Common Fixed Point Theorem for Eight Mappings in Menger Space Using Rational Inequality Without Continuity

Naval Singh ${ }^{1}$, Dilip Kumar Gupta ${ }^{2}$
${ }^{1}$ Department of Mathematics, Govt. Science \& Commerce College, Benazeer Bhopal (M.P.) India
${ }^{2}$ Department of Mathematics, People's College of Research \& Technology Bhopal (M.P.) India

Abstract

In this paper we establish Common fixed point theorem for eight mappings in Menger space using the notion of compatibility including rational term without continuity

Keywords: Menger space, Weak compatibility, Common fixed point .

1. Introduction

There have been number of generalizations of metric spaces. One such generalization is Menger space introduced in 1942 by Menger [4] who used distribution functions instead of nonnegative real numbers as values of the metric. This space was expended rapidly with the pioneering of Schweizer and Sklar [5,6]. This concept plays a vital role in probabilistic functional analysis, nonlinear analysis and applications [1]. In 1972 , V.M. Sehgal and A.T. Bharucha-Reid [7] obtained a generalization of Banach contraction principle on a complete Menger space which is mile stone in development fixed point theory in Menger space. In 1986, jungck [2] introduced the notion of compatible mappings in metric spaces, And this condition has further been weakened by introducing the notion of weakly compatible mappings by Jungck and Rhoades [3]
The concept of weakly compatible mappings is most general as each pair of compatible mappings is most compatible but the reverse is not true. Recently Singh and jain [8] established a common fixed point theorem in Menger space using the concept of weak compatibility and compatibility of pair of self maps. In this paper we generalize and extend the result of Singh and jain [9] for eight mapping opposed to six mappings in complete Menger space using the concept of compatibility including rational term without continuity.

2. Preliminaries

Definition 2.1 A probabilistic metric space (PM -space) is an ordered pair (X,F) consisting of a non empty set X and a function $\mathrm{F}: \mathrm{X} \times \mathrm{X} \rightarrow \mathrm{L}$, where L is the collection of all distribution functions and the value of F at $(u, v) \epsilon X \times X$ is represented by $F_{u, v}$. The function $F_{u, v}$ is assumed to satisfy the following conditions:
(PM-1) $\quad F_{u, v}(x)=1$, for all $x>0$ if and only if $u=v$
(PM-2) $\quad \mathrm{F}_{\mathrm{u}, \mathrm{v}}(0)=0$;
(PM-3) $\quad \mathrm{F}_{\mathrm{u}, \mathrm{v}}=\mathrm{F}_{\mathrm{v}, \mathrm{u}}$;
(PM-4) $\quad \mathrm{F}_{\mathrm{u}, \mathrm{v}}(\mathrm{x})=1$ and $\mathrm{F}_{\mathrm{v}, \mathrm{w}}(\mathrm{y})=1$ then
$\mathrm{F}_{\mathrm{u}, \mathrm{w}}(\mathrm{x}+\mathrm{y})=1$ for all $\mathrm{u}, \mathrm{v}, \mathrm{w}$ in X and $x, y>0$.

Definition 2.2: A mapping $\mathrm{t}:[0,1] \mathrm{x}[0,1] \rightarrow[0,1]$ is called a t - norm if
(a) $\mathrm{t}(\mathrm{a}, 1)=\mathrm{a}, \mathrm{t}(0,0)=0$
(b) $t(a, b)=t(b, a) \quad($ symmetric property)
(c) $\mathrm{t}(\mathrm{c}, \mathrm{d})=\mathrm{t}(\mathrm{a}, \mathrm{b})$ for $\mathrm{c} \geq \mathrm{a}, \mathrm{d} \geq \mathrm{b}$
(d) $\quad \mathrm{t}(\mathrm{t}(\mathrm{a}, \mathrm{b}), \mathrm{c})=\mathrm{t}(\mathrm{a}, \mathrm{t}(\mathrm{b}, \mathrm{c}))$

