Relationship between Total Length, Standard Length and Scale Length of Freshwater Fish *Labeo rohita*

Phulwade Durgesh. N.¹, Gedam Ajit. K.², Sonawane Smita. R.³

Dept.of Zoology Dr.Babasaheb Ambedkar Marathwada University, Aurangabad. 431001 (M.S) India

Jijamata College of Arts and science Bhenda Tq.Newasa, Dist. Ahmednagar.414606. (M.S) India

Abstract: The length weight relationship, total length-standard length relationship and fish length-average total scale length relationship of Labeo rohita were studied during the year 2013-2014 by correlation and regression method. Positive correlation between total length and weight of fish, standard length and total length was observed. Studies on relation between fish length and average total scale length was also found positive.

Keywords: Average total scale length, *Labeo rohita*, total length, standard length

1. Introduction

Length-weight and length-length relationships of fish species from Chi river, northern Thailand was studied by R. Satrawaha, C.Pilasamorn, 2009).Growth of an organism means change in length or weight or both with the increasing age (Ambika Dhakal, Bharat Raj Subba, 2003). Length–weight relationship have various uses in fisheries research and management, accurate estimates of total catch are available for several fisheries in the western Pacific (P.J.Ward, C.M.Ramirez1992). Condition, length-weight, length of fish at the time of previous annulus formation can be calculated from the length of the scales and their annuli (Herman B. Chase). The aim of the present study is to determine the relationship between length-weight, total length-standard length and total length–scale length of Labeo rohita.

2. Materials and Methods

Fish samples of Labeo rohita were brought to the fishery laboratory and fixed in 5% formalin solution. Fishes were measured for total length and standard length in (cm) and weighed in (gm) using scale and digital balance. The standard length measurement was taken from the tip of the snout to the base of the tail in cm. (S.Subha and S.Adhikaree, 2010) 10 scales were taken from above the lateral line and just posterior to the base of the dorsal fin. (R.J.Beamish, H.H.Harvey, 1969).These scales were placed in separate envelopes for further study, the average total length of fish was calculated. The data obtained from the measurements were computed for regression and correlation coefficient values. (S.Subba, S.Adhikaree, 2011).

3. Results

Relationship between total length and standard length (TL & SL) was determined according to the Pearson correlation and regression method. The total length and standard length was calculated as r = 0.999.

Log TL =2.75+ 1.02 Log SL.

When logarithmic value of TL was plotted on the co-ordinate (y-axis) against SL (x-axis) it gives straight line. (Graph1).Thus the total length is positive co-related with the standard length.

The length-weight relationship of Labeo rohita was analyzed using Pearson correlation and regression equation. The body weight was positively correlated with the total length. The correlation coefficient (r) value was 0.950 and regression equation was as follows

Log L = 13.2 + 0.0225 Log W.

It was observed that the positive correlation exist between total length and average scale length of Labeo rohita, here r value is 0.962. The regression of total on average scale length was TL = -4.22+30.9 ASL.

4. Discussion

Many worker have studied length-length relationship Ali Kara, Bahar ayhan, (2008) Md.yeamin Hossain,(2010), D.K.Moutopoulos, K.I.Stergiou,(2002), S.Subba, S.Adhikaree,(2011), Deniz Erguden, Cemal Turan et al,(2011).and observed positive correlation for total length and standard length.

The relationship between body weight and length is simple but essential in fishery management D.C, (Babori, D.K.Moutopoulos, M.Bekri et al (2010). The present study positive between length-weight reported correlation relationship which indicates as the weight increases the length of fish also increases, Similar results were obtained by Manoharan J, Gopalkrishnan A, Varadhrajan D., et al (2013), Safoura Sedaghat, Seyed Abbas Hoseini, 2012). The lengthweight relationship is also of great importance for comparative growth studies (D.K.Moutopoulos and K.I Stergiou, 2002).

Volume 4 Issue 10, October 2015 <u>www.ijsr.net</u> Licensed Under Creative Commons Attribution CC BY Total length-average scale length was studied separately, results show positive correlation between total length and average scale length of Labeo rohita. This confirms to the earlier studies by Herman. B.Chase (1946).

5. Conclusion

Present study was based on different parameters of fish Labeo rohita like length-weight, total length-standard length, total length-scale length. From length-weight and total lengthstandard length relationship it is clear that the growth of Labeo rohita is positive allomatric in nature, it had been also concluded that the corelation between total length-scale length relationship was found to be positive.

6. Acknowledgments

The authors are thankful to the H.O.D. Dept.of Zoology Dr.Babasaheb Ambedkar Marathwada University, Aurangabad. (M.S) India, for providing necessary facilities.

