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Abstract: In this paper we have studied a new kind of weighted Pál-Type interpolation on the two sets of the nodes of Laguerre 

polynomial in which one set consists of the nodes of 𝑳𝒏
𝒌(x) 

𝐿𝑛
𝑘  x =

x−αex

n!
 𝐷𝑛  [𝑒−𝑥𝑥𝑛+𝛼 ] 

while the other are nodes of 𝑳𝒏
𝒌−𝟏(x). We prove the existence, uniqueness and explicit representation of fundamental polynomials on 

infinite interval. Also we give the birkoff  quadrature formula for this type of interpolation. 
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1. Introduction  
 

Balázs. J., Turán.P. [1] [2] [3] [17],Mathur P. and Datta S. 

[9] and many other authors [5][7][8][10][12][14][15][16] 

have discussed about interpolation problems when the 

values of the function and its consecutive derivatives are 

prescribed at the given set of the points. But in the theory of 

lacunary interpolation we study the interpolation processes 

arising from the data which involves non- consecutive 

derivatives. In most general case Birkoff [4] investigated a 

polynomial 𝑓𝑚 (𝑥) of degree ≤ (𝑚1 + 𝑚2 + ⋯𝑚𝜇 − 1) such 

that for given 𝑥𝜇 (𝜇 = 1,2, … , 𝑛) we prescribe the value of 

some 𝑚𝜇  derivatives with given indicies not necessarily 

consecutive ones. In 1975 Pál [11] proved that when the 

function valued are prescribed on one set of n points and 

derivative values on other set of n-1 points, then there exist 

no unique polynomial of degree ≤ 2n-2, but prescribing 

function value at one more point not belonging to former set 

of n points there exists a unique polynomial of degree ≤ 2n-

1. Lénárd M. [6] also investigated the Pál – type 

interpolation problem on the nodes of Laguerre abscissas. In 

Pál – type interpolation the derivative values are prescribed 

at the zeroes of 𝜔′ 𝑥  while the function values are 

prescribed at the zeroes of 𝜔𝑛 𝑥 =  𝑥 − 𝑥1 … (𝑥 − 𝑥𝑛). 

The aim of this paper is to consider a different type of 

weighted Pál – type interpolation in a unified way on the 

nodes of Laguerre polynomial. Laguerre polynomial 

𝐿𝑛
 𝑘  𝑥  (𝑘 > −1) has n distinct real roots in [0,∞) and we 

obtain the zeroes of 𝐿𝑛
(𝑘)

(𝑥) and 𝐿𝑛
(𝑘−1)

(𝑥) form the 

interscaled system of nodal points 

 

(1.1) 0 ≤ 𝜉0 < 𝜉1
∗ < 𝜉1 < ⋯ < 𝜉𝑛−1 < 𝜉𝑛

∗ < 𝜉𝑛 < ∞  

In this paper we consider the problem if {𝜉𝑖}𝑖=1
𝑛  and {𝜉𝑖

∗}𝑖=1
𝑛  

be the two sets of interscaled nodal points 

on the interval [0,∞) then we seek to determine a polynomial 

𝑅𝑛(𝑥) of minimal possible degree 2n+k satisfying the 

interpolatory conditions 

 

 (1.2) 𝑅𝑛 𝜉𝑖
∗ = 𝛼𝑖 , (𝜔𝑅𝑛)′(𝜉𝑖) = 𝛼𝑖

′ , 𝑓𝑜𝑟 𝑖 = 1 1 𝑛  

 (1.3) 𝑅𝑛
(𝑗 ) 𝜉0 = 𝛼0

(𝑗 )
, 𝑗 = 0,1, … , 𝑘 

where 𝛼𝑖 , 𝛼𝑖
′  and 𝛼0

(𝑗 )
 are arbitrary real numbers. If Laguerre 

polynomials 𝐿𝑛
(𝑘)

(𝑥) and 𝐿𝑛
(𝑘−1)

