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1. Preliminaries 
 
In 1965 Njastad [9] introduced the concept of α- open sets 
in topology. A subset A of a topological space (X, τ) is said 
to be α- open if A ⊂ int(Cl(int(A))). Every open set is α- 
open but the converse may not be true. Further in 1985, 
Maheshwari and Thakur introduced α- continuous mapping. 
A function f: (X,τ)  (Y,σ) is said to be α- continuous if for 
every open set V in Y, f-1(V) is α- open in X. [8] 
 
In 1963 Kelly [5] introduced the concept of bitopological 
spaces as an extension of topological spaces. A 
bitopological space (X, τ1, τ2) is a nonempty set X equipped 
with two topologies τ1 and τ2 [5]. The study of quasi open 
sets in bitopological spaces was initiated by Datta [2] in 
1971. In a bitopological space (X, τ1, τ2) a set A of X is said 
to be quasi open [2] if it is a union of a τ1- open set and a τ2- 
open set. Complement of a quasi open set is termed quasi 
closed. Every τ1- open (resp. τ2- open) set is quasi open but 
the converse may not be true. Any union of quasi open sets 
of X is quasi open in X. The intersection of all quasi closed 
sets which contains A is called quasi closure of A[7]. It is 
denoted by qcl(A). The union of quasi open subsets of A is 
called quasi interior of A. It is denoted by qInt(A) [7].  
 
In 1985, Thakur and Paik [10] introduced the concept of 
quasi α- open sets in bitopological spaces. A set A in a 
bitopological space (X, τ1, τ2) is called quasi α- open [10] if 
it is a union of a      τ1α- open set and a τ2α- open set.  
Complement of a quasi α- open set is called quasi α- closed. 
Every τ1α- open (τ2α- open, quasi open) set is quasi α- open 
but the converse may not be true. Any union of quasi α- 
open sets of X is a quasi α- open set in X. The intersection 
of all quasi α- closed sets which contains A is called quasi 
α- closure of A. It is denoted by qαcl(A). The union of quasi 
α- open subsets of A is called quasi α- interior of A. It is 
denoted by qαInt(A)[10]. 
 
The concept of ideal topological spaces was initiated 
Kuratowski [6] and Vaidyanathaswamy [11].  An Ideal I on  
a topological space (X, τ) is a non empty collection of 
subsets of X which satisfies: i) A  I and B  A  B  I  

and ii) A  I and B  I  AB  I  If  𝒫 (X)  is the set 
of all subsets of X, in a topological space (X, τ) a set 
operator (.)*:𝒫 (X)  𝒫 (X) called the local function [3] of 
A with respect to τ and I and is defined as follows:      
A∗(τ, I) = {xXU  A  I,  U τ(x)}, where τ(x) = U 
τ xU}. Given an ideal bitopological space (X,τ1,τ2,I) the 
quasi local function [4] of A with respect to τ1, τ2 and I 

denoted by A𝑞
∗  (τ1,τ2,I) ( in short A𝑞

∗ )  is defined as follows:  
A𝑞
∗ (τ1,τ2,I) = {xXU  A  I , quasi open set U 

containing x}.  
 
A subset A of an ideal bitopological space (X, τ1, τ2) is said 
to be qI- open [4] if A  qInt(A𝑞

∗ ). A mapping  f: (X,τ1,τ2,I) 
 (Y,σ1,σ2) is called  qI- continuous [4]   if  f-1(V) is  qI- 
open in X for every quasi open set V of Y.  
 
2. Quasi  α- Local  Functions 
 
Definition 2.1. Given an ideal bitopological space 
(X,τ1,τ2,I)  the quasi α- local function of A with respect to 
τ1, τ2 and I denoted by Aqα

∗  (τ1,τ2,I)  is defined as follows:  
Aqα
∗ (τ1,τ2,I) = {xXU  A  I,  quasi α- open set U 

containing x}.  
When there is no ambiguity Aqα

∗  shall be written for 
Aqα
∗ (τ1,τ2,I).                                 

