Optimization of End Milling Parameters on Surface Roughness of Die Steel HCHCr by Taguchi Method

M. S. Harne¹, Ravikumar L. Shirsat²

¹Assistant Professor, Mechanical Engineering Department Government College of Engineering Dr. Babasaheb Ambedkar Marathwada University, Aurangabad Maharashtra, India
²Research Scholar Post Graduate Student, Mechanical Engineering Department Government College of Engineering Aurangabad Maharashtra 431005, India

Abstract: This paper outlines the Taguchi Optimization methodology, which is applied to optimize cutting parameters in end milling when machining Die steel (HCHCr D3). The milling parameters evaluated are cutting speed, feed rate and Depth of cut. An orthogonal Array, signal-to-noise (S/N) ratio and analysis of variance (ANOVA) are employed to analyze the effect of experiment (DOE). Mathematical model is generated by regression analysis. Finally effect of process parameter on surface roughness (Ra) in end milling studied and optimum solution is carried out. The study shows that the taguchi method is suitable to solve the surface quality problem with minimum number of trial.

Keywords: Optimization, End Milling, Taguchi Method, Surface Roughness, orthogonal Array, ANOVA

1. Introduction

In present time the technology of CNC vertical milling machine has been improved significantly to meet the advance requirements in various manufacturing fields, especially in the precision metal cutting industry. In die making industry End milling is the most important operation. [1] This experiment gives the effect of different machining parameters (spindle speed, feed, and depth of cut) on Surface roughness in end milling. The demand for high quality and fully automated production focus attention on the surface condition of the product, surface finish of the machined surface is most important due to its effect on product appearance, function, and reliability. For these reasons it is important to maintain consistent tolerances and surface finish.[1,8,10]

1.1 Surface Roughness and Measurement

Quality is an important factor in the production of dies.[2] The quality of the surface plays a very important role in the performance of milling as a good-quality milled surface significantly improves fatigue strength, corrosion resistance, and creep life. Surface roughness also affects several functional attributes of parts, such as wearing, heat transmission, ability of holding a lubricant, coating, or resisting fatigue. [3] Therefore, the desired finish surface is usually specified and the appropriate processes are selected to reach the required quality. Several factors influence the final surface roughness in end milling operation [3,4]. Factors such as spindle speed, feed rate, and depth of cut that control the cutting operation can be setup in advance. However, factors such as tool geometry, tool wear, and chip formation, or the material properties of both tool and workpiece are uncontrolled [8].

There are several way to describe surface roughness. One of them is average roughness which is often quoted as Ra symbol. Ra is defined as the arithmetic value of the departure of the profile from the center-line along sampling.[5]

This experimental investigation outlines the Taguchi optimization methodology, which is applied to optimize Ra value in end milling operation. The experiment is conducted on HCHCr (D3) the processing of the job is done by Solid Carbid TH coated end-mill tool under finishing conditions. [7] The machining parameters evaluated are cutting speed, feed rate and depth of cut. The experiments are conducted by using Taguchi L9 orthogonal array as suggested by Taguchi. Signal-to-Noise (S/N) ratio and Analysis of Variance (ANOVA) is employed to analyse the effect of milling parameters on Surface Finish (Ra value).

2. Experimental Details

2.1 Design of Experiment

DOE is a powerful analysis tool for modelling and analysing the influence of control factors on performance output. The traditional experimental design is difficult to be used especially when dealing with large number of experiments and when the number of machining parameter is increasing [8]. Taguchi method, which is developed by Dr. Genichi Taguchi, is introduced as an experimental technique which provides the reduction of experimental number by using orthogonal arrays and minimizing the effects out of control factors [8]. Taguchi is a method which includes a plan of experiments with the objective of acquiring data in a controlled way, executing these experiments and analysis data in order to obtain the information about behaviour of the given process [1, 10, and 11]. This technique has been applied in the manufacturing processes to solve the most confusing problems especially to observe the degree of influence of the control factors and in the determination of optimal set of conditions [1]. The Taguchi method could decrease the experimental or product cycle time, reduce the cost while increasing the profit and determines the
significant factors in a shorter time period as it can ensure the quality in the design phase [8,12].