(𝑥) have zeroes {𝜉𝑖}𝑖=1
𝑛  and 

{𝜉𝑖
∗}𝑖=1
𝑛  respectively and 𝜉0 = 0 then the problem is not 

regular in general but it becomes regular with weight 

function 𝜔 𝑥 = 𝑒−𝑥𝑥−𝑘 . We prove existence, uniqueness 

and explicit representation of fundamental polynomials in 

sec. 4 and Birkoff quadrature formulae for the integration of 

f(x) on [0,∞) with respect to the weight function 𝜔 𝑥 =
𝑒−𝑥 .in sec.5 

 

2. Preliminaries 
  

In this section we shall give some well-known results which 

are as follws: As we know that the Laguerre polynomial is a 

constant multiple of a confluent hypergeometric function so 

the differential equation is given by 

(2.1) 𝑥𝐷2𝐿𝑛
𝑘 (𝑥) +  1 + 𝑘 − 𝑥 𝐷𝐿𝑛

𝑘 (𝑥) + 𝑛𝐿𝑛
𝑘 (𝑥) = 0 

(2.2) 𝐿𝑛
 𝑘−1 ′ (𝑥) = −𝐿𝑛−1

(𝑘)
(𝑥) 

 

Also using the identities 

(2.3) 𝐿𝑛
 𝑘 (𝑥) = 𝐿𝑛

 𝑘+1 (𝑥) − 𝐿𝑛−1
 𝑘+1 (𝑥) 

(2.4) 𝑥𝐿𝑛
 𝑘 ′ (𝑥) = 𝑛𝐿𝑛

 𝑘 (𝑥) − (𝑛 + 𝑘)𝐿𝑛−1
 𝑘 (𝑥) 

 

We can easily find a relation 

(2.5) 
𝑑

𝑑𝑥
 𝑥𝑘𝐿𝑛

𝑘 (𝑥) =  𝑛 + 𝑘 𝑥𝑘−1𝐿𝑛
 𝑘−1 (𝑥) 

By the following conditions of orthogonality and 

normalization we define Laguerre polynomial 

𝐿𝑛
 𝑘  𝑥 , 𝑓𝑜𝑟 𝑘 > −1 

(2.6) 

 𝑒−𝑥𝑥𝑘𝐿𝑛
 𝑘  𝑥 𝐿𝑚

 𝑘  𝑥 𝑑𝑥 = Γ𝑘 + 1  𝑛+𝑘
𝑛
 𝛿𝑛𝑚  𝑛,𝑚 =

∞

0

0,1,2,….. 

(2.7) 𝐿𝑛
 𝑘  𝑥 =   𝑛+𝑘

𝑛−𝜇
 

(−𝑥)𝜇

𝜇!

𝑛
𝜇=0  

 

The fundamental polynomials of Lagrange interpolation are 

given by 

(2.8) 𝑙𝑗  𝑥 =
𝐿𝑛
 𝑘  𝑥 

𝐿𝑛
 𝑘 ′

 𝑦𝑗   𝑥−𝑦𝑗  
= 𝛿𝑖,𝑗  
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(2.9) 𝑙𝑗
∗ 𝑥 =

𝐿𝑛
 𝑘−1  𝑥 

𝐿𝑛
 𝑘−1 ′

 𝑥𝑗   𝑥−𝑥𝑗  
= 𝛿𝑖,𝑗  

  

3. New Results 
 

Theorem 1 : For n >1 fixed integer let {𝛼𝑖}𝑖=1
𝑛 , {𝛼𝑖

′}𝑖=1
𝑛  and, 

{𝛼0
(𝑗 )

}𝑗=0
𝑘  are arbitrary real numbers then there exists a 

unique polynomial 𝑅𝑛(𝑥) of minimal possible degree ≤ 

2n+k on the nodal points (1.1) satisfying the condition (1.2) 

and (1.3). The polynomial 𝑅𝑛(𝑥) can be written in the form  

 

