Forecasting Infections by Tuberculosis in the Nile River State "Sudan"

Dr. Abdalla Ahmed¹, Alkhalifa Abdalla²

Department of Statistics-Faculty of Science-Tabuk University (KSA)

Abstract: The aim of this paper is to find a time series model to forecast the number of infections by Tuberculosis in the River Nile state "Sudan". The source of data is the national program to fight tuberculosis in the ministry of health and population of the Nile river state "Sudan". Box and Jenkins models were used to find the model. Analysis done by Minitab package. The paper concluded that, the Cumulative Incidence rate of Tuberculosis for the period studied is 0.15 and the appropriate model to estimate infections of Tuberculosis in the Nile river stat is moving average model "MA" and the forecast of infections by Tuberculosis for the two coming years ranging from 74 to 140 case.

Keywords: tuberculosis, incidence rate, moving average, autoregressive, moving average-autoregressive.

1. Introduction

No doubt, that Tuberculosis is one of the major epidemics in Sudan, has negative economic effects on the country, problem arises from that in the River Nile state "Sudan" there is no significant declining in the number of infection, in 2007 there was 457 infection and in 2013, there was 426 infection. Study aims to find out a time series model based on quarterly data for the infection in the state for the period 2007-2013.

The importance of this study is that it enables to develop requirements for the expected number of infected people, in addition to know the effectiveness of techniques used to reduce the infection by comparing the predicted number with the actual number. For descriptive and statistical analysis of data Box _ Jenkins models were used.

1.1 Theoretical framework of the study

Definition of time series
Time series is a sequence of numerical data points in successive order, usually occurs in uniform intervals, or a time series is simply a sequence of numbers collected at regular intervals over a time of period.

Box Jenkins forecasting methodology
There are four steps before starting using the box-Jenkins models:
1) Checking if the series is stationary or not and transform it to stationary series if it is not.
2) Determination of the orders for auto regression and moving average models, using autocorrelation function ACF and partial autocorrelation function PACF.
3) Estimation of the model parameters and make sure they are statistically significant.
4) Test the validity of the model and check whether it's appropriate and reliable for predicting.

Models of box-Jenkins

Auto- regression model (AR):
The model take the form:

\[Z_t = \delta + \Phi_1Z_{t-1} + ... + \Phi_pZ_{t-p} \]

Where:
\[Z_t \] represents the value of the series at time period \(t \)
\[\delta \] is constant
\[\Phi_i \] are Parameters of auto- regression

2. Moving average Model (MA)
The model takes the following form:

\[Z_t = \alpha + \theta_1\alpha_{t-1} - ... - \theta_p\alpha_{t-p} \]

Where:
\[\alpha \] A series of white noise which it random sequence with zero mean and a constant variance. \[\theta_i \] are Parameters of moving averages

3. Auto regression and moving average model (ARMA)

It is a mixed model of auto-regression and moving averages models and moving average, and takes the following form:

\[Z_t = \delta + \Phi_1Z_{t-1} + ... + \Phi_pZ_{t-p} + \alpha + \theta_1\alpha_{t-1} - ... - \theta_p\alpha_{t-p} \]

3.1 Stationarity

Stationarity" is a fundamental property underlying almost all time series statistical models. To convert time series to stationary one of the following methods used:
1. Differencing continues until stationarity achieved. In practice, it is almost never necessary to go beyond second difference, because real data generally involve only first or second level non-stationarity.
2. Taking log
3. Taking square root

3.2 Model selection

Table 1: Auto correlation function "ACF" and PartialAuto correlation function "PACF" for different models

<table>
<thead>
<tr>
<th>Model</th>
<th>ACF</th>
<th>PACF</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA(q)</td>
<td>Cuts off after pk</td>
<td>Dies down</td>
</tr>
<tr>
<td>AR(p)</td>
<td>Dies down</td>
<td>Cuts off after(\phi_p)</td>
</tr>
<tr>
<td>ARMA(p,q)</td>
<td>Dies down</td>
<td>Dies down</td>
</tr>
</tbody>
</table>

Where\(\phi_k \) is the partial correlation at lag \(k \), and\(\Phi_k \) is auto partial correlation at lag \(k \).
3.3 Parameter Estimation

- The method of least squares can be used. However, for models involving an MA component, there is no simple formula that can be applied to obtain the estimates.
- Another method that is frequently used is

3.4 Diagnostic Checking

The model that finally chosen is the one considered best based on a set of diagnostic checking criteria. These criteria include:
1. t-tests for coefficient significance
2. Residual analysis
3. Model selection criteria

3.5 Forecasting

The h-period ahead forecast based on an ARMA(p,q) model is given by

\[\hat{y}_{t+h} = \hat{\delta} + \hat{\phi}_1 y_{t+h-1} + \ldots + \hat{\phi}_p y_{t+h-p} + \hat{\epsilon}_{t+h} - \hat{\theta}_1 e_{t+h-1} - \ldots - \hat{\theta}_q e_{t+h-q} \]

Where elements on the r.h.s. of the equation may be replaced by their estimates when the actual values are not available.