Definition 2.3: A Menger space is a triplet ($\mathrm{X}, \mathrm{F}, \mathrm{t}$) where (X, F) is a PM- space and t is a t-norm such that the inequqlity.
$\mathrm{F}_{\mathrm{u}, \mathrm{w}}(\mathrm{x}+\mathrm{y}) \geq \mathrm{t}\left\{\mathrm{F}_{\mathrm{u}, \mathrm{v}}(\mathrm{x}), \mathrm{F}_{\mathrm{v}, \mathrm{w}}(\mathrm{y})\right\} \quad$ for all $\mathrm{u}, \mathrm{v}, \mathrm{w}$ in X and $x, y>0$

Definition 2.4: Self -maps A and S of a Menger space (X, F, t) are said to be weak compatible if they commute at their coincidence points i.e. if $\mathrm{Ap}=\mathrm{Sp}$ for some $p \epsilon \mathrm{~N}$ then $\mathrm{ASp}=\mathrm{SAp}$

Lemma (1): Let $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ be a sequence in a Menger space ($\mathrm{X}, \mathrm{F}, \mathrm{t}$) with continuous t -norm and $\mathrm{t}(\mathrm{x}, \mathrm{x}) \geq \mathrm{x}$. suppose for all $x \in[0,1]$ there exists $k \epsilon(0,1)$ such that for all $\mathrm{x}>0$ and $n \epsilon$ N

$$
\begin{aligned}
& \mathrm{Fx}_{\mathrm{n},} \mathrm{x}_{\mathrm{n}+1}(\mathrm{kx}) \geq \mathrm{Fx}_{\mathrm{n}-1,} \mathrm{x}_{\mathrm{n}}(\mathrm{x}) . \\
& \text { Then }\left\{\mathrm{x}_{\mathrm{n}}\right\} \text { is a Cauchy sequence in } \mathrm{X} .
\end{aligned}
$$

Lemma (2) : Let (X, F, t) be a Menger space. If there exists $k \in(0,1)$ such that for $\mathrm{p}, \mathrm{q} \in \mathrm{X}$

$$
\mathrm{F}_{\mathrm{p}, \mathrm{q}}(\mathrm{kx}) \geq \mathrm{F}_{\mathrm{p}, \mathrm{q}}(\mathrm{x}) \text {. Then } \mathrm{p}=\mathrm{q}
$$

In 2006 , Bijendra Singh and shishir jain [9] introduced fixed point theorems in Menger space through semicompatibility and gave the following fixed point theorem for six mappings:

Theorem: Let A, B, S, T, L and M are self mappings on a complete Menger space (X, F, min) satisfying:
(a) $L(X) \subseteq S T(X), M(X) \subseteq A B(X)$.
(b) $A B=B A, S T=T S, L B=B L, M T=T M$
(c) Either AB or L is continuous.
(d) (L, AB) is semi-compatible and (M, ST) is weak compatible.
(e) There exists $k \in(0,1)$ such that
$\mathrm{F}_{\mathrm{Lp}, \mathrm{Mq}}(\mathrm{Kx}) \geq \min \left\{\mathrm{F}_{\mathrm{ABp}, \mathrm{Lp}}(\mathrm{x}), \mathrm{F}_{\mathrm{STq}, \mathrm{Mq}}(\mathrm{x}), \mathrm{F}_{\mathrm{STq}, \mathrm{Lp}}(\beta \mathrm{x})\right.$, $\left.\mathrm{F}_{\mathrm{AB}, \mathrm{Mq}}((2-\beta) \mathrm{x}), \mathrm{F}_{\mathrm{ABp}, \mathrm{STq}}(\mathrm{x})\right\}$
For all $p, \mathrm{q} \in X,>0$ and $\beta(0,2)$. Then $\mathrm{A}, \mathrm{B}, \mathrm{S}, \mathrm{T}, \mathrm{L}, \mathrm{M}$ have a unique common fixed point in X .
Now we are prove the following result.