(3.1) 𝑹𝒏(𝒙) =  𝑨𝒋(𝒙)𝜶𝒋
𝒏
𝒋=𝟏 +  𝑩𝒋(𝒙)𝜶𝒋

′ +𝒏
𝒋=𝟏

𝒋=𝟎𝒌𝑪𝒋(𝒙)𝜶𝟎(𝒋) 

Where 𝐴𝑗  𝑥 , 𝐵𝑗 (𝑥 ) and 𝐶𝑗 (𝑥) are fundamental polynomials 

of degree ≤ 2n+k determined in lemma 1 

 

Theorem 2 : Let {𝑥𝑖}𝑖=1
𝑛  and {𝑦𝑖}𝑖=1

𝑛 be the zeroes of 

Laguerre polynomials 𝐿𝑛
 𝑘−1 (𝑥) and 𝐿𝑛

(𝑘)
(𝑥) respectively. 

then 

(3.2)  𝒇 𝒙 𝒆−𝒙𝒅𝒙~ 𝑨𝒋𝒇 𝒙𝒋 +  𝑩𝒋𝒇
′ 𝒚𝒋 +𝒏

𝒋=𝟏
𝒏
𝒋=𝟏

∞

𝟎

𝒋=𝟎𝒌−𝟏𝑪𝒋𝒇𝒋𝟎 

Where 𝐴𝑗 , 𝐵𝑗  and 𝐶𝑗  are the coefficients exist such that the 

quadrature formulae given above are exact for the 

polynomials of degree ≤ 2n+k 

 

4. Proof of Theorem 1 
 

To prove Theorem 1 we need to proof lemma 1. 

Lemma 1 : For n > 1 the fundamental polynomials of the 

considered problem on the nodal points (1.1) is given by 

(4.1) 𝐴𝑗 (𝑥) =
1

𝑥𝑗
𝑘+1𝐿𝑛

 𝑘 
 𝑥𝑗  

[ 𝑥𝑘+1𝑙𝑗  
∗ 𝑥 𝐿𝑛

(𝑘) 𝑥 −

 
𝑥𝑘𝐿𝑛

(𝑘−1)
 𝑥 

𝐿𝑛
 𝑘−1 ′

 𝑥𝑗  
  

𝑡𝐿𝑛
(𝑘)′

 𝑡 +𝑘𝐿𝑛  
(𝑘)

 𝑡 

𝑡−𝑥𝑗

𝑥

0
𝑑𝑡] 

 

(4.2) 𝐵𝑗 (𝑥) =
𝑒
𝑦𝑗 𝑥𝑘𝐿𝑛

 𝑘−1 
(𝑥)

𝐿𝑛
 𝑘−1 

(𝑦𝑗 )
 𝑙𝑗 (𝑡)𝑑𝑡
𝑥

0
 

(4.3) 𝐶𝑗  𝑥 =  𝑝𝑗  𝑥 𝑥
𝑗𝐿𝑛

(𝑘) 𝑥 𝐿𝑛
(𝑘−1) 𝑥 + 𝑥𝑘𝐿𝑛

(𝑘−1)
(𝑥)[𝑐𝑗 −

 
𝐿𝑛
 𝑘 ′  𝑡 𝑝𝑗 (𝑡)+𝑞𝑗 (𝑡)𝐿𝑛

 𝑘 
(𝑡)

𝑡𝑘−𝑗
𝑑𝑡]

𝑥

0
 

, 𝑗 = 0,1, … , 𝑘 − 1 

(4.4) 𝐶𝑘(𝑥) =
1

𝑘!𝐿𝑛
 (𝑘−1 

 0 
𝑥𝑘𝐿𝑛

 𝑘−1 (𝑥) 

 

Where 𝐴𝑗  𝑥 , 𝐵𝑗 (𝑥) and 𝐶𝑗 (𝑥) are fundamental polynomials 

of degree ≤ 2n+k. 𝑝𝑗  𝑥  and 𝑞𝑗 (𝑥) are polynomials of 

degree at most k-j-1. 𝑐𝑗  is defined in (4.16) 

 

Proof: 

Let 𝐴𝑗  𝑥 , 𝐵𝑗 (𝑥) and 𝐶𝑗 (𝑥) are polynomials of degree ≤ 

2n+k satisfying conditions (4.5), (4.6) and (4.7) respectively. 

