Ascorbic Acid (Antioxidant) in Aegle Marmelos and Moringa Oleifera and Effect of Growth Regulators and Salts on it in Vitro

Kavita Soni¹, Asha Goswami²

Plant Tissue Culture and Biotech. Lab, Department of Botany, Govt. Dungar College, Bikaner (Raj.), India

Abstract: Aegle marmelos and Moringa oleifera are two medicinally important plant species. Unorganized tissues of these plants were established on MS medium supplemented with 1.0mg/L BAP+2.0mg/L 2,4-D and 1.5mg/L BAP +1.5mg/L 2,4-D respectively (standardized MS medium). Parts of established tissues were transferred to standardized (Sd) MS medium fed with various concentrations(1,2,3 mg/L) of growth regulators (IAA,NAA) and (10,20,30mg/L) salts (NaCl , KCl) separately. Tissues at the maximum GI (in all samples) were harvested, dried, powdered and analyzed for estimation of ascorbic acid. Maximum amount of ascorbic acid was calculated in callus fed with 2mg/L IAA, NAA and 10 mg/L NaCl and KCl in Aegle marmelos as well as Moringa oleifera.

Keywords: Aegle marmelos, Moringa oleifera, antioxidant, growth regulators, salts

1. Introduction

Aegle marmelos Corr. commonly known as “Bael” is a medium sized slow growing deciduous, spiny, woody fruit tree of tropics. It belongs to family Rutaceae. Bael is a sacred tree dedicated to Lord Shiva. It is extensively planted near Hindu temples for its leaves and wood used in worship and edible fruits in indigenous medicines. Pharmaceutically A. marmelos is having antibacterial, antihistaminic, anti inflammatory, anticonvulsant, anti stress, adaptogenic, antipyretic, antifertility, analgesic, hepatitis protective, insecticidal, hypoglycemic, cardiotonic, immune modulatory and wound healing activities. The intake of antioxidant molecule from oxidizing. Since there are many processes in the body which result in oxidation. The intake of antioxidant is essential to counteract some of the negative results of the buildup of too many oxidized molecules in the body.

M. oleifera commonly called “Sigru” belongs to family Moringaceae. All parts of M. oleifera tree such as root, root bark, leaves, flowers, unripe pods, seeds, seed oil are used in Ayurvedic system of medicine. Sigru is used externally as well as internally. Externally, the paste of its leaves and bark skin is applied in boils to subside the swelling and inflammation. Internally Sigru is used in vast range of diseases. Pods are recommended in loss of appetite. It is also beneficial in treatment of worms anorxia, ascites, tumors, abdominal pain, paralysis, joint pain and gout.

Antioxidant is simply a molecule that prevents another molecule from oxidizing. Since there are many processes in the body which result in oxidation. The intake of antioxidant is essential to counteract some of the negative results of the buildup of too many oxidized molecules in the body. Primary metabolites are produced as a result of photosynthesis by which green plants utilize solar energy to yield the photosynthetic product-Carbohydrate. Besides this process some other primary synthetic processes also occur in plants which yield certain vital products such as proteins, amino acids, minerals and other nutritive contents, ascorbic acid, lipids, vitamins, nucleotide and energy compounds like alcohols, organic acids etc.

Ascorbic Acid or Vitamin ‘C’ is claimed as a „cure all” for many human diseases and problems from cancer to common cold. Ascorbic acid is required in synthesis of collagen, neurotransmitters, steroid hormones etc. Vitamin C promotes the healing of wounds, bone fractures, bruises, hemorrhages, bleeding gums and forms the protective barrier between infections or disease and the surrounding healthy tissue. As an antioxidant it has many beneficial functions in combating many diseases and infections and also promotes proper calcium absorption. In plants, ascorbic acid is essential for photosynthetic activity via the detoxification of super oxide and hydrogen peroxide (H₂O₂) in chloroplasts in the absence of catalyses. Thus, it acts as a reducing agent in biological systems. It also assists in healthy cell development as well as normal tissue growth and repair. Vitamin C is a water soluble vitamin.

Free endogenous ascorbic acid production has been reported in tissue culture of Momordica charantia and Emblica officinalis (Mohan et al.,1974), Datura metel and Datura tatula (Nag et al., 1975). Trigonella foenum-graceum (Jain et al., 1975), Ephedra foliata, Helianthus annus, Agave wightii and Tephrosia purpurea (Khan et al., 1977) ; Solanum xanthocarpum (Manot, 1977), Atropa belladona (Sharma, 1977), Papaver somniferum (Gaur, 1978, Khanna et al., 1977), Daucus carota (Sogani, 1978), Solanum nigrum (Rathore et al., 1979), Tribulus alatus and Zygophyllum simplex (Jit et al., 1986), Lycium barbarum (Nag and Grover, 1987),Eclipta alba (Mathur,1988), Seetzena orientalis (Sethia,1988), Calligonum polygonoides and Lasianthus indicus (Bhojak,1991), Tinospora cordifolia (Goswami and Yadav,1994),Lycium barbarum (Mukhi, 1995), Peganum harmala (Badia, 1999), Arabidopsis cell suspension cultures (Davery et al., 1999), Ribes nigrum (Viola et al., 2000),Vigna aconitifolia (Tyagi, 2002),Copparis decidua and Ziziphus sp. (Chauhan, 2003),Cassia angustifolia (Reddy, 2005), Balanitis aegyptiaca (Bedawat, 2006), Alantus excelsa (Rao, 2007), Adhatoda vasica and Barleria prionitis (Deepa, 2009), Cocculus pendulus and Tinospora cordifolia (Yadav, 2010), Moringa oleifera(Talreja, 2010), Terminalia arjuna