 
Theorem 2.1 Let (X,τ1, τ2, I) be an ideal bitopological 
space and A  X then:  
a) Aqα

∗  
  Aq   A∗(τ1,I) and Aqα

∗   Aq  A∗(τ2, I) 
b) Aqα

∗  
  Aα(τ1,I) and Aqα

∗   Aα(τ2,I) 
c) Aqα

∗ (τ1 ,τ2 ,{ ∅}) = qαcl(A) 
d) Aqα

∗ (τ1,τ2 , 𝒫 (X)) = ∅                             
e) If A  I, then Aqα

∗  = ∅ 
f) Neither A  Aqα

∗ nor Aqα
∗  A 

 
Proof: Obvious. 
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 Theorem 2.2  Let (X,τ1,τ2, I ) be an ideal bitopological 
space and A, B be subsets of  X then, 
a) If A  B, then Aqα

∗  Bqα
∗  

b) Aqα
∗ =  qαclA𝑞α

∗   qαcl(A) and Aqα
∗  is a quasi α-  

c) closed set in (X,τ1,τ2 ) 

d) (Aqα
∗ )qα

∗   Aqα
∗      

e) (AB)𝑞α
∗    = Aqα

∗   Bqα
∗  

f) Aqα
∗ - Bqα

∗ = (A − B)𝑞α
∗  - B𝑞α

∗   (A − B)𝑞α
∗   

g) If C  I, then (A − C)qα
∗   A𝑞α

∗   = (AC)qα
∗    

 
Proof: (a) Suppose A  B and x ∉ B𝑞α

∗  then there exists a 
quasi α- open set U containing x such that U  B I. Since 
A   B, U  A I and so x ∉ Aqα

∗ .Hence Aqα
∗    B𝑞α

∗   
 
(b) We have Aqα

∗    qαcl(Aqα
∗ ), in general. Let x  

qαcl(Aqα
∗ ) , then Aqα

∗   U  ∅ for every quasi α- open set U 
containing x. Therefore  y  Aqα

∗   U and quasi α- open 
set U containing y. Since y Aqα

∗  and U  A ∉I, therefore 
x  Aqα

∗ . Hence qαcl(Aqα
∗ )  Aqα

∗ . Consequently, Aqα
∗ = 

qαcl(Aqα
∗ ). Again let x  qαcl(Aqα

∗ ) = Aqα
∗ Then U  A ∉ I 

for every quasi α- open set containing x. Therefore x  
qαcl(A).  This proves  Aqα

∗  = qαcl(Aqα
∗ )  qαcl(A) 

 
(c) Let x  (A𝑞α

∗ )qα
∗ , then for every quasi α- open set U 

containing x, U  Aqα
∗  ∉ I and hence  ∅. Let y  Aqα

∗   
U. Then  a quasi α- open set U containing y and y  
Aqα
∗ . Hence we have U  A ∉ I, and x  A𝑞α

∗ . Therefore 
(A𝑞α

∗ )qα
∗    A𝑞α

∗    
 
(d)  By (1) A𝑞α

∗   B𝑞α
∗   

 (AB)𝑞α
∗ . Let x  (AB)𝑞α

∗  then 
for every quasi α- open set U containing x, (U  A)        
(U  B) = U  (AB) ∉ I.  This implies   x  A𝑞α

∗  or x  
B𝑞α
∗ . Hence, x  A𝑞α

∗  
 B𝑞α

∗ .  
 
(e) We have A𝑞α

∗  = (A − B)𝑞α
∗  
 (A  B)𝑞α

∗  .Thus A𝑞α
∗ − B𝑞α

∗  = 
A𝑞α
∗  
 (X - B)𝑞α

∗  = (A − B)𝑞α
∗   

 (A  B)𝑞α
∗   (X − B)𝑞α

∗  = 
(A − B)𝑞α

∗   (X − B)𝑞α
∗   (A  B)𝑞α

∗   (X − B)𝑞α
∗  =                

((A − B)𝑞α
∗ − B𝑞α

∗ )  ∅   (A − B)𝑞α
∗ . 

 
(f)  Since A- C    A, by (a)   (A − C)𝑞α

∗   
 A𝑞α

∗ . From 
Theorem 2.2 (d) and Theorem 2.1 (e), we get (AC)𝑞α

∗  = 
Aqα
∗   

  C𝑞α
∗   =  A𝑞α

∗   
 ∅  =  A𝑞α

∗ . Hence, (A − C)𝑞α
∗  
 A𝑞α

∗   =  
(AC)𝑞α

∗    
 
Theorem 2.3.  Let (X, τ1, τ2) be a bitopological space with 
Ideals I1 and I 2 on X  and A is a subset of X. Then: 
(a) If  I1 I2, then Aqα

∗ (I2)  Aqα
∗ (I1) 

