
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 1, January 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

A Review on Implementation of Random Number

Generation based on FPGA

Vishakha V. Bonde
1
, A. D. Kale

2

1Student, Electronics and Telecommunication Engg, Sant Gadge Baba University Amravati, India
2Assistant Professor, Electronics and Telecommunication Engg, Sant Gadge Baba University Amravati, India

Abstract: Random number generator is required extensively by many applications like cryptography, simulation, numerical analysis,

text-to-speech etc. Most C libraries have a pair of library routines for initializing, and then generating random numbers. For parametric

speech synthesis application, a random number generator is required to produce noise samples. Therefore, a need has been felt for the

design of a dedicated hardware for random number generator that generates one random number per cycle so that text-to speech

conversion is done in real time. A random number generator (RNG) is a device designed to generate a sequence of numbers or symbols

that don‘t have any pattern. Hardware-based systems for random number generation are widely used, but often fall short of this goal,

albeit may meet some of the statistical tests for randomness for ensuring that do not have any ”de-codable” patterns.

Keywords: Random Number Generator, Cryptography, C, synthesis, text-to-speech, FPGA

1. Introduction

A pseudorandom number generator (PRNG), is an algorithm

for generating sequence of numbers that approximates the

properties of random numbers. The Sequence is not truly

random. Although sequences that are closer to truly random

can be generated using hardware random number generators,

pseudorandom numbers are important in practice for

simulations (e.g., of physical systems with the Monte Carlo

method), and are important in the practice of cryptography. A

PRNG can be started from an arbitrary starting state using a

seeds. It will always produce the same sequence thereafter

when initialized with that state. The maximum length of the

sequence before it begins to repeat is determined by the size

of the state. However, since the length of the maximum

period doubles with each bit of 'state' added, it is easy to

build PRNGs with periods long enough for many practical

applications. Most pseudorandom generator algorithms

produce sequences which are uniformly distributed by any of

several tests.

The security of most cryptographic algorithms and protocols

using PRNGs is based on the assumption that it is infeasible

to demarcate use of a suitable PRNG from the usage of a

truly random sequence. The simplest examples of this

dependency are stream ciphers, which work by exclusive or-

ing the plaintext of a message with the output of a PRNG,

producing cipher text. The design of cryptographically secure

PRNGs is extremely difficult; because they must meet

additional criteria .The size of its period is an important

factor in the cryptographic suitability of a PRNG, but not the

Only one Algorithms for pseudorandom number generators

are of many types such as Blum Blum Shub, ISAAC

(Cipher), Inversive congruential generator, Lagged Fibonacci

generator, Linear feedback shift register, Xorshift, Linear

congruential generator etc.

LFSR is the traditional method for generating random

numbers which uses shift registers. VHSIC HDL prefer

because of its flexibility and writing commands. FPGA can

implement any logical expression i.e. it is predefined

reconfigurable IC. It can be reconfigured any number of time.

Therefore FPGA is used for rapid prototype development as

compared to ASIC.

The 8 and 16 bit length sequence using verilog HDL

implemented on FPGA kit. Also the comparison between

8and 16 bit on the basis of synthesis and simulation result.

FPGA can implement any logical expression i.e. it is

predefined reconfigurable IC. It can be reconfigured any

number of time. Therefore FPGA kit is used for rapid

prototype development as compared to ASIC; hence FPGA is

used to implement design.

There are two principal methods used to generate random

numbers. One measures some physical phenomenon that is

expected to be random and then compensates for possible

biases in the measurement process. The other uses

mathematical algorithms that produce long sequences of

apparently random numbers, which are in fact completely

determined by an initial value, known as a seed. The former

one is known as True Random Number Generator (TRNG).

2. Literature Review

From the rigorous review of related work and published

literature, it is observed that many researchers have designed

random number generation by applying different techniques.

Researchers have undertaken different systems, processes or

phenomena with regard to design and analyze RNG content

and attempted to find the unknown parameters. A

pseudorandom number generator (PRNG), is an algorithm for

generating a sequence of numbers that approximates the

properties of random numbers. These sequences are not truly

random. Although sequences that are closer to truly random

can be generated using hardware random number generators,

pseudorandom numbers are important in practice for

simulations (e.g., of physical systems with the Monte Carlo

method), and are important in the practice of cryptography.