The first step in Taguchi’s parameter design is selecting the proper orthogonal array (OA) according to the controllable factors (parameters). Then, experiments are run according to the OA set earlier and the experimental data are analyzed to identify the optimum condition. Once the optimum conditions are identified, then confirmation runs are conducted with the identified optimum levels of all the parameters [12]. The use of parameter design in Taguchi’s technique is an engineering method of focusing on determining the parameter settings producing the best levels of a quality characteristic with minimum variation for a product or process.[10]

In the Taguchi method the term signal represent the desirable value (mean) for the output characteristic and the term noise represent the undesirable value for the output characteristic.[4]Taguchi uses the S/N ratios to measure the quality characteristic deviating from the desired value. there are several S/N ratios available depending on types of characteristics.[6] Smaller is better S/N ratio used here because the quality characteristic is Surface Roughness (Ra).[9]

2.2 Working Machine

For the experiments HASS CONTROL CNC Machine is used

High performance HASS END MILL is used which having working space X,Y,Z movements being 600x460x570mm variable spindle speed. Optimum 8000 rpm main spindle power 14.7 kw having table size 700 x500 mm was employed to perform experiments.

2.3 Workpiece material

The experiment is carried out on HCHCr (AISI D3)die steel material (65 x 60 x 20 mm) 9 blocks Whose compositions are as follows.

Table 1: Chemical composition of die steel HCHCr(AISID-3)

<table>
<thead>
<tr>
<th>C</th>
<th>Si</th>
<th>Cr</th>
<th>Mn</th>
<th>Ni</th>
<th>HRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.10%</td>
<td>0.30%</td>
<td>11.50%</td>
<td>0.40%</td>
<td>0.31%</td>
<td>60-62</td>
</tr>
</tbody>
</table>

2.4 End Mill Cutter

For this experimentation dia 10mm 4 flute flat solid carbide (TH coated) cutter is used. [6]

2.5 Surface Roughness Tester

Taylor Hobson Surface tester is used for taking Ra values. It contains a prob which is movable. By some force this prob is moved on surface of workpies. It has ±0.03um accuracy.

3. Experimental Conditions

The experimental series is carried out on HASS End mill machine (IGTR-Aurangabad). OVAT analysis is done before experimentation to decide the three levels of each input parameter (i.e. cutting speed, feed & depth of cut).

3.1 Process parameters & Units

Table shows the parameters and their units

<table>
<thead>
<tr>
<th>Process parameters & units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutting speed</td>
</tr>
<tr>
<td>Feed Rate</td>
</tr>
<tr>
<td>Depth of cut</td>
</tr>
</tbody>
</table>

After the OVAT analysis we defined 3 levels for each parameter

Table 3: Selected Process Parameter levels

<table>
<thead>
<tr>
<th>Process parameters & levels</th>
<th>Level1</th>
<th>Level2</th>
<th>Level3</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutting speed</td>
<td>2800</td>
<td>3000</td>
<td>3200</td>
<td>rpm</td>
</tr>
<tr>
<td>Feed Rate</td>
<td>250</td>
<td>300</td>
<td>350</td>
<td>mm/min</td>
</tr>
<tr>
<td>Depth of cut</td>
<td>0.02</td>
<td>0.04</td>
<td>0.06</td>
<td>mm</td>
</tr>
</tbody>
</table>
4. Result and Analysis

After all 9 experiments are carried out a table is generated by Minitab 14 which contains Ra value and S/n ratio.

Table 5: Ra and S/N ratio Values

<table>
<thead>
<tr>
<th>Experiment no.</th>
<th>Cutting speed (RPM)</th>
<th>Feed Rate (mm/min)</th>
<th>Depth of Cut (mm)</th>
<th>Ra Value</th>
<th>S/N Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2800</td>
<td>250</td>
<td>0.02</td>
<td>0.39</td>
<td>7.4513</td>
</tr>
<tr>
<td>2</td>
<td>2800</td>
<td>300</td>
<td>0.04</td>
<td>0.54</td>
<td>4.5091</td>
</tr>
<tr>
<td>3</td>
<td>2800</td>
<td>350</td>
<td>0.06</td>
<td>0.62</td>
<td>4.2450</td>
</tr>
<tr>
<td>4</td>
<td>3000</td>
<td>250</td>
<td>0.02</td>
<td>0.38</td>
<td>8.5460</td>
</tr>
<tr>
<td>5</td>
<td>3000</td>
<td>300</td>
<td>0.06</td>
<td>0.50</td>
<td>5.3363</td>
</tr>
<tr>
<td>6</td>
<td>3000</td>
<td>350</td>
<td>0.02</td>
<td>0.62</td>
<td>4.7177</td>
</tr>
<tr>
<td>7</td>
<td>3200</td>
<td>250</td>
<td>0.06</td>
<td>0.25</td>
<td>10.0189</td>
</tr>
<tr>
<td>8</td>
<td>3200</td>
<td>300</td>
<td>0.02</td>
<td>0.38</td>
<td>8.4194</td>
</tr>
<tr>
<td>9</td>
<td>3200</td>
<td>350</td>
<td>0.04</td>
<td>0.51</td>
<td>5.2298</td>
</tr>
</tbody>
</table>