(b) Aqα
∗  (I1 I2) = Aqα

∗ (I1)   Aqα
∗ (I2) 

 
Proof: (a) Let I1  I2 and x  A𝑞α

∗ (I2), then A  U ∉ I2 for 
every quasi α- open set U containing x. From given A  U 
∉ I1   hence x A𝑞α

∗ (I1) Therefore, we have A𝑞α
∗ (I2)  

A𝑞α
∗ (I1)  

 
(b) Let x  A𝑞α

∗ (I1  I2), then for every quasi α- set U 
containing x, A  U ∉ (I1 I2) , hence A  U ∉I1   and      

A  U ∉ I2. This shows, x A𝑞α
∗ (I1) or x A𝑞α

∗ (I2) that is x 
 A𝑞α

∗ (I1)  A𝑞α
∗ (I2) Thus, A𝑞α

∗ (I1 I2)  A𝑞α
∗ (I1)  

A𝑞α
∗ (I2).  But A𝑞α

∗ (I1)  A𝑞α
∗ (I2)  A𝑞α

∗ (I1  I2). Therefore, 
A𝑞α
∗ (I1I2) =   A𝑞α

∗ (I1  )   A𝑞α
∗ (I2). 

 

Definition 2.2.  In an ideal bitopological space (X,τ1,τ2,I )  
the quasi *- α closure of A of X denoted by qαcl*(A) is 
defined by qαcl*(A) = A  Aqα

∗ . 
 

Theorem 2.4. Let (X,τ1,τ2,I )  be an ideal bitopological 
space and A , B be the subsets of X. Then: 
(a) A  qαcl*(A) 
(b) qαcl*(∅)  = ∅ and  qαcl*(X) = X 
(c) If A  B, then qαcl*(A)  qαcl*(B) 
(d) qαcl*(A)  qαcl*(B)  qαcl*(AB) 
(e) If  I = ∅, then  qαcl*(A) = qαcl(A) 
 
Proof:  Follows from Definition 2.2. 
 
Definition 2.3.  A subset A of an ideal bitopological space 
(X,τ1,τ2,I ) is said to be: 
(a) qαI- open if A  qαInt(A𝑞α

∗ ).  
(b) qαI- closed if its complement is qαI- open.  
 
The family of all qαI- open (respectively qαI- closed) sets 
of an ideal bitopological space (X, τ1,τ2,I) is denoted by 
QAIO(X) (respectively QAIC(X)) . 
The family of all qαI- open sets of (X,τ1,τ2,I ) containing a 
point x is denoted by QAIO(X, x). 
 
Remark 2.1.  Every qI- open set is qαI- open but the 
converse is not true. For, 
 
Example  2.1.  Let  X = {a,b,c,d} and τ1 = { X, ∅, {b},{a,c}, 
{a,b,c}},  τ2   = {X, ∅, {d} {a,b},{a,b,d}} be topologies on X 
and I = {∅,{a}} be an ideal on X. Then the set A = {c,d} is 
qαI- open but not qI- open in (X,τ1,τ2,I).  
 

Remark 2.2.  The concepts of qαI- open sets and quasi α- 
open sets are independent.  For, in an ideal bitopological 
space (X,τ1,τ2,I ) of  Example 2.1, the  set {b,c} is qαI- 
open but not quasi α- open and the set {a,b,d} is  quasi α- 
open but not qαI- open. 
 

Remark  2.3.  For an ideal bitopological space (X,τ1, τ2,I) 
we have the following: 
(a) X need not be a qαI- open set. 
(b) If I = 𝒫(X), then only the empty set is qαI- open. 
(c) If I = ∅,  qαI- openness and quasi α- openness are 

equivalent. 
 

Theorem 2.5.  If A is qαI- open, then A𝑞α
∗  = (qαInt(A𝑞α

∗ ))qα
∗  
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Proof:  Since A is qαI- open, A  qαInt(A𝑞α
∗ ). Therefore, 

A𝑞α
∗   (qαInt(A𝑞α

∗ ))qα
∗  Also we have qαInt(A𝑞α

∗ )   
A𝑞α
∗ (qαInt(A𝑞α

∗ ))*    (A𝑞α
∗ )qα

∗    (A𝑞α
∗ ). Hence, A𝑞α

∗  = 
(qαInt(A𝑞α

∗ ))qα
∗      

 

Theorem 2.6.  Any union of a family of qαI- open sets in 
an ideal bitopological space (X,τ1,τ2,I ) is qαI- open in X. 
 