Ray C. C. Cheung, Dong-U Lee, John D. Villasenor [1],

presented an automated methodology for producing

hardware-based random number generator (RNG) designs for

Paper ID: SUB15960 2749

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 1, January 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

arbitrary distributions using the inverse cumulative

distribution function (ICDF). The ICDF is evaluated via

piecewise polynomial approximation with a hierarchical

segmentation scheme that involves uniform segments and

segments with size varying by powers of two which can

adapt to local function nonlinearities. Analytical error

analysis is used to guarantee accuracy to one unit in the last

place (ulp). Compact and efficient RNGs that can reach

arbitrary multiples of the standard deviation can be

generated. For instance, a Gaussian RNG based on our

approach for a Xilinx Virtex-4 XC4VLX100-12 field-

programmable gate array produces 16-bit random samples up

to 8.2delta. It occupies 487 slices, 2 block-RAMs, and 2

DSP-blocks. The design is capable of running at 371 MHz

and generates one sample every clock cycle. The designs are

capable of generating random numbers from arbitrary

distributions provided that the ICDFs is known.

GU Xiao-chen, ZHANG Min-xuan [2] presented “Uniform

Random Number Generator using Leap-Ahead LFSR

Architecture”. Introducing a new kind of URNG using Leap-

Ahead LFSR Architecture which could generate an m-bits

random number per cycle using only one LFSR. A normal

LFSR could only generate one random bit per cycle. As

multi-bits is required to form a random number in most

applications, Multi-LFSRs architecture is used to implement

a URNG. This means 32 different LFSRs are needed in a 32-

bit output URNG. But Leap-Ahead architecture could avoid

this and generate one multi-bits random number per cycle

using only one LFSR. The Leap-Ahead architecture

consumes less than 10% of slices which the Multi-LFSR

architecture consumes. One of the reasons for this is that the

Leap-Ahead architecture has only 1LFSR in the URNG

hardware, while the Multi-LFSR architecture has 18. The

other reason is that every register in the URNG has to be

initialed separately when the circuit is restarted, and the logic

for this is complicated. As the Multi-LFSR architecture has

18×18registers, while the Leap-Ahead architecture has only

23registers, it needs more slices for the initializing function.

By implementing the Leap-Ahead LFSR architecture and

Multi-LFSR architecture of both Galois type and Fibonacci

type on Xilinx Vertex 4 FPGA, we acquire the conclusion

that, with only very little lost in speed, Leap-Ahead LFSR

architecture consumes only 10% slices of what the Multi-

LFSR architecture does to generate the random numbers that

have the same period. By comparison with other URNGs,

Leap-Ahead LFSR architecture has very good Area Time

performance and Throughput performance that are 2.18×10-9

slices×sec per bit and 17.87×109 bits per sec.

Jonathan M. Comer, Juan C. Cerda, Chris D. Martinez, and

David H. K. Hoe [3] introduced new architecture using

Cellular Automata. Cellular Automata (CA) have been found

to make good pseudo-random number generators (PRNGs),

and these CA-based PRNGs are well suited for

implementation on Field Programmable Gate Arrays

(FPGAs). To improve the quality of the random numbers that

are generated, the basic CA structure is enhanced in two

ways. First, the addition of a super-rule to each CA cell is

considered. The overviews of the design of linear feedback

shift register (LFSRs) and cellular automata (CA), followed

by a review of related works that have utilized LFSR and CA

for generating random numbers. Therefore, evaluated the

performance of CA-based PRNGs suitable for

implementation on FPGAs. Synthesis results for the Xilinx

Spartan 3E FPGA give a good idea of the relative resources

required for each configuration.

Pawel Dabal, Ryszard Pelka [4] presented “FPGA

Implementation of Chaotic Pseudo-Random Bit Generators”

Modern communication systems (including mobile systems)

require the use of advanced methods of information

protection against unauthorized access. Therefore, one of the

essential problems of modern cryptography is the generation

of keys having relevant statistical properties. In recent years,

the cryptographers pay an increasing attention to digital

systems based on chaos theory. The use of chaotic signals to

carry information .An idea of using a nonlinear chaotic

dynamic system for design of cryptographic secure pseudo-

random number or bit generator (PRNG or PRBG) seems to

be interesting from practical reasons.