Volume 4 Issue 11, November 2015
www.ijsr.net

License Under Creative Commons Attribution CC BY
1846
supplemented with various concentrations (1, 2, 3 mg/L) of growth hormones (IAA and NAA) and salts (NaCl and KCl at 10, 20, 30 mg/L) in *A. marmelos* and *M. oleifera*. Calli were harvested at maximum GI from all the samples separately in both plants and analysed for ascorbic acid content.

It was observed that amount of ascorbic acid was increased in callus fed with growth regulators IAA and NAA. Increase was continuous from Sd MS medium to Sd MS medium fed with 1mg/L to Sd MS medium fed with 2 mg/L IAA and NAA but after that amount decreased in Sd MS medium fed with 3mg/L IAA and NAA separately in both plant species. The amount calculated in calli fed with 3mg/L IAA and NAA was even lower than amount of ascorbic acid present in callus grown on Sd MS medium. Maximum amount of ascorbic acid was calculated in callus fed with 2mg/L IAA and NAA in *A. marmelos* as wll as *M. oleifera*.

In calli fed with salts NaCl and NaCl, the amount of ascorbic acid was increased from Sd MS medium to calli fed with 10 mg/L and then decreased from 10 mg/L to 20 mg/L upto 30 mg/L in both plant species. Maximum amount was calculated in calli fed with 10mg/L NaCl and KCl in *A. marmelos* as wll as *M. oleifera*.

Growth hormones showed positive response than salts as amount was comparatively higher in calli fed with growth hormones than salts in both plant species. *M. oleifera* has higher amount of ascorbic acid than *A. marmelos* in all samples.

References

7. Davery, M. W.; Gilot, C.; Persiau, G.; Ostergaard, J.; Han, Y.; Bauw, G. C. and Van, Montagu, M. C.

Table 1.1: Effect of Growth Hormones on Ascorbic Acid Content (mg/100 g.d.w.) IN *A. marmelos* and *M. oleifera In Vitro* (At Maximum GI)

<table>
<thead>
<tr>
<th>Name of Plant</th>
<th>Sd MS Medium</th>
<th>In vivo</th>
<th>1mg</th>
<th>2mg</th>
<th>3mg</th>
<th>1mg</th>
<th>2mg</th>
<th>3mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. marmelos</td>
<td>0.68±0.04</td>
<td>0.71±0.03</td>
<td>0.74±0.05</td>
<td>0.65±0.04</td>
<td>0.71±0.03</td>
<td>0.73±0.04</td>
<td>0.63±0.05</td>
<td></td>
</tr>
<tr>
<td>M. oleifera</td>
<td>0.84±0.05</td>
<td>0.87±0.04</td>
<td>0.90±0.06</td>
<td>0.81±0.05</td>
<td>0.86±0.04</td>
<td>0.89±0.05</td>
<td>0.80±0.04</td>
<td></td>
</tr>
</tbody>
</table>

Values are mean of five replicates ± SD

Table 1.2: Effect of Salts on Ascorbic Acid Content (mg/100 g.d.w.) IN *A. marmelos* and *M. oleifera In Vitro* (At Maximum GI)

<table>
<thead>
<tr>
<th>Name of Plant</th>
<th>Sd MS Medium</th>
<th>NaCl/L 10mg</th>
<th>NaCl/L 20mg</th>
<th>NaCl/L 30mg</th>
<th>KCl/L 10mg</th>
<th>KCl/L 20mg</th>
<th>KCl/L 30mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. marmelos</td>
<td>0.68±0.04</td>
<td>0.71±0.05</td>
<td>0.67±0.06</td>
<td>0.64±0.05</td>
<td>0.70±0.05</td>
<td>0.66±0.04</td>
<td>0.62±0.03</td>
</tr>
<tr>
<td>M. oleifera</td>
<td>0.84±0.05</td>
<td>0.87±0.06</td>
<td>0.82±0.06</td>
<td>0.80±0.05</td>
<td>0.85±0.05</td>
<td>0.82±0.04</td>
<td>0.80±0.04</td>
</tr>
</tbody>
</table>

Values are mean of five replicates ± SD