Proof:  Let {U∂: ∂} be a family of qαI- open sets of an 
ideal bitopological space (X,τ1, τ2 ,I). Then U∂  
qαInt((U∂)𝑞α

∗ )  ∂  . It follows that ∂   U∂  ∂   

(qαInt((U∂ )𝑞α
∗ )))    qαInt(∂  (U∂)  qαInt(∂  (U∂)𝑞α

∗ ). 
Hence ∂   U∂  is qαI- open set in X. 
 
Definition 2.4.  Let A be a subset of an ideal bitopological 
space (X,τ1,τ2,I ) and x ∈ X. Then:   
(a)  x is called a qαI- interior point of  A if   V 

QAIO(X)  such that x  V  A. 
(b) Set of all qαI- interior points of A denoted by 

qαIInt(A)is called the qαI- interior of A. 
The following theorem summarizes the properties of qαI- 

interior of subsets in ideal bitopological spaces. 
 
Theorem 2.7. Let A , B be subsets of  an ideal bitopological 
space (X,τ1,τ2,I ). Then:  
(a) qαIInt(A)  = {T: T  A and A  QAIO(X) } 
(b) qαIInt(A)  is the largest qαI- open subset of X 

contained in A. 
(c) A is qαI- open if and only if A = qαIInt(A) 
(d) qαIInt(qαIInt(A)) = qαIInt(A) 
(e) If A  B, then  qαIInt(A)  qαIInt(B) 
(f) qαI Int(A)  qαIInt(B)  qαIInt(A  B) 
(g) qαIInt(A  B)  qαIInt(A)  qαIInt(B) 
 
Proof:  (a) Let x   {T: T  A and A  QAIO(X) }. 
Then, there exists T  QAIO(X, x) such that x  T  A 
and hence x  qαIInt(A). This shows that {T: T  A and 
A  QAIO(X) }  qαIInt(A) . For the reverse inclusion, 
let x  qαI Int(A) , then there exists T  QAIO(X, x)}, 
such that x  T  A and we obtain x  {T: T  A and A 
 QAIO(X) }. This shows that qαIInt(A)  {{T: T  A 
and A  QAIO(X)}}. Therefore {T: T  A and A  
QAIO(X) }= qαIInt(A).  
 
The proof of properties (b) - (e) are obvious. 
(f)  Clearly qαIInt(A)  qαIInt(A  B) and qαIInt(B)  
qαIInt(A  B). Thus qαIInt(A)  qαIInt(B)      qαIInt(A 
 B) 
(g)  Since A  B  A and A  B  B, by (e) we have 
qαIInt(A  B)  qαIInt(A) and qαI Int(A  B)  
qαIInt(A). Then qαI Int(A  B)  qαIInt(A)  qαIInt(B) 
 
Definition 2.5.  Let A be a subset of an ideal bitopological 
space (X,τ1,τ2,I ) and x ∈ X. Then:   

(a)  X is called a qαI- cluster point of A, if V  A  ∅. for 
every  V  QAIO(X, x)  

(b)  The set of all qαI- cluster points of A denoted by 
qαICl(A) is called the         qαI- closure    of  A . 
The following theorem summarizes the properties of 
qαI- closure of subsets in an ideal bitopological spaces. 

 
Theorem 2.8. Let A and B be subsets of an ideal 
bitopological space (X,τ1,τ2,I ), Then: 
(a) qαIcl(A)  = {F: A F and F  QAIC(X)} 
(b) qαIcl(A)  is the smallest qαI- closed subset of X 

containing  A. 
(c) A is qαI- closed if and only if A =  qαIcl(A). 
(d) qαIcl(qαIInt(A)) = qαIcl(A) 
(e) If A  B, then  qαIcl(A)  qαIcl(A) 
(f) qαIcl(A)  qαIcl(B) = qαIcl(A  B) 
(g) qαIcl(A  B)  qαIcl(A)   qαIcl(B) 
 
Proof: (a) Suppose x ∉ qαIcl(A). Then, there exists F  

QAIO(X) such that F  A = ∅. Since X - F is qαI- closed 
set containing A and x ∉ X-F, we obtain x ∉ {F: A  F 
and F  QAIC(X)}. For the reverse, there exists F  
QAIO(X) such that A  F and x ∉ F.  Since X-F is qαI- 
closed set containing x, we get (X-F)  A = ∅ This shows 
that x ∉ qαIcl(A). Therefore qαIcl(A) =  {F: A  F and 
F QAIC(X)}.  
Statements (b) - (g) have obvious proofs.   
 