Carlos Arturo Gayoso, C. González, L. Arnone, M. Rabini,

Jorge Castiñeira Moreira, [5] presented “Pseudorandom

Number Generator Based on the Residue Number System

and its FPGA Implementation”

Residue Number System (RNS), which allows us to design a

very fast circuit that has a very different way of operating

with respect to other generators. A set of classic tests, the

Diehard test, the statistic complexity test and the Hurst

exponent test are used to provide a measure of the quality of

the randomness of the proposed pseudorandom number

generator.

David B. Thomas, Wayne Luk, [6] presented “The LUT-SR

Family of Uniform Random Number Generators for FPGA

Architectures”.

A type of FPGA RNG called a LUT-SR RNG, which takes

advantage of bitwise XOR operations and the ability to turn

lookup tables (LUTs) into shift registers of varying lengths.

This provides a good resource–quality balance compared to

previous FPGA-optimized generators, between the previous

high-resource high-period LUT-FIFO RNGs and low-

resource low-quality LUTOPT RNGs, with quality

comparable to the best software generators. The LUT-SR

generators can also be expressed using a simple C++

algorithm contained within this paper, allowing 60 fully-

specified LUT-SR RNGs with different characteristics to be

embedded in this paper, backed up by an online set of very

high speed integrated circuit hardware description language

(VHDL) generators and test benches.

Ravi Saini, Sanjay Singh, Anil K Saini, A S Mandal, Chandra

Shekhar [7] presented “Design of a Fast and Efficient

Hardware Implementation of a Random Number Generator in

FPGA” presents a fast and efficient hardware implementation

of a pseudo-random number generator based on Lehmer

linear congruential method. Demonstrated in this paper that

how the introduction of application specificity in the

architecture can deliver huge performance in terms of area

and speed. The design has been specified in VHDL and is

implemented on Xilinx FPGA device XC5VFX130T-3ff1738

and takes up only 23 slice LUTS.

Paper ID: SUB15960 2750

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 1, January 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

In 2014, Purushottam Y. Chawle and R.V. Kshirsagar [8] ,

presented a simple algorithm to generate pseudo random

number using Linear Feedback Shift register(LFSR).The

generated pseudo sequence is mainly used for

communication process such as cryptographic, encoder and

decoder application in coded format.

In LFSR operation, the linear operation of single bit is

exclusive-or (X-OR). The 8 and 16 bit LFSR is designed

using verilog HDL language to study their performance and

randomness. LFSR is a shift register whose output random

state is depend on feedback polynomial.

3. Proposed Work

Random numbers are useful for a variety of purposes, such as

generating data encryption keys, simulating and modeling

complex phenomena and for selecting random samples from

larger data sets. They have also been used aesthetically, for

example in literature and music, and are of course ever

popular for games and gambling. The earliest methods for

generating random numbers are dice, coin flipping, roulette

wheels are still used today, mainly in games and gambling as

they tend to be too slow for most applications in statistics and

cryptography.

Blum Blum Shub, ISAAC (cipher), Inversive congruential

generator, Lagged Fibonacci generator, Linear feedback shift

register, Multiply-with-carry, Xorshift, Linear congruential

generator, Mersenne twister.In our case we will design Blum

Blum Shub, LFSR, XORshift.

Linear Feedback Shift Register (LFSR)

A linear feedback shift register (LFSR) is a shift register

whose input bit isa linear function of its previous state. The

only linear function of single bits is XOR, thus it is a shift

register whose input bit is driven by the exclusive-or (XOR)

of some bits of the overall shift register value. The initial

value of the LFSR is called the seed, and because the

operation of the register is deterministic, the stream of values

produced by the register is completely determined by its

current (or previous) state. Likewise, because the register has

a finite number of possible states, it must eventually enter a

repeating cycle. However, an LFSR with a well-chosen

feedback function can produce a sequence of bits which

appears random and which has a very long cycle generates 1

random number per cycle with a clock frequency of 502 MHz

(502 million samples per second).

The random numbers generated by our design are extensively

verified against the C-code generated outputs for functional

correctness.

Figure 1: A 4 bit Fibonacci LFSR with its state diagram

Fibonacci LFSRs

A 16-bit Fibonacci LFSR. The feedback tap numbers in white

correspond to a primitive polynomial in the table so the

register cycles through the maximum number of 65535 states

excluding the all-zeroes state. The state shown, 0xACE1

(hexadecimal) will be followed by 0x5670.The bit positions

that affect the next state are called the taps.