3. Main Results

Theorem (3.1): Let A, B, S, T, L, M, P and Q are self mappings on a complete Menger space ($\mathrm{X}, \mathrm{F}, \mathrm{t}$) satisfying: (3.1.1) $A(X) \subseteq S T(X) \cap L(X) \cap M(X), B(X) \subseteq P Q(X)$. (3.1.2) $\quad P Q=Q P, S T=T S, A Q=Q A, B T=T B, L T=$ $T L, M T=T M$.
(3.1.3)
$(A, P Q),(L, S T),(B, S T),(L . M)$
are
weak compatible.
(3.1.4) There exists $k \in(0,1)$ such that
$\mathrm{F}_{\mathrm{Ax}, \mathrm{By}}$
(Kt)
\geq
$\min \left\{\mathrm{F}_{\mathrm{PQx}, \mathrm{Ly}}(\mathrm{t})\right.$
$\mathrm{F}_{\text {STy }, \mathrm{Ly}}(\alpha \mathrm{t}), \mathrm{F}_{\mathrm{By}, \mathrm{PQx}}((2-\alpha) \mathrm{t})$,
$\left.\left(\frac{\mathrm{F}_{\mathrm{PQX}, \mathrm{Ly}}(\mathrm{t}) \cdot \mathrm{F}_{\mathrm{Ax}}, \mathrm{PQx}(t)}{\mathrm{F}_{\mathrm{PQx}, \mathrm{STy}}(\mathrm{t})}\right),\left(\frac{\mathrm{F}_{\mathrm{STy}, \mathrm{Ax}}(\mathrm{t}) \cdot \mathrm{F}_{\mathrm{Ax}, \mathrm{My}}(t)}{\mathrm{F}_{\mathrm{Ax}, \mathrm{Ly}}(\mathrm{t})}\right)\right\}$
For all $x, y \in X, \alpha \in(0,2)$ and $t>0$.
(3.1.5). If one of $\mathrm{A}(\mathrm{X}), \mathrm{ST}(\mathrm{X}), \mathrm{PQ}(\mathrm{X}), \mathrm{B}(\mathrm{X})$ is a complete sub space of X, then :
(a) A and PQ have a coincidence point.
(b) B and ST , L, M have a coincidence point.

Then self -maps A, B, S, T, L, M, P and Q have a unique common fixed point in X .
Proof :

Let $\mathrm{x}_{0} \in \mathrm{X}$ By condition 3.1.1 there exists $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{X}$ such that
$\mathrm{Ax}_{0}=\operatorname{STx}_{1}=\mathrm{Lx}_{1}=\mathrm{Mx}_{1}=\mathrm{y}_{0}$ and $\mathrm{Bx}_{1}=P \mathrm{PQx}_{2}=\mathrm{y}_{1}$. Inductively we can construct sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ and $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ in X . such that $\mathrm{y}_{2 \mathrm{n}}$ $=\mathrm{Ax}_{2 \mathrm{n}}=\mathrm{STx}_{2 \mathrm{n}+1}=\mathrm{Lx}_{2 \mathrm{n}+1}=\mathrm{Mx}_{2 \mathrm{n}+1}$ and $\mathrm{y}_{2 \mathrm{n}+1}=\mathrm{Bx}_{2 \mathrm{n}+1}=\mathrm{PQ} \mathrm{x}_{2 \mathrm{n}+2}$ for $\mathrm{n}=0,1,2, \ldots$
putting $\mathrm{x}=\mathrm{x}_{2 \mathrm{n}}$ and $\mathrm{y}=\mathrm{x}_{2 \mathrm{n}+1}$ for $\mathrm{x}>0$ in 3.1.4 then we have
$\mathrm{F}_{\mathrm{Ax}_{2 n}, \mathrm{Bx} x_{2 n+1}}(\mathrm{Kt}) \geq \min \left\{\mathrm{F}_{\mathrm{PQ} \mathrm{x}_{2 \mathrm{n}}, \mathrm{L} x_{2 n+1}}(\mathrm{t}), \mathrm{F}_{\mathrm{ST} x_{2 n+1}, \mathrm{~L} x_{2 n+1}}(\alpha \mathrm{t}), \mathrm{F}_{\mathrm{B} x_{2 n+1}, \mathrm{PQ} x_{2 n}}((2-\alpha) \mathrm{t})\right.$,