Theorem 2.9. Let (X,τ1,τ2,I ) be an ideal bitopological 
space and A  X. Then the following properties hold: 
(a) qαIcl(X-A) = X-qαIInt(A)  
(b) qαIInt(X-A) = X-qαIcl(A) 
 
Proof:  (a) Let W be a subset of X. W  A if and only if 
(X-A)  (X-W), W is qαI- open if and only if (X-W) is 
qαI- closed. Thus, qαIcl(X-A) = {(X-W): W  A and W 
 QAIO(X)} = X - {W  A and W  QAIO(X)} =     (X 
- qαIInt(A)). 
(b) Follows from (a).  
 
Definition 2.6. A subset Bx of an ideal bitopological space 
(X,τ1,τ2,I) is said to be a qαI-neighbourhood of a point  
xX if there exists a qαI- open set  U of X  such that x  U 
 Bx. 
 
Theorem 2.10.  A subset of an ideal bitopological space 
(X,τ1,τ2,I) is qαI- open if and only if it is a qαI- 
neighbourhood of each of its points. 
 
Proof: Necessary:  Let G be a qαI- open set of X. Then by 
definition, it is clear that G is a qαI- neighbourhood of each 
of its points, since  x  G, x  G  G and G is qαI- open.   
Sufficient: Suppose G is a qαI- neighbourhood of each of 
its points. Then for each x  G there exists Sx  QAIO(X) 
such that Sx  G. Therefore G = { Sx : x  G}. Since each 
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Sx is qαI- open and arbitrary union of qαI- open sets is qαI- 
open, G is qαI- open in (X,τ1,τ2,I).  

 

3. q𝛂I- Continuous Mappings 
 
Definition 3.1.  A mapping  f: (X,τ1,τ2,I)  (Y,σ1,σ2) is 
called a qαI- continuous if  f-1(V) is a qαI- open set in X 
for every quasi open set V of Y .   
 

Remark 3.1. Every qI- continuous mapping is qαI- 
continuous but the converse is not true.  For, 
 
Example 3.1.  Let X = {a,b,c,d} and τ1 = {X, ∅, {b}, {a,c}, 
{a,b,c}}, τ2  = {X, ∅, {d}, {a,b}, {a,b,d}} be topologies on X 
and I = {∅, {a}} be an ideal on X. σ1= {X, ∅, {b}, {c,d}, 
{b,c,d}}, and σ2 = {X, ∅} be topologies on X. Then the 
identity mapping f: (X,τ1,τ2,I)  (X,σ1,σ2) is qαI- 
continuous but not qI- continuous.  
 

Theorem 3.1. Let f: (X,τ1, τ2, I)  (Y,σ1,σ2) be a mapping. 
Then the following statements are equivalent: 
(a)  f  is qαI- continuous.   
(b)  f-1(V) is qαI- closed in X for every quasi closed set V of 

Y. 
(c) for each x  X and  every quasi open set V of Y 

containing f(x),  W  QAIO(X, x) such that f(W)  V. 
(d) for each x  X and every quasi open set V of Y 

containing f(x), f-1(V)𝑞α
∗  is a qαI- neighbourhood     of x. 

 
Proof:  (a) ⟺ (b). Obvious. 
(a)  (c).  Let x  X and V be a quasi open set of Y 
containing f(x).  Since f is qαI continuous, f-1(V) is a qαI 
open set. Putting W = f-1(V), we get f(W)  V.  
(c)  (a). Let A be a quasi open set  in Y. If f-1(A) = ∅, then 
f-1(A) is clearly a qαI- open set. Assume that f-1(A)  ∅ and 
x  f-1(A), then f(x)  A   a qαI- open set W containing 
x such that f(W)  A. Thus W  f-1(A). Since W is qαI- 
open, x  W  qαInt(𝑊𝑞α

∗ )  qαInt(f-1(A)𝑞α
∗ ) and so f-1(A) 

 qαInt(f-1(A)𝑞α
∗ ). Hence f-1(A) is a qαI- open set and 

therefore f: (X,τ1, τ2, I)  (Y,σ1,σ2)  is  qαI- continuous.  
(c)  (d).  Let x  X and V be a quasi open set of Y 
containing f(x) then  a qαI- open set W containing x such 
that f(W)  V. It follows that W   f-1(f (W)qα

∗ )))  f-1(V). 
Since W is a qαI- open set, x  W  qαInt(W*)  qαInt(f-

1(V)𝑞α
∗ ) f-1(V)*. Hence f-1(V)𝑞α

∗ ) is a qαI- neighbourhood 
of x.   
(d)  (c). Obvious.  
 