4.1 Analysis of Data

a) S/N Ratio analysis

Table 6: Response Table for Signal to Noise Ratio-Small is better (Ra Value)

<table>
<thead>
<tr>
<th>Level</th>
<th>CS</th>
<th>feed</th>
<th>Doc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.894</td>
<td>10.226</td>
<td>6.912</td>
</tr>
<tr>
<td>2</td>
<td>6.877</td>
<td>6.592</td>
<td>7.219</td>
</tr>
<tr>
<td>3</td>
<td>8.769</td>
<td>4.718</td>
<td>7.405</td>
</tr>
<tr>
<td>Delta</td>
<td>2.870</td>
<td>5.508</td>
<td>0.493</td>
</tr>
<tr>
<td>Rank</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 7: Response Table for Means

<table>
<thead>
<tr>
<th>Level</th>
<th>CS</th>
<th>feed</th>
<th>Doc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5167</td>
<td>0.3133</td>
<td>0.4633</td>
</tr>
<tr>
<td>2</td>
<td>0.4733</td>
<td>0.4733</td>
<td>0.4500</td>
</tr>
<tr>
<td>3</td>
<td>0.3800</td>
<td>0.3833</td>
<td>0.4567</td>
</tr>
<tr>
<td>Delta</td>
<td>0.1367</td>
<td>0.2700</td>
<td>0.0133</td>
</tr>
<tr>
<td>Rank</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Above tables clearly indicates the optimal condition of process parameters. Optimal value levels for better surface finish Ra are at cutting speed 3200 rpm, feed is at 250mm/min and depth of cut is 0.04mm. The delta is the highest minus the lowest average for each factor. Minitab assigns rank based on Delta value. Rank one to the highest Delta value, rank two to the second highest and so on. From ANOVA we can say that most affecting factor is feed and least is Depth of cut.

4.2 Analysis Of Variance (ANOVA)

The analysis of the experiment data is carried out by using the software MINITAB 14. Analysis of variance is performed on experimental data. Table 9 shows the result of the ANOVA with the surface roughness. The last column of the table indicates p_value for the individual control factors. The Anova Table 7 indicates that the cutting speed (p=0.067), feed (p=0.019) and depth of cut (p=0.846). When p-value is below 0.05 we may say that the factor is affecting on response parameter. And if there are more values under 0.05 then the lowest value indicates the most significant factor.

Table 8: Analysis Of Variance for S/N Ratio, Using Adjusted SS for tests

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Seq ss</th>
<th>Adj SS</th>
<th>Adj MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>speed</td>
<td>2</td>
<td>18.389</td>
<td>18.389</td>
<td>9.1947</td>
<td>13.91</td>
<td>0.067</td>
</tr>
<tr>
<td>feed</td>
<td>2</td>
<td>68.4039</td>
<td>68.4039</td>
<td>34.2019</td>
<td>51.74</td>
<td>0.019</td>
</tr>
<tr>
<td>DOC</td>
<td>2</td>
<td>0.2403</td>
<td>0.2403</td>
<td>0.1202</td>
<td>0.18</td>
<td>0.846</td>
</tr>
<tr>
<td>Error</td>
<td>2</td>
<td>1.3221</td>
<td>1.3221</td>
<td>0.6610</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>88.556</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S = 0.8130 R-Sq = 98.5% R-Sq(adj) = 94.0%
5. Conclusions

1) It is observed that Cutting speed and Feed has significant effect on Surface Roughness.
2) Feed is the most significant parameter on surface roughness.
3) Experiment shows that in end milling process there is least effect of Depth of cut on surface roughness of product.
4) Also prediction made by Regression Analysis is in good agreement with Confirmation Tests.
5) Hence we can say that for low roughness value higher cutting speed and low feed rate is required.
6) Optimized level of parameters for End Milling Operation: Cutting Speed 3200 rpm, feed 250 mm/min and Depth of cut is 0.04 mm.

References

[3] Dr. Mike S. Lou, Dr. Joseph C. Chen & Dr. Caleb M. Li. Surface Roughness Prediction Technique For CNC End-Milling.
[4] Dhole N.S. 1, Prof. Naik G.R 2, Mr. Prabhawalkar M.S. 3.” OPTIMIZATION OF MILLING PROCESS PARAMETERS OF EN33 USING TAGUCHI PARAMETER DESIGN APPROACH”