				Ũ				
Sr.	Total Length	Standard Length	Sr.	Total Length	Standard Length	Sr.	Total Length	Standard Length
No.	of Fish(cm)	Of Fish(cm)	No.	of Fish(cm)	Of Fish(cm)	No.	of Fish(cm)	Of Fish(cm)
1	45	41.3	35	19	15.6	69	46	42.2
2	35	33	36	49	45	70	20	15.9
3	37	34.8	37	19	15.6	71	31	28.5
4	48	44.1	38	64	59.4	72	42	38
5	46	42.2	39	47	43.7	73	47	43.4
6	43	39.5	40	58	54.9	74	44	40.2
7	48	44.1	41	31	28.5	75	37	34.8
8	50	46.2	42	47	43.7	76	35	33
9	59	55.8	43	37	34.8	77	57	53.5
10	49	45	44	46	42.2	78	40	36.4
11	63	58.3	45	37	34.8	79	45	41.3
12	48	44.1	46	38	35	80	59	55.8
13	47	43.4	47	51	47.1	81	17.5	14.9
14	48	44.1	48	39	35.2	82	19	15.6
15	44	40.2	49	21	16.2	83	43	39.5
16	37	34.8	50	20	15.9	84	46	42.2
17	49	45	51	18	15.1	85	50	46.2
18	39	35.2	52	25	22	86	63	58.3
19	37	34.8	53	42	38	87	38	35
20	39	35.2	54	51	47.1	88	42	38
21	18.5	15.3	55	35	33	89	21	16.2
22	19	15.6	56	18.5	15.3	90	24	21
23	18	15.1	57	49	45	91	27	24
24	17.5	14.9	58	45	41.3	92	17	14.8
25	18.5	15.3	59	61	56.8	93	18.5	15.3
26	19	15.6	60	32	29.5	94	19	15.6
27	19	15.6	61	51	47.1	95	51	47.1
28	18.5	15.3	62	21	16.2	96	63	58.3
29	17.5	14.9	63	37	34.8	97	42	38
30	18.5	15.3	64	19	15.6	98	46	42.2
31	17.5	14.9	65	48	44.1	99	49	45
32	17	14.8	66	54	50.1	100	64	59.4
33	18.5	15.3	67	58	55			
3/	17	14.8	68	10	15.6			

Table 1: Relationship between Total Length and Standard Length of fish Labeo rohita

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Pearson correlation of TLF SLF and = 0.999 The regression equation is total Length of Fish (cm) = 2.75+1.02 Standard Length of Fish (cm)

Sr.	Fish Total	Fish Weight	Sr. No.	Fish Total	Fish Weight	Sr.	Fish Total	Fish Weight
No.	length (cm)	(gm)		length (cm)	(gm)	No.	length (cm)	(gm)
1	45	1473	35	19	210	69	46	1500
2	35	1200	36	49	1590	70	20	255
3	37	1340	37	19	217	71	31	1005
4	48	1583	38	64	1670	72	42	1435
5	46	1500	39	47	1560	73	47	1560
6	43	1445	40	58	1660	74	44	1460
7	48	1580	41	31	1005	75	37	1360
8	50	1600	42	47	1560	76	35	1200
9	59	1670	43	37	1345	77	57	1650
10	49	1590	44	46	1490	78	40	1425
11	63	1664	45	37	1348	79	45	1475
12	48	1580	46	38	1405	80	59	1670
13	47	1560	47	51	1610	81	17.5	130
14	48	1582	48	39	1410	82	19	220
15	44	1468	49	21	300	83	43	1447
16	37	1360	50	20	250	84	46	1490
17	49	1590	51	18	150	85	50	1600
18	39	1410	52	25	590	86	63	1664
19	37	1360	53	42	1435	87	38	1405
20	39	1410	54	51	1610	88	42	1430
21	18.5	185	55	35	1200	89	21	278
22	19	220	56	18.5	190	90	24	520
23	18	148	57	49	1591	91	27	705
24	17.5	127	58	45	1475	92	17	105
25	18.5	190	59	61	1685	93	18.5	188
26	19	218	60	32	1050	94	19	217
27	19	218	61	51	1610	95	51	1610
28	18.5	170	62	21	278	96	63	1664
29	17.5	130	63	37	1345	97	42	1428
30	18.5	170	64	19	210	98	46	1500
31	17.5	125	65	48	1582	99	49	1591
32	17	100	66	54	1625	100	64	1670
33	18.5	188	67	58	1660			
34	17	100	68	19	215			