 (4.5)  

𝐴𝑗  𝑥𝑖 = 𝛿𝑖,𝑗

[𝑒−𝑥𝑥−𝑘𝐴𝑗  𝑥 ]𝑥=𝑦𝑖
′

𝐴𝑗
 𝑙  0 = 0

 = 0, 𝑖 = 1 1 𝑛 𝑎𝑛𝑑 𝑙 =

0,1, … , 𝑘  

 (4.6)  

𝐵𝑗  𝑥𝑖 = 0

[𝑒−𝑥𝑥−𝑘𝐵𝑗  𝑥 ]𝑥=𝑦𝑖
′

𝐵𝑗
 𝑙  0 = 0

 = 𝛿𝑖,𝑗 , 𝑖 = 1 1 𝑛 𝑎𝑛𝑑 𝑙 =

0,1, … , 𝑘  

 (4.7)  

𝐶𝑘 𝑥𝑖 = 0

[𝑒−𝑥𝑥−𝑘𝐶𝑘 𝑥 ]𝑥=𝑦𝑖
′

𝐶𝑘
 𝑙  0 = 𝛿𝑙,𝑘

 = 0, 𝑖 = 1 1 𝑛 𝑎𝑛𝑑 𝑙 =

0,1, … , 𝑘  

 

To determine 𝐴𝑗  𝑥  let 

(4.8) 

𝐴𝑗 (𝑥) =

𝐶1[ 𝑥𝑘+1𝑙𝑗  
∗ 𝑥 𝐿𝑛

 𝑘  𝑥 +

 𝐶2𝑥
𝑘𝐿𝑛

(𝑘−1) 𝑥   
𝑡𝐿𝑛

(𝑘)′
 𝑡 +𝐶3𝐿𝑛  

(𝑘)
 𝑡 

𝑡−𝑥𝑗

𝑥

0
𝑑𝑡] 

Where 𝐶1 , 𝐶2 𝑎𝑛𝑑 𝐶3 are constants. 𝑙𝑗
∗(𝑡) is defined in (2.9). 

As 𝐴𝑗  𝑥  is a polynomial of degree ≤ 2n+k so the integrand 

in (4.8) must be a polynomial of at most degree n which 

implies  

(4.9) 𝑡𝐿𝑛
 𝑘 ′ (𝑡) + 𝐶3𝐿𝑛

 𝑘 (𝑡) = 0 
 

By using (2.3), (2.4) and (2.8) we determine 

(4.10) 𝐶3 = 𝑘, 𝐶1 =
1

𝑥𝑗
 𝑘+1 

𝐿𝑛
 𝑘 

(𝑥𝑗 )
 

Since 𝐴𝑗  𝑥  satisfies the conditions (4.5) by which we obtain 

(4.11) 𝐶2 = −
1

𝑥𝑗
𝑘+1𝐿𝑛

𝑘  𝑥𝑗  𝐿𝑛
(𝑘−1)′

(𝑥𝑗 )
 

Hence we find the first fundamental polynomial 𝐴𝑗 (𝑥)of 

degree ≤ 2n+k 

Again let  

(4.12) 𝐵𝑗   𝑥 = 𝐶5 𝑥
𝑘𝐿𝑛

 𝑘−1  𝑥  𝑙𝑗
𝑥

0
(𝑡)𝑑𝑡 

 