3.6 Data description:

Males at risk are higher than females at risk although the dispersion of females is less. The differences between Total numbers of people at risk at the period are very small, except in 2008.

3.7 Incidence rate of Tuberculosis:

<table>
<thead>
<tr>
<th>year</th>
<th>Population at risk</th>
<th>cases of Tuberculosis</th>
<th>Cumulative cases of Tuberculosis</th>
<th>Incidence rate</th>
<th>Cumulative Incidence rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>For the year</td>
<td>From the start</td>
<td>For the year</td>
</tr>
<tr>
<td>2007</td>
<td>285</td>
<td>111</td>
<td>0.48</td>
<td>0.48</td>
<td>0.39</td>
</tr>
<tr>
<td>2008</td>
<td>174</td>
<td>119</td>
<td>0.51</td>
<td>0.79</td>
<td>0.68</td>
</tr>
<tr>
<td>2009</td>
<td>293</td>
<td>30</td>
<td>0.11</td>
<td>0.95</td>
<td>0.10</td>
</tr>
<tr>
<td>2010</td>
<td>263</td>
<td>61</td>
<td>0.01</td>
<td>0.95</td>
<td>0.00</td>
</tr>
<tr>
<td>2011</td>
<td>264</td>
<td>6</td>
<td>0.01</td>
<td>0.97</td>
<td>0.01</td>
</tr>
<tr>
<td>2012</td>
<td>261</td>
<td>27</td>
<td>0.10</td>
<td>1.02</td>
<td>0.10</td>
</tr>
<tr>
<td>2013</td>
<td>288</td>
<td>3</td>
<td>0.01</td>
<td>1.02</td>
<td>0.01</td>
</tr>
<tr>
<td>Total for period</td>
<td>294</td>
<td>294</td>
<td>1.02</td>
<td>1.02</td>
<td>0.15</td>
</tr>
</tbody>
</table>

3.8 Application

C1: represent original series
C4: represents series after taking the first difference

Checking stationarity:

Figure 1: trend analysis plot for c1

Figure 1 shows that the series affected by general trend, so it's not stationary. By taking the first difference and graph data as in figure 2 below:

Figure 2: trend analysis plot for c4

Diagnostic stage:

To determine the appropriate model autocorrelation and partial autocorrelation drawn as in figure 3 and figure 4.
From figure 3: ACF cuts after one lag and from figure 4 PACF dies down, indicating that the proposed model is MA

\[Z_t = \alpha_t + \theta_1 \alpha_{t-1} - \ldots - \theta_p \alpha_{t-p} \]

Output:
Final Estimates of Parameters

<table>
<thead>
<tr>
<th>Type</th>
<th>Coef</th>
<th>SECoef</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA</td>
<td>1</td>
<td>0.1446</td>
<td>7.43</td>
<td>0.000</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.5884</td>
<td>0.2032</td>
<td>-2.90</td>
<td>0.008</td>
</tr>
<tr>
<td>Mean</td>
<td>-0.5884</td>
<td>0.2032</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of observations: 27
Residuals: SS = 6050.29 (backforecasts excluded)
MS = 242.01 DF = 25

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag 12 24 36 48
Chi-Square 9.7 21.9 **
DF 10 22 **
P-Value 0.465 0.463 **

And the above output support the model, since p-value is 0.00 sowing the significant of the model, also
The p-values for the modified Box-Pierce all are well above .05, indicating “non-significance.” This is a desirable result.

Testing model validity:

Figure 5 and figure 6 below showing that all ACF and PACF for residuals are within the intervals, which means the validity of the model.

4. **Results**

1. The Cumulative Incidence rate of Tuberculosis for the period studied is 0.15.
2. The appropriate model to estimate infections of Tuberculosis in the Nile river stat is MA.
3. The forecast of infections by Tuberculosis for the two coming years ranging from 74 to 140 case.

5. **Recommendation**

1. According to previous results, Tuberculosis in the Nile river state is under control, but more attention must be given to reduce the incidence of the disease.
2. MA model should be use to compare predicted number with actual number to evaluate the efforts used for reduction of the disease.
References