Table 2: Relationship	between Fish Tota	l length and we	ight of fish Labeo rohita
1		0	0

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Pearson correlation of FTL and FW = 0.950 The regression equation is Total Length of Fish (cm)=13.2 + 0.0225 Fish (gm)

Table 3: Relationship between Total length and Average total scale length of fish La	beo rohit	ta
---	-----------	----

Sr.	Fish Total	Average total scale	Sr.	Fish total	Average total scale	Sr.	Fish Total	Average total scale
No.	length (cm)	length (cm)(Avg.)	No.	length (cm)	length (cm)(Avg.)	No.	length (cm)	length (cm)(Avg.)
1	45	1.66	35	19	0.72	69	46	1.67
2	35	1.46	36	49	1.71	70	20	0.75
3	37	1.51	37	19	0.72	71	31	1.25
4	48	1.70	38	64	1.86	72	42	1.61
5	46	1.67	39	47	1.69	73	47	1.69
6	43	1.63	40	58	1.80	74	44	1.64
7	48	1.70	41	31	1.25	75	37	1.51
8	50	1.73	42	47	1.69	76	35	1.46
9	59	1.81	43	37	1.51	77	57	1.80
10	49	1.71	44	46	1.67	78	40	1.60
11	63	1.85	45	37	1.51	79	45	1.66
12	48	1.70	46	38	1.53	80	59	1.81
13	47	1.69	47	51	1.75	81	17.5	0.64
14	48	1.70	48	39	1.58	82	19	0.72
15	44	1.64	49	21	0.78	83	43	1.63
16	37	1.51	50	20	0.75	84	46	1.67
17	49	1.71	51	18	0.69	85	50	1.73
18	39	1.58	52	25	0.96	86	63	1.85
19	37	1.51	53	42	1.61	87	38	1.53
20	39	1.58	54	51	1.75	88	42	1.61
21	18.5	0.70	55	35	1.46	89	21	0.78
22	19	0.72	56	18.5	0.70	90	24	0.95
23	18	0.69	57	49	1.71	91	27	0.99
24	17.5	0.64	58	45	1.66	92	17	0.63
25	18.5	0.70	59	61	1.83	93	18.5	0.70
26	19	0.72	60	32	1.30	94	19	0.72
27	19	0.72	61	51	1.75	95	51	1.75
28	18.5	0.70	62	21	0.78	96	63	1.85
29	17.5	0.64	63	37	1.51	97	42	1.61
30	18.5	0.70	64	19	0.72	98	46	1.67
31	17.5	0.64	65	48	1.70	99	49	1.71
32	17	0.63	66	54	1.77	100	64	1.68
33	18.5	0.70	67	58	1.80			
34	17	0.63	68	19	0.72			

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Pearson correlation of FTL and TSL = 0.962 The regression equation is Total Length of Fish (cm) = -4.22 + 30.9 Total scale length (cm)

References

- Ali Kara, Bahar Bayhan. (2008). Length-weight and length-length relationship of the bogue *Boopboop* (Linnaeus, 1758) in Izmir Bay (Aegean Sea of Turkey). *Belg.J.Zool.* 138(2):154-157.
- [2] Ambika Dhakal, Bharat Raj Subba. (2003). Lengthweight relationship of *Lepidocephalichthysguntea* of Pathri Khola, Morang district. *Nature*, 1:53-57.
- [3] Antonio Landa. (1951). The relationship between body length and scale length in five year-classes of the Pacific pilchard or Sardine, Sardinops caerulea (Girard, 1854). *Pacific Science .Vol.7.*
- [4] Anvar Ali, Neelesh Dahanukar, et.al. (2013). Lengthweight and length-length relationship of three species snakehead fish *Channadiplogramma*, *C.marulius*, and *C.striata* from the riverine reaches of Lake Vembanad, Kerala, India. Journal of threatened taxa, 5(13):4769-4773.
- [5] Deniz Eeguden, Cemal Turan, et.al. (2011). Lengthweight and length-length relationship of the *Mediterranean shad Alosaagone* (Scopoli, 1786) from the Northeastern Mediterranean coast of Turkey. *African journal of biotechnology vol.10 (33), pp6332-6336.*
- [6] D.K.Moutopoulos, K.I.Stergiou. (2002). Length-weight and length-length relationship of fish species from the Aegean Sea (Greece). J.Appl.Ichthyo.18, 200-203, ISSN 0175-8659.
- [7] Hamed Mousavi -Sabet, Sara Abdollahpuor, et.al. (2013). Length-weight and length-length relationship and condition factor of *Alburnusmossulensis* (Heckel, 1843) from the Percian gulf basin, Aquaculture, aquarium, conservation and legislation. *International journal of the bioflux society, vol 6, ISSUE 4.*