$$
\left(\frac{\mathrm{F}_{\mathrm{PQ} x_{2 \mathrm{n}}, \mathrm{~L} x_{2 n+1}}(\mathrm{t}) \cdot \mathrm{F}_{\mathrm{Ax} x_{\mathrm{n}}, \mathrm{PQ} x_{2 n}}(t)}{\mathrm{F}_{\mathrm{PQ} x_{2 n}}, \mathrm{ST} x_{2 n+1}}(\mathrm{t}) \quad,\left(\frac{\mathrm{F}_{\mathrm{ST} x_{2 n+1}}, \mathrm{~A} x_{2 n}(\mathrm{t}) \cdot \mathrm{F}_{\mathrm{A} x_{2 n}, \mathrm{M} x_{2 n+1}}(t)}{\mathrm{F}_{\mathrm{A} x_{2 n}, \mathrm{~L} x_{2 n+1}}(\mathrm{t})}\right)\right\} .
$$

$\mathrm{F}_{\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+1}}(\mathrm{Kt}) \geq \min \left\{\mathrm{F}_{\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}}(\mathrm{t}), \mathrm{F}_{\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}}}(\alpha \mathrm{t}), \mathrm{F}_{\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}-1}}((2-\alpha) \mathrm{t})\right.$

$$
\left.\left(\frac{\mathrm{F}_{\mathrm{y} 2 \mathrm{n}-1, \mathrm{y} 2 \mathrm{n}}(\mathrm{t}) \cdot \mathrm{F}_{\mathrm{y} 2 \mathrm{n}, \mathrm{y} 2 \mathrm{n}-1}(t)}{\mathrm{F}_{\mathrm{y} 2 \mathrm{n}-1, \mathrm{y} 2 \mathrm{n}}(\mathrm{t})}\right),\left(\frac{\mathrm{F}_{\mathrm{y} 2 \mathrm{n}, \mathrm{y} 2 \mathrm{n}}(\mathrm{t}) \cdot \mathrm{F}_{\mathrm{y} 2 \mathrm{n}, \mathrm{y} 2 \mathrm{n}}(t)}{\mathrm{F}_{\mathrm{y} 2 \mathrm{n}}, \mathrm{y} 2 \mathrm{n}}(\mathrm{t}) \quad\right)\right\} .
$$