Where 𝐶5 is a constant, 𝑙𝑗 (𝑡) is defined in (2.8) and 𝐵𝑗 (𝑥) is 

polynomial of degree ≤ 2n+k satisfying the conditions (4.6) 

by which we obtain  

(4.13) 𝐶5 =
𝑒
𝑦𝑗

𝐿𝑛
(𝑘−1)

(𝑦𝑗 )
  

Hence we find the second fundamental polynomial 𝐵𝑗 (𝑥) of 

degree ≤ 2n+k 

 

To determine 𝐶𝑗 (𝑥) we consider 𝐶𝑗 (𝑥) for fixed 

𝑗 𝜖  0,1, …… . . , 𝑘 − 1  in the form 

(4.14) 𝐶𝑗  𝑥 =

 𝑝𝑗  𝑥 𝑥
𝑗𝐿𝑛

(𝑘) 𝑥 𝐿𝑛
(𝑘−1) 𝑥 + 𝑥𝑘𝐿𝑛

 𝑘−1  𝑥 𝑔𝑛(𝑥) 

 Where 𝑝𝑗  𝑥  and 𝑔𝑛(𝑥) are polynomials of degree k-j-1 and 

n respectively. Now it is obvious that 𝐶𝑗
(𝑙) 0 = 0 𝑓𝑜𝑟 (𝑙 =

0,…… , 𝑗 − 1) and since 𝐿𝑛
(𝑘−1) 𝑥𝑖 = 0 we get 𝐶𝑗  𝑥𝑖 =

0 𝑓𝑜𝑟 𝑖 = 1 1 𝑛. The coefficient of the polynomial 𝑝𝑗  𝑥  

are calculated by the system 

(4.15) 𝐶𝑗
 𝑙  0 =

𝑑 𝑙

𝑑𝑥 𝑙
 𝑝𝑗  𝑥 𝑥

𝑗𝐿𝑛
 𝑘  𝑥 𝐿𝑛

 𝑘−1  
𝑥=0

= 𝛿𝑖,𝑗   (𝑙 =

𝑗, …… , 𝑘 − 1) 
 

now from the equation 𝐶𝑗
 𝑘  0 = 0 we get 

(4.16) 𝑐𝑗 = 𝑔𝑛(0) =
−1

𝑘!𝐿𝑛
 𝑘−1 

(0)

𝑑𝑘

𝑑𝑥𝑘
[𝑝𝑗 (𝑥)𝑥 𝑗𝐿𝑛

 𝑘 (𝑥)𝐿𝑛
 𝑘−1 (𝑥)]𝑥=0 
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Now using the condition [𝑒−𝑥𝑥−𝑘𝐶𝑗 (𝑥)]𝑥=𝑦𝑖
′ = 0 of (4.7), 

we get 

(4.17) 𝑔𝑛
′  𝑦𝑖 = −(𝑦𝑖)

𝑗−𝑘𝐿𝑛
 𝑘 ′ (𝑦𝑖)𝑝𝑗 (𝑦𝑖) 

 

Which implies 𝑔𝑛
′ (𝑥) as follows  

(4.18) 𝑔𝑛
′ (𝑥) = −

𝐿𝑛
 𝑘 ′  𝑥 𝑝𝑗 (𝑥)+𝑞𝑗 (𝑥)𝐿𝑛

 𝑘 
(𝑥)

𝑥𝑘−𝑗
 

 

Where  𝑞𝑗 (𝑥) is a polynomial of degree k-j-1 and function 

𝑔𝑛
′ (𝑥) will be a polynomial iff for 𝑟 = 0,1, … , 𝑘 − 𝑗 − 1 

(4.19) 
𝑑𝑟

𝑑𝑥𝑟
[𝐿𝑛
 𝑘 ′ (𝑥)𝑝𝑗 (𝑥) + 𝑞𝑗 (𝑥)𝐿𝑛

 𝑘 (𝑥)]𝑥=0 = 0  

 

The coefficients of  𝑞𝑗 (𝑥) are uniquely calculated by this 

system. now integrating (4.18) we get  

(4.20) 𝑔𝑛(𝑥) = 𝑔𝑛(0) +  𝑔𝑛
′ (𝑡)𝑑𝑡

𝑥

0
 

Using (4.14) and (4.16) we obtain 𝐶𝑗 (𝑥) of degree ≤ 2n+k 

satisfying the conditions (4.7). 