Figure 2: A 16 bit Fibonacci LFSR

In the diagram the taps are [16,14,13,11]. The rightmost bit

of the LFSR is called the output bit. The taps are XOR'd

sequentially with the output bit and then fed back into the

leftmost bit. The sequence of bits in the rightmost position is

called the output stream. The bits in the LFSR state which

influence the input are called taps (white in the diagram).A

maximum-length LFSR produces an m-sequence (i.e. it

cycles through all possible 2
n
 − 1 states within the shift

register except the state where all bits are zero), unless it

contains all zeros, in which case it will never change. As an

alternative to the XOR based feedback in an LFSR, one can

also use XNOR. This function is an affine map, not strictly a

linear map, but it results in an equivalent polynomial counter

whose state of this counter is the complement of the state of

an LFSR. A state with all ones is illegal when using an

XNOR feedback, in the same way as a state with all zeroes is

illegal when using XOR. This state is considered illegal

because the counter would remain "locked-up" in this state.

Galois LFSRs

Named after the French mathematician Évariste Galois, an

LFSR in Galois configuration. In the Galois configuration,

when the system is clocked, bits that are not taps are shifted

one position to the right unchanged. The taps, on the other

hand, are XOR'd with the output bit before they are stored in

the next position.

Paper ID: SUB15960 2751

http://en.wikipedia.org/wiki/Dice
http://en.wikipedia.org/wiki/Coin_flipping
http://en.wikipedia.org/wiki/Roulette
http://en.wikipedia.org/wiki/Game
http://en.wikipedia.org/wiki/Hexadecimal
http://en.wikipedia.org/wiki/Maximum_length_sequence
http://en.wikipedia.org/wiki/XNOR
http://en.wikipedia.org/wiki/Affine_transformation
http://en.wikipedia.org/wiki/Linear_map
http://en.wikipedia.org/wiki/%C3%89variste_Galois
http://en.wikipedia.org/wiki/File:LFSR-F4.GIF

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 1, January 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The Galois register shown has the same output stream as the

Fibonacci register in the first section. A time offset exists

between the streams, so a different start point will be needed

to get the same output each cycle. Galois LFSRs do not

concatenate every tap to produce the new input (the XOR'ing

is done within the LFSR and no XOR gates are run in serial,

therefore the propagation times are reduced to that of one

XOR rather than a whole chain), thus it is possible for each

tap to be computed in parallel, increasing the speed of

execution.

Figure 3: A 4 bit Galois LFSR

XORShift

Xorshift is a category of pseudorandom number generators

designed by George Marsaglia. It repeatedly uses the

transform of exclusive or on a number with a bit shifted

version of it. This makes them extremely fast on modern

computer architectures. The xor shift primitive is invertible if

the number of combinations is odd, but not otherwise (most

textbook xorshift implementations have 3 combinations,

since this is the minimum number for a maximum period

generator, given correct parameters).

Blum Blum Shub

Blum Blum Shub (B.B.S.) is a pseudorandom number

generator proposed in 1986by Lenore Blum, Manuel Blum

and Michael Shub (Blum et al., 1986).Blum Blum Shub takes

the form:

Xn+1 = Xn
2
mod n

Where n=p x q is the product of two large primes p and q. At

each step of the algorithm, some output is derived from xn+1;

the output is commonly the bit parity of Xn+1 or one or more

of the least significant bits of Xn+1. The two primes, p and q,

should both be congruent to 3 (mod 4) .

There are many applications where random number

generation is very essential. Some of the applications are

listed below.

In Cryptography

A ubiquitous use of unpredictable random numbers is in

cryptography which underlies most of the schemes which

attempt to provide security in modern communications (e.g.,

confidentiality, authentication, electronic commerce, etc.).

For Encryption Algorithm

If a user wants to use an encryption algorithm, it is best that

they select a random number as the key. These numbers must

have high entropy for any attacker, thus increasing attack

difficulty.

For Parametric Speech Synthesis

For parametric speech synthesis application, a random

number generator is required to produce noise samples.

Therefore, a need has been felt for the design of a dedicated

hardware for random number generator that generates one

random number per cycle.

In Simulation and Modeling

Random numbers are useful for a variety of purposes, such as

generating data encryption keys, simulating and modeling

complex phenomena and for selecting random samples from

larger data sets.