Hence
$\mathrm{F}_{\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+1}}(\mathrm{Kt}) \geq \min \left\{\mathrm{F}_{\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}}(\mathrm{t}), \mathrm{F}_{\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}}}(\alpha \mathrm{t}), \mathrm{F}_{\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}-1}}((2-\alpha) \mathrm{t})\right\}$
Let $\beta \in(0,1)$ and put $\beta=1-\alpha$ we get
$\mathrm{F}_{\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+1}}(\mathrm{Kt}) \geq \min \left\{\mathrm{F}_{\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}}(\mathrm{t}), \mathrm{F}_{\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}}}((1-\beta) \mathrm{t}), \mathrm{F}_{\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}-1}}((1+\beta) \mathrm{t})\right\}$
$\mathrm{F}_{\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+1}}(\mathrm{Kt}) \geq \min \left\{\mathrm{F}_{\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}}(\mathrm{t}), \mathrm{F}_{\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}}(\mathrm{t}), \mathrm{F}_{\left.\mathrm{y}_{2 \mathrm{n}, \mathrm{y}_{2 \mathrm{n}+1}}(\beta \mathrm{t})\right\}}\right.$
$\mathrm{F}_{\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+1}}(\mathrm{Kt}) \geq \min \left\{\mathrm{F}_{\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}}(\mathrm{t}), \mathrm{F}_{\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+1}}(\beta \mathrm{t})\right\}$
Making $\beta \rightarrow 1$, we get
$\mathrm{F}_{\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+1}}(\mathrm{Kt}) \geq \min \left\{\mathrm{F}_{\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}}(\mathrm{t}), \mathrm{F}_{\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+1}}(\mathrm{t})\right\}$
Similarly, $\mathrm{F}_{\mathrm{y}_{2 \mathrm{n}+1,} \mathrm{y}_{2 \mathrm{n}+2}}(\mathrm{Kt}) \geq \min \left\{\mathrm{F}_{\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+1}}(\mathrm{t}), \mathrm{F}_{\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}+2}}(\mathrm{t})\right\}$
Therefore for all n even or odd we have
$\mathrm{F}_{\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}}(\mathrm{Kt}) \geq \min \left\{\mathrm{F}_{\mathrm{y}_{\mathrm{n}-1}, \mathrm{y}_{\mathrm{n}}}(\mathrm{t}), \mathrm{F}_{\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}}(\mathrm{t})\right\}$
Consequently, it follows that for $p=1,2,3, \ldots$
$\mathrm{F}_{\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}}(\mathrm{Kt}) \geq \min \left\{\mathrm{F}_{\mathrm{y}_{\mathrm{n}}-1, \mathrm{y}_{\mathrm{n}}}(\mathrm{t}), \mathrm{F}_{\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}}\left(\frac{t}{k^{p}}\right)\right\}$.
By noting that $\mathrm{F}_{\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}}\left(\frac{t}{k^{p}}\right) \rightarrow 1$ as $n \rightarrow \infty$ it follows that
$\mathrm{F}_{\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}}(\mathrm{Kt}) \geq \min \left\{\mathrm{F}_{\mathrm{y}_{\mathrm{n}-1}, \mathrm{y}_{\mathrm{n}}}(\mathrm{t})\right\}$ for all $n \in \mathrm{~N}$ and $\mathrm{t}>0$.
Hence by Lemma (1), $\left\{y_{n}\right\}$ is a Cauchy sequence in X. Now suppose PQ (X) is complete. Note that the sub sequence $\{$ $\left.y_{2 n+1}\right\}$ is contained in $\mathrm{PQ}(\mathrm{X})$ call it z . Let $u \in P Q^{-1}(\mathrm{z})$ then $\mathrm{PQu}=\mathrm{z}$. we shall use the fact that subsequence $\left\{y_{2 n}\right\}$ also converges to z .
$\mathrm{Bx}_{2 \mathrm{n}+1} \rightarrow \mathrm{z}, \mathrm{STx}_{2 \mathrm{n}+1} \rightarrow \mathrm{z}, \mathrm{Lx}_{2 \mathrm{n}+1} \rightarrow \mathrm{z}, \mathrm{Mx}_{2 \mathrm{n}+1} \rightarrow \mathrm{z}$
$\mathrm{Ax}_{2 n} \rightarrow \mathrm{z}, \mathrm{PQ} \mathrm{x}_{2 \mathrm{n}+2} \rightarrow \mathrm{z}$. By putting $\mathrm{x}=\mathrm{u}$ and $\mathrm{y}=\mathrm{x}_{2 \mathrm{n}+1}$ with $\alpha=1$ in 3.1.4
$\mathrm{F}_{\mathrm{Au}, \mathrm{Bx} 2 \mathrm{n}+1}(\mathrm{Kt}) \geq \min \left\{\mathrm{F}_{\mathrm{PQu}, \mathrm{L} x_{2 n+1}}(\mathrm{t}), \mathrm{F}_{\mathrm{ST} x_{2 n+1}, \mathrm{~L} x_{2 n+1}}(\mathrm{t}),, \mathrm{F}_{\mathrm{B} x_{2 n+1}, \mathrm{PQ} u}(\mathrm{t})\right.$,

$$
\left.\left(\frac{\mathrm{FPQ} u^{, \mathrm{L} x_{2 n+1}}(\mathrm{t}) \cdot \mathrm{F}_{\mathrm{Au}, \mathrm{PQ} u}(t)}{\mathrm{F}_{\mathrm{PQ} u, \mathrm{ST} x_{2 n+1}}(\mathrm{t})}\right),\left(\frac{\mathrm{F}_{\mathrm{ST}} x_{2 n+1, \mathrm{~A} u}(\mathrm{t}) \cdot \mathrm{F}_{\mathrm{A} u, \mathrm{M} x_{2 n+1}}(t)}{\mathrm{F}_{\mathrm{A} x_{2 n}, \mathrm{~L} x_{2 n+1}}(\mathrm{t})}\right)\right\}
$$