 

Uniqueness and Existence : since 𝑅𝑛(𝑥) in (3.1) satisfies 

the conditions (1.2) and (1.3) hence the existence part is 

proved. now we seek to determine a polynomial 𝑅𝑛(𝑥) of 

minimal possible degree ≤ 2n+k satisfying the conditions 

(4.21) for 𝑖 = 1 1 𝑛 and 𝑙 = 0,1, … , 𝑘 

 

 (4.21)  

𝑆𝑛 𝑥𝑖 = 0

[𝑒−𝑥𝑥−𝑘𝑆𝑛 𝑥 ]𝑥=𝑦𝑖
′

𝑆𝑛
𝑙  0 = 0

 = 0, 𝑖 = 1 1 𝑛 𝑎𝑛𝑑 𝑙 =

0,1, … , 𝑘  
Let us consider  

 

 (4.22) 𝑆𝑛 𝑥 =  𝑥𝑘𝐿𝑛
 𝑘−1  𝑥 𝑠𝑛(𝑥) 

 Where 𝑠𝑛(𝑥) is a polynomial of at most degree n 

 

 (4.23) [𝑒−𝑥𝑥−𝑘𝑆𝑛(𝑥)]𝑥=𝑦𝑖
′ = 𝑒−𝑦 𝑖𝐿𝑛

(𝑘−1) 𝑦𝑖 𝑠𝑛
′  𝑦𝑖 = 0 

 

By which 𝑠𝑛
′  𝑦𝑖 = 0 𝑓𝑜𝑟 𝑖 = 1 1 𝑛 so that 𝑠𝑛

′  𝑥 ≡ 0 

hence 𝑠𝑛
′  𝑥 ≡ 𝑐. so 

(4.24) 𝑆𝑛(𝑥) = 𝑐 𝑥𝑘𝐿𝑛
 𝑘−1 (𝑥), but 

 

(4.25) 
𝑑𝑘𝑆𝑛

𝑑𝑥𝑘
 0 = 𝑐 𝑘! 𝐿𝑛

 𝑘−1  0 = 0 

Which inplies 𝑐 = 0 as 𝐿𝑛
 𝑘−1  0 ≠ 0 hence 𝑆𝑛(𝑥) ≡ 0 

which completes the proof of the uniqueness. 

 

5. Proof of Theorem 2 
 

Proof : Integrating (3.1) on [0,∞) with respect to the weight 

function 𝑒−𝑥  we get  

(5.1)  𝑅𝑛(𝑥)𝑒−𝑥𝑑𝑥~ 𝐴𝐽
𝑛
𝑗=1 𝑓 𝑥𝑗  +  𝐵𝑗𝑓

′ 𝑦𝑗  +𝑛
𝑗=1

∞

0

𝑗=0𝑛𝐶𝑗𝑓(𝑗)(0) 

 

Where 

(5.2) 𝐴𝑗 =  𝐴𝑗 (𝑥)𝑒−𝑥𝑑𝑥
∞

0
 𝑗 = 1 1 𝑛  

(5.3) 𝐵𝑗 =  𝐵𝑗 (𝑥)𝑒−𝑥𝑑𝑥
∞

0
 𝑗 = 1 1 𝑛  

(5.4) 𝐶𝑗 =  𝐶𝑗  𝑥 𝑒
−𝑥𝑑𝑥 𝑗 = 1 1 𝑛

∞

0
 

 

Where 𝐴𝑗 (𝑥), 𝐵𝑗 (𝑥) and 𝐶𝑗  𝑥  are defined in theorem 1 

hence the quadrature formulae given in theorem 2 are exact 

for the polynomials of degree ≤ 2n+k. now by the 

orthogonality.  