Definition 3.2.  A mapping  f: (X,τ1,τ2)  (Y,σ1,σ2,I) is 
said to be : 
(a)  qαI- open if  f(U) is a qαI- open set of Y for every 

quasi open set U of X. 
(b)  qαI- closed if  f(U) is a qαI- closed set of Y for every 

quasi closed set U of X. 
 

Theorem 3.2.  Let  f: (X,τ1,τ2)  (Y,σ1,σ2,I) be a mapping. 
Then the following statements  are equivalent: 
(a)  f  is qαI- open   
(b)  f(qInt(U))  qαIInt(f(U) for each subset U of X. 
(c) qInt(f-1(V))  f-1(qαIInt(V)) for each subset V of Y. 
 
Proof:  (a)  (b).  Let U be any subset of X. Then qInt(U) 
is a quasi open set of X.  Then f(qInt(U)) is a qαI- open set 
of Y. Since f(qInt(U))  f(U), f(qInt(U)) =  
qαIInt(f(qInt(U))   qαI Int(f(U). 
(b)  (c).    Let V be any subset of Y. Obviously f-1(V) is a 
subset of X. Therefore by (b), f(qInt(f-1(V)))       
qαIInt(f(f-1(V)))  qαIInt(V)). Hence, qInt(f-1(V))            
f-1(f(qInt(f-1(V))))    f-1(qαIInt(V)). 
(c)  (a).  Let V be any quasi open set of X. Then qInt(V) 
= V and  f(V) is a subset of  Y. So V = qInt(V)              
qInt(f-1(f(V)))  f-1(qαIInt(f(V))). Then f(V)  f(f-

1(qαIInt(f(V))))  qαIInt(f(V) and qαIInt(f(V)  f(V). 
Hence, f(V) is a qαI- open set of Y and  f is qαI- open.    
 
Theorem 3.3.  Let f: (X,τ1,τ2)  (Y,σ1,σ2,I) be a qαI- open 
mapping. If  V is a  subset of  Y and U is a quasi closed 
subset of X containing f-1(V), then there exists a qαI- closed 
set F of Y containing V such that f-1(F)  U. 
 
Proof:  Let V be any subset of Y and U a quasi closed 
subset of X containing  f-1(V),  and let F = (Y - (f(X-V))). 
Then f(X-V)  f (f-1(X-V))  (X-V) and X-U is a quasi 
open set of X. Since f is qαI- open, f(X-U) is a qαI- open 
set of Y. Hence F is a quasi closed subset of Y and  f-1(F) = 
f-1(Y-(f(X-U))  U.   
 

Theorem 3.4.  A mapping f: (X,τ1,τ2)  (Y,σ1,σ2,I) is  qαI- 
closed if and only if qαIcl(f(V)  f(qcl(V) for each subset 
V of X.  
 
Proof: Necessary: Let f be a qαI- closed mapping and V be 
any subset of X. Then f(V)  f(qcl(V) and f(qcl(V) is a 
qαI- closed set of Y. Thus qαIcl(f(V))  qαIcl(f(qcl(V)) = 
f(qcl(V).   
Sufficient:  Let V be a quasi closed set of X. Then  by 
hypothesis f(V)  qαIcl(f(V))  f(qαcl(V) = f(V) . And so, 
f(V) is a qαI- closed subset of Y. Hence, f is qαI- closed. 
 

Theorem 3.5. A mapping f:(X,τ1,τ2)  (Y,σ1,σ2,I) qαI- 
closed if and only if f-1(qαIcl(V))  qcl(f-1(V)) for each 
subset V of Y. 
 
Proof:  Obvious. 
 
Theorem 3.6.   Let f:(X,τ1,τ2)  (Y,σ1,σ2,I) be a qαI- 
closed mapping.  If  V is a subset of  Y  and U is a quasi 
open subset of  X containing f-1(V), then there exists a  qαI- 
open set F of Y  containing V such that f-1(F)  U.  
 
Proof:  Obvious. 
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