Taking lim $n \rightarrow \infty$ we get
$\mathrm{F}_{A u, Z}(\mathrm{Kt}) \geq \min \left\{\mathrm{F}_{\mathrm{Z}, \mathrm{Z}}(\mathrm{t}), \mathrm{F}_{\mathrm{Z}, \mathrm{Z}}(\mathrm{t}), \mathrm{F}_{\mathrm{z}, \mathrm{Z}}(\mathrm{t}),\left(\frac{\mathrm{F}_{\mathrm{Z}, \mathrm{Z}}(\mathrm{t}) \cdot \mathrm{F}_{\mathrm{Au}, \mathrm{Z}}(\mathrm{t})}{\mathrm{F}_{\mathrm{z}, \mathrm{Z}}(\mathrm{t})}\right),\left(\frac{\mathrm{F}_{\mathrm{z}, \mathrm{A} u}(\mathrm{t}) \cdot \mathrm{F}_{\mathrm{A} u, \mathrm{Z}}(\mathrm{t})}{\mathrm{F}_{\mathrm{A} u, \mathrm{Z}}(\mathrm{t})}\right)\right\}$.
Thus we have
$\mathrm{F}_{\mathrm{Au}, \mathrm{z}}(\mathrm{Kt}) \geq \mathrm{F}_{\mathrm{Au}, \mathrm{Z}}(\mathrm{t})$
Therefore by Lemma 2 we have $A u=z$. since $P Q u=z$ thus we have $A u=P Q u=z$ that is u is coincident point of A and PQ this proves 3.1.5 (a).

Since $A(X) \subseteq S T(X) \cap L(X) \cap M(X), A u=z$ implies that $S T(X) \cap L(X) \cap M(X)$. Then $S T v=L v=M v=z$. By putting $\mathrm{x}=\mathrm{x}_{2 \mathrm{n}+2}$ and $\mathrm{y}=\mathrm{v}$ with $\alpha=1$ in 3.1.4

International Journal of Science and Research (IJSR)
 ISSN (Online): 2319-7064

Index Copernicus Value (2013): $6.14 \mid$ Impact Factor (2013): 4.438
$\mathrm{F}_{\mathrm{Ax}_{2 \mathrm{n}+2}, \mathrm{Bv}}(\mathrm{Kt}) \geq \min \left\{\mathrm{F}_{\mathrm{PQx}_{2 \mathrm{n}+2}, \mathrm{~L} v}(\mathrm{t}), \mathrm{F}_{\mathrm{ST} v, \mathrm{Lv}}(\alpha \mathrm{t}), \mathrm{F}_{\mathrm{B} v, \mathrm{PQ} x_{2 n+2}}((2-\alpha) \mathrm{t})\right.$,

Taking $\lim \quad n \rightarrow \infty$ we get
$\mathrm{F}_{\mathrm{z}, \mathrm{Bv}}(\mathrm{Kt}) \geq \min \left\{\mathrm{F}_{\mathrm{z}, \mathrm{z}}(\mathrm{t}), \mathrm{F}_{\mathrm{z}, \mathrm{z}}(\mathrm{t}), \mathrm{F}_{\mathrm{B} v, \mathrm{z}}(\mathrm{t}),\left(\frac{\mathrm{F}_{\mathrm{z}, \mathrm{z}}(\mathrm{t}) \cdot \mathrm{F}_{\mathrm{z}, \mathrm{z}}(\mathrm{t})}{\mathrm{F}_{\mathrm{z}, \mathrm{z}}(\mathrm{t})}\right),\left(\frac{\mathrm{F}_{\mathrm{z}, \mathrm{z}}(\mathrm{t}) \cdot \mathrm{F}_{\mathrm{z}, \mathrm{z}}(\mathrm{t})}{\mathrm{F}_{\mathrm{z}, \mathrm{Z}}(\mathrm{t})}\right)\right\}$.
Thus we have
$\mathrm{F}_{\mathrm{z}, \mathrm{Bv}}(\mathrm{Kt}) \geq \mathrm{F}_{\mathrm{z}, \mathrm{Bv}}(\mathrm{t})$. Therefore by Lemma (2) we have $B v=z$ since $S T v=L v=M v=z$ thus we have $B v=$ $S T v=L v=M v=z$ that is v is coincident point of B and ST, L,M This proves (b).