(5.5) 

𝐶𝑘 =  𝐶𝑘(𝑥)𝑒−𝑥𝑑𝑥 =
1

𝑘!𝐿𝑛
 𝑘−1 

(0)
 𝐿𝑛

 𝑘−1 (𝑥)𝑥𝑘𝑒−𝑥𝑑𝑥 =
∞

0

∞

0

0, for n >1 

Now to prove Theorem 2 we need lemma 1 

 

Lemma 2 : for 𝑘 ≥ 1 fixed integer the coefficients of the 

quadrature formula given in Theorem 2 are  

(5.6) 𝐴𝑗 =
 𝑛+𝑘 ![𝑥𝑗− 𝑛+𝑘−1 ]

𝑥𝑗
𝑘+1[𝐿𝑛

 𝑘 
(𝑥𝑗 )]2 𝑛−1 𝑛!

 

 

(5.7) 𝐵𝑗 =
𝑒
𝑦𝑗 𝑦𝑗  𝑦𝑗− 𝑛+𝑘  (𝑛+𝑘−1)!

[𝐿𝑛
 𝑘−1 

 𝑦𝑗  ]2(𝑛+𝑘)(𝑛−1)𝑛!
 for j=1(1)n 

Proof : Let 

 (5.8) 
𝐿𝑛
 𝑘−1 

(𝑥)

𝑥−𝑥𝑗
= 𝑎𝑗 ,𝑛−1𝑥

𝑛−1 + 𝑎𝑗 ,𝑛−2𝑥
𝑛−2 + 𝑎𝑗 ,𝑛−3𝑥

𝑛−3 +

⋯+ 𝑎𝑗 ,𝑜   

(5.9) 𝐿𝑛
 𝑘−1  𝑥 =  𝑥 − 𝑥𝑗  (𝑎𝑗 ,𝑛−1𝑥

𝑛−1 + 𝑎𝑗 ,𝑛−2𝑥
𝑛−2 +

𝑎𝑗 ,𝑛−3𝑥
𝑛−3 + ⋯+ 𝑎𝑗 ,𝑜) 

Using (2.7) and (5.9) we get 

(5.10) 𝑎𝑗 ,𝑛−1 =
(−1)𝑛

𝑛!
, 𝑎𝑗 ,𝑛−2 =

(−1)𝑛

𝑛!
[𝑥𝑗 − 𝑛 𝑛 + 𝑘 − 1 ]  

Now let 

(5.11) 𝑥
𝐿𝑛
 𝑘−1 

(𝑥)

(𝑥−𝑥𝑗 )
=  𝐶𝑗 ,𝑖𝐿𝑖

 𝑘 (𝑥)𝑛
𝑖=0  

 comparing the coefficients in (5.11) and using (2.7) we get 

(5.12) 𝐶𝑗 ,𝑛 = 1, 𝐶𝑗 ,𝑛−1 = −
1

𝑛
[𝑥𝑗 + 𝑛] 

Now  

(5.13) 
1

𝐿𝑛
(𝑘−1)′

(𝑥𝑗 )
 

𝑥𝐿𝑛
 𝑘−1  𝑥 

 𝑥−𝑥𝑗  
𝑥𝑘𝐿𝑛

 𝑘  𝑥 𝑒−𝑥𝑑𝑥 =
∞

0

𝐶𝑗,𝑛 1𝐿𝑛(𝑘−1)′(𝑥𝑗)0∞[𝐿𝑛𝑘(𝑥)]2𝑥𝑘𝑒−𝑥𝑑𝑥 

Using (2.6), (5.11) and (5.13) we get 

(5.14)

 
1

𝐿𝑛
(𝑘−1)′

(𝑥𝑗 )
 

𝑥𝐿𝑛
 𝑘−1  𝑥 

 𝑥−𝑥𝑗  
𝑥𝑘𝐿𝑛

 𝑘  𝑥 𝑒−𝑥𝑑𝑥 =
∞

0
 

1

𝐿𝑛
(𝑘−1)′

(𝑥𝑗 )
𝑘!  𝑛+𝑘

𝑛
  

 = 
(𝑛+𝑘)!