Literature, Music and Art

Random numbers are useful for a variety of purposes. They

have also been used aesthetically, for example in literature

and music, and are of course ever popular for games and

gambling. Some aesthetic theories claim to be based on

randomness in one way or another.

Uses in circuit testing

PRNG are used in circuit testing, for test pattern generation

(for exhaustive testing, pseudo random testing or pseudo

exhaustive testing) and signature analysis.

For Signature analysis

In Built In Self Testing (BIST) techniques, storing all the

circuit outputs on chip is not possible, but the circuit output

can be compressed to form a signature which later will be

compared to the golden signature (of the good circuit) to

detect the faults.

4. Conclusion

In this review paper, a literature review on different

designing methodologies used for generating random

numbers has been presented. Several different ways have

been already examined to increase randomness of random

number generator. For a single bit random number generator,

LFSR is most effective method. When multiple bits are

required, LFSR can be extended by utilizing extra time and

extra circuitry. Cryptographic algorithms and communication

protocol are based on random number generation. By

implementing, multi LFSR Architecture of both Fibonacci

and Galois type on FPGA, we acquire conclusion that with

only very little loss in speed, multi LFSR generate random

numbers.

References

[1] Ray C. C. Cheung, John D. Villasenor, Wayne Luk,

“Hardware Generation of Arbitrary Random Number

Paper ID: SUB15960 2752

http://en.wikipedia.org/wiki/Cryptography
http://en.wikipedia.org/wiki/Confidentiality
http://en.wikipedia.org/wiki/Authentication
http://en.wikipedia.org/wiki/Electronic_commerce
http://en.wikipedia.org/wiki/Encryption_algorithm
http://en.wikipedia.org/wiki/Encryption_algorithm
http://en.wikipedia.org/wiki/Key_%28cryptography%29

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 1, January 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Distributions From Uniform Distribution Via the

Inversion Method” vol.15, no. 8, August 2007.

[2] GU Xiao-chen, ZHANG Min-xuan “Uniform Random

Number Generator using Leap- Ahead LFSR

Architecture”2009 International Conference on

Computer and Communications Security.

[3] Jonathan M. Comer, Juan C. Cerda, Chris D. Martinez,

and David H. K. Hoe 44th IEEE Southeastern

Symposium on System Theory University of North

Florida, Jacksonville, FL March 11-13, 2012.

[4] Pawel Dabal, Ryszard Pelka “FPGA Implementation of

Chaotic Pseudo-Random Bit Generators” MIXDES

2012, 19th International Conference "Mixed Design of

Integrated Circuits and Systems", May 24-26, 2012,

Warsaw, Poland.

[5] Carlos Arturo Gayoso, C. González, L. Arnone, M.

Rabini, Jorge Castiñeira Moreira, “Pseudorandom

Number Generator Based on the Residue Number

System and its FPGA Implementation” 2013 Argentine

School of Micro-Nanoelectronics, Technology and

Applications.

[6] David B. Thomas, Wayne Luk, “The LUT-SR Family of

Uniform Random Number Generators for FPGA

Architectures” IEEE transactions on very large scale

integration (VLSI) systems, vol. 21, no. 4, April 2013

[7] Ravi Saini, Sanjay Singh, Anil K Saini, A S Mandal,

Chandra Shekhar “Design of a Fast and Efficient

Hardware Implementation of a Random Number

Generator in FPGA” CSIR- Central Electronics

Engineering Research Institute (CSIR-CEERI) Pilani-

333031, Rajasthan, India 2013 International Conference

on Advanced Electronic Systems (ICAES).

[8] Purushottam Y. Chawle and R.V. Kshirsagar, “Design of

8 and 16 bit LFSR with maximum length feedback

polynomial using verilog HDL”.13
th

 IRF international

conference 20
th

july 2014, Pune, India

Author Profile

Vishakha V. Bonde received her BE degree in Electronics

and Telecommunication from Sant Gadge Baba Amravati

University in 2012. Currently pursuing ME degree in

Electronics and Telecommunication from Sant Gadge Baba

Amravati University, India.

A. D. Kale received his BE degree in Electronics and

Telecommunication from Sant Gadge Baba Amravati

University in 2009 and M. Tech. in Electronic System and

Communication from Sant Gadge Baba Amravati University

in 2012. Currently working as Assistant Professor in P. R.

Patil COE, Amravati, India

Paper ID: SUB15960 2753

