an organization often faces. This is
majorly because there are several commercial tools
which are expensive, there are open source tools which
might not be reliable and there are tools of which an
organization may not have sufficient expertise to make
optimum use of.

2. No Defined Process for Executing Automation Project
within an organization – Automation is like a project
execution, wherein you start with Requirement, then
you design the framework as per your requirements and
finally you roll it out for Test Case Execution. Lack of
systematic approach and process will make successful
automation really tough. As we have processes,
guidelines and checklist defined for our development
project; we should also have guidelines, processes and
checklist available for Automation as well.

3. Availability of Right Resources – The right set of
resources is a must when you are doing automation.
This means the resources should be skilled enough to
design and code robust scripting, so that it requires
minimum time for debugging during maintenance.

4. Commitment from Customer or Management –
Automation is time consuming and resource intensive
task. Customer or management commitment is required
if one wants to get the real benefit of automation. This
paper will highlight the approach wherein you can
maximize your benefits within reasonable period of
time.

Using selenium to overcome these challenges:

Selenium [10] is an Open Source Tool developed by
Thought Works. There are a set of Selenium tools which
when combined provides you the power to automate
simple to complex web application. Some of the Selenium
Tools under ThoughtWorks umbrella are:

 Selenium IDE – It is a Firefox add-on that makes it easy

to record and playback tests in Firefox 3+. You can
even use it to generate code to run the tests with
Selenium Remote Control.

 Selenium Remote Control (RC) – It is a client/server
system that allows you to control web browsers locally
or on other computers, using almost any programming
language and testing framework.

 Selenium Grid – It takes Selenium Remote Control to
another level by running tests on many servers at the
same time and cutting down on the time it takes to test
multiple browsers or operating systems.

Selenium is the best open source tool for doing
automation for web based application and it does not have
any cost attached to it. The only cost is the effort which
will go for designing and developing the script for the
application. There is no need to define or develop separate
Life Cycle for doing automation in Selenium. If you have
an existing automation process, Selenium Automation
Life Cycle will fit into that well. If you are using
Selenium as an automation tool, you will find a lot of
information online for the best process or Life Cycle to be
adopted for automation. Selenium scripting can be done in
a number of programming languages like C#, Java, PHP,
Ruby etc, unlike other commercial tools which support
single scripting language. Since Selenium scripting can be
done in any language of choice, one can easily find right
resources for the programming language chosen for
Selenium Automation. Last but not the least, since this
tool comes at ZERO PRICE, an organization’s

Paper ID: SUB15454 1789

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 1, January 2015
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

management will find that the only investment they have
made is on the infrastructure and human effort and not on
the heavy licensing cost.

Application Name XYZ
Number of Test Cases 4000 (Sample Number)
Manual(hours) to
execute

336 (Considering 5 Min is required for
one Test Case Execution)

Automated Effort
(hours)to execute

132 (Considering 2 Min for one Test
Script)

Number of Test
Iteration Planned
Yearly

20 (20 Iteration are planned in a Year.
Each iteration will require execution
of 2000 Test Cases)

Total Projected Hours
Saved

(336*10) – (132*20) = 720

Total Savings
Annually ($)

720 * 50 =36,000 (Considering 50$ per
hour is one FTE Rate)

Savings % (720/3360)*100 = 21.4%
Automation Effort
Estimate

4000 (Considering 2 hours for
Scripting one Test Case)

Automated Effort
FTE Cost ($)

4000 * 60 = 2,40,000 (Considering 60$
per hour is one FTE Rate)

References

[1] http://www.testingexperience.com/testingexperience0

3_09.pdf
[2] http://agile.csc.ncsu.edu/SEMaterials/AgileTesting.pd

f
[3] http://www.mattivuori.net/julkaisuluettelo/liitteet/agil

e_testing.pdf
[4] http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&a

rnumber=6298092&content
Type=Conference+Publications&sortType%3Dasc_p
_Sequence%26filter%3DAN
D(p_IS_Number%3A6298076)

[5] http://132.68.98.62/Courses/cs_methods/eXtremePro
gramming/XP_Papers/Testin g_IEEE_Software.pdf

[6] https://sw.thecsiac.com/databases/url/key/2399/8462
[7] http://www.google.co.in/url?sa=t&rct=j&q=v+model

&source=web&cd=7&cad=r
ja&ved=0CEAQFjAG&url=http%3A%2F%2Fwww.
onestoptesting.com%2Fsdlc-models%2Fv-mod-
el.asp&ei=0khsUKfqD8zirAe7p4CIDg&usg=AFQjC
NH1Rcpj2sBmaAl0AVM-0zROFKK-ew

[8] http://www.ijcaonline.org/journal/number12/pxc3874
25.pdf

[9] http://seleniumhq.org/docs/book/Selenium_Document
ation.pdf

[10] http://www.google.co.in/url?sa=t&rct=j&q=v+model
+in+software+testing&source=web&cd=10&cad=rja
&ved=0CFUQFjAJ&url=http%3A%2F%2Fwww.soft
waretestingclass.com%2Fv-
model%2F&ei=30hsUM2PBY-
zrAfFwoCoCg&usg=AFQjCNFN5TBPRyMuIk0Bwt
UPaQTPJeYRXA

Paper ID: SUB15454 1790