𝐿𝑛
 𝑘−1 ′

 𝑥𝑗  𝑛!
 

In the similar way we can find 

(5.15)  [
∞

0
𝑥  

𝑡𝐿𝑛
(𝑘)′

 𝑡 +𝑘𝐿𝑛
(𝑘)

(𝑡)

(𝑡−𝑥𝑗 )
𝑑𝑡]𝐿𝑛

 𝑘−1 (𝑥)𝑥(𝑘−1)𝑒−𝑥𝑑𝑥 =
𝑥

0

𝑥𝑗−𝑘𝑛+𝑘𝑛−1(𝑘−1)!𝑛+𝑘−1𝑛 

 =
 𝑥𝑗−𝑘 (𝑛+𝑘)!

 𝑛−1  𝑛!
 

 Using (4.1), (5.14) and (5.15) we get 

(5.16) 𝐴𝑗 =  𝐴𝑗 (𝑥)𝑒−𝑥𝑑𝑥 = −
 𝑛+𝑘 ![𝑥𝑗− 𝑛+𝑘−1 ]

𝑥𝑗
𝑘+1𝐿𝑛

 𝑘 
 𝑥𝑗  𝐿𝑛

 𝑘−1 ′
(𝑥𝑗 ) 𝑛−1 𝑛!

∞

0
 

 Using 𝐿𝑛
 𝑘−1 ′(𝑥𝑗 ) = −𝐿𝑛

 𝑘 (𝑥𝑗 ) we get  

 

(5.17) 𝐴𝑗 =
 𝑛+𝑘 ![𝑥𝑗− 𝑛+𝑘−1 ]

𝑥𝑗
𝑘+1[𝐿𝑛

 𝑘 
(𝑥𝑗 )]2 𝑛−1 𝑛!

  

Now in the similar way we find 

(5.18) 

 𝐵𝑗 =

 𝐵𝑗  𝑥 𝑒
−𝑥𝑑𝑥 =

∞

0

𝑒𝑦𝑗[𝑦𝑗−𝑛+𝑘]𝐿𝑛𝑘′𝑦𝑗𝐿𝑛𝑘−1𝑦𝑗(𝑛−1)0∞[𝐿𝑛𝑘−1𝑥]2𝑥𝑘−1𝑒
−𝑥𝑑𝑥 
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 = 
𝑒
𝑦𝑗 [𝑦𝑗− 𝑛+𝑘 ]

𝐿𝑛
 𝑘 ′

 𝑦𝑗  𝐿𝑛
 𝑘−1 

 𝑦𝑗  (𝑛−1)
 (𝑘 − 1)!  𝑛+𝑘−1

𝑛
  

 = 
𝑒
𝑦𝑗  𝑦𝑗− 𝑛+𝑘  (𝑛+𝑘−1)!

𝐿𝑛
 𝑘 ′

 𝑦𝑗  𝐿𝑛
 𝑘−1 

 𝑦𝑗  (𝑛−1)𝑛!
  

Now using  

(5.19) 𝑦𝑗𝐿𝑛
 𝑘 ′ (𝑦𝑗 ) =  𝑛 + 𝑘 𝐿𝑛

 𝑘−1 (𝑦𝑗 ) 

We get 

(5.20) 𝐵𝑗 =
𝑒
𝑦𝑗 𝑦𝑗  𝑦𝑗− 𝑛+𝑘  (𝑛+𝑘−1)!

[𝐿𝑛
 𝑘−1 

 𝑦𝑗  ]2(𝑛+𝑘)(𝑛−1)𝑛!
  

Which completes the proof. 
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