- [8] Herman B.Chase. 1946. Calculation of fish condition from scale dimensions in the *Bluegill*, *Lepomis Machrochirus*. *Ecology*, Vol 27, no.2, pp.182-184.
- [9] K.P.Abdurahiman, T.Harishnayak. (2004). Lengthweight relationship of commercially important marine fishes and shellfishes of the Southern coast of Karnataka, India. World fish center quarterly.Vol.27, No.1-2.
- [10] M.Y.Hossain, Z.F.Ahmed, et. al., (2006). Condition, Length-weight and length-length relationship of the Asian striped Catfish *Mystus vittatus* (Bloch, 1794) (Siluriformes: Bagridae) in the Mathabhanga river Southwestern Bangladesh. J.Appl.Ichthyol.22, 304-307.
- [11] Manoharan J, Gopalkrishnan A, Varadharajan D. et. al., (2013). Length-weight relationship of Crescent Perch Terapon Jarbua (Forsskal) from Parangipettai Coast, South East Coast of India. J Aquac. Res Development 4:4, Vol 4 ISSN: 2155-9546.
- [12] Marc Kochzius. (1997). Length-weight relationship of fishes from a Seagrass Meadow in Negros oriental, Philippines, Naga. *ICLARM Quarterly*.
- [13] Md.Yeamin Hossain. (2010). Morph metric relationship of Length-length of four Cyprinid small indigenous fish species from the Padma River (NW Bangladesh). Turkish. *Journal of fisheries and aquatic science*, 10:131-134.
- [14] Negi R.K. (2013). Length-weight relationship and condition factor of *Labeo rohita* from Bhagwanpur fish pond Roorkee Uttarakhand, India. *Biolife*, 1(4):170-171, *ISSN*: 2320-4257.
- [15] Onome Augustina Davies, Charles Commander Tawari, et.al. (2013). Length-weight relationship, condition factor and sex ratio of *Clarias gariepinus* juveniles reared in concrete tanks. *International journal of scientific research in environmentalscience*, 1(11), pp.324-329.ISSN:2322-4983.
- [16] **P.J.Ward, C.M. Ramirez.** (1992). Length and weight relationship for yellowfin Tuna in the Western Pacific.

1893

Western pacific yellowfin tuna research group workshop Honolulu, Hawaii. Doc.no.14.

- [17] **R.Satrawaha, C.Pilasamorn. (2009).** Length-weight and length-length relationship of fish species from the Chi River northern Thailand. *J.App.Ichthyol.25*, 787-788.
- [18] **S.Subba S.Adhikaree. (2011).** Studies on length-weight and length-length relationships of a cold water fish Neolissochilus hexagonolepis (McClelland) from Tamor River, Nepal. *Our nature 9:168-172.*
- [19] Sachinandan Dutta, Sourav Maity. (2012). Lengthweight relationship of four commercially important marine fishes of Northern Bay of Bengal, West Bengal .India. J.Appl.Environ.Biol.Sci.2 (2)52-58.
- [20] Safoura Seagate and Seyed Abbas Hoseini. (2012). Length-weight and length-length relationship of *Cyprinionmacrostomus*, (Heckel, 1843) in Dalaki River Bushehr, in South of Iran. World. Journal of fish and marine sciences 4(5):536-538, ISSN 2078-4589.
- [21] **T.Morato, P.Afonso (2001).** Length-weight relationship for 21 coastal fish species of the Azores, North-Eastern Atlantic. *Fisheries research 50, 297-302.*

Author Profile

Durgesh Nemichand Phulwade is Ph.D Scholar, Dept. of Zoology Dr. Babasaheb Ambedkar Marathwada University, Aurangabad. 431001 (M.S) India. Working under the guidance of Dr. Sonawane Smita. R.from last 3 years

Dr.Gedam Ajit. K. Working as assistant professor in the Jijamata College of Arts and science Bhenda Tq.Newasa, Ahmednagar. He has received his Ph.D degree in Zoology from the Dept of .Zoology, Dr.Babasaheb Ambedkar Marathwada University, Aurangabad under the guidance of Dr. Sonawane Smita. R. in 2011.He has various papers published in national and international journals.

Dr. Sonawane Smita. R. Working as professor in the Dept of .Zoology, Dr.Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India. She is working in the field of research and teaching for last 33 years. She is specialized in fishery science and has 69 research papers to her credit in national and international journals and also two books prescribed for U.G students. She has guided 7 students for their Ph.D degree.