The remaining two cases pertain essentially to the previous cases. Indeed if $A(X)$ or $B(X)$ is complete then by 3.1.4 $z \in A(X) C S T(X) \cap L(X) \cap M(X)$ or $\quad z \epsilon \quad B(X) \quad \underline{C}$ $\mathrm{PQ}(\mathrm{X})$. Thus 3.1.5 (a) and (b) are completely established.
Since the pair $\{\mathrm{A}, \mathrm{PQ}\}$ is weakly compatible therefore A and PQ commute at their coincidence point that is $\mathrm{A}(\mathrm{PQu})=$ $(\mathrm{PQ}) \mathrm{Au}$ or $\mathrm{Az}=\mathrm{PQz}$.
Since the pair $\{\mathrm{B}, \mathrm{ST}\}$, $\{\mathrm{L}, \mathrm{ST}\}$ and $\{\mathrm{L}, \mathrm{M}\}$ are weakly compatible therefore
$\mathrm{B}(\mathrm{STv})=\mathrm{ST}(\mathrm{Bv})$ or $\mathrm{Bz}=\mathrm{STz}$
$\mathrm{L}(\mathrm{STv})=\mathrm{ST}(\mathrm{Lv})$ or $\mathrm{Lz}=\mathrm{STz}$
$\mathrm{L}(\mathrm{Mv})=\mathrm{M}(\mathrm{Lv})$ or $\mathrm{Lz}=\mathrm{Mz}$ Therefore $\mathrm{Bz}=\mathrm{STz}=\mathrm{Lz}=\mathrm{Mz}$.
By putting $\mathrm{x}=\mathrm{z}, \mathrm{y}=\mathrm{x}_{2 \mathrm{n}+1}$ with $\alpha=1$ in 3.1.4
$\mathrm{F}_{\mathrm{Ax}_{2 \mathrm{n}+2}, \mathrm{Bz}}(\mathrm{Kt}) \geq \min \left\{\mathrm{F}_{\mathrm{PQx} 2 \mathrm{n}+2, \mathrm{Lz}}(\mathrm{t}), \mathrm{F}_{\mathrm{ST} z, \mathrm{Lz}}(\mathrm{t}), \mathrm{F}_{\mathrm{Bz}, \mathrm{PQ} x_{2 n+2}}(\mathrm{t})\right.$,

$$
\left.\left(\frac{\mathrm{F}_{\mathrm{PQ} x_{2 \mathrm{n}+2}, \mathrm{Lz}}(\mathrm{t}) \cdot \mathrm{F}_{\mathrm{Ax} 2 \mathrm{n}+2}, \mathrm{PQ} x_{2 n+2}(t)}{\mathrm{F}_{\mathrm{PQ} x_{2 n+2}, \mathrm{ST} z}(\mathrm{t})}\right),\left(\frac{\mathrm{F}_{\mathrm{STz}, \mathrm{~A} x_{2 n+2}}(\mathrm{t}) \cdot \mathrm{F}_{\mathrm{A} x_{2 n+2}, \mathrm{Mz}}(t)}{\mathrm{F}_{\mathrm{A} x_{2 n+2, \mathrm{Lz}}}(\mathrm{t})}\right)\right\} .
$$

Taking lim $n \rightarrow \infty$ we get
$\mathrm{F}_{\mathrm{z}, \mathrm{Bz}}(\mathrm{Kt}) \geq \min \left\{\mathrm{F}_{\mathrm{z}, \mathrm{Bz}}(\mathrm{t}), \mathrm{F}_{\mathrm{Bz}, \mathrm{Bz}}(\mathrm{t}), \mathrm{F}_{\mathrm{Bz}, \mathrm{Z}}(\mathrm{t}),\left(\frac{\mathrm{F}_{\mathrm{z}, \mathrm{Bz}}(\mathrm{t}) \cdot \mathrm{F}_{\mathrm{z}, \mathrm{Z}}(t)}{\mathrm{F}_{\mathrm{z}, \mathrm{Bz}}(\mathrm{t})}\right),\left(\frac{\mathrm{F}_{\mathrm{Bz}, \mathrm{z}}(\mathrm{t}) \cdot \mathrm{F}_{\mathrm{z}, \mathrm{Bz}}(t)}{\mathrm{F}_{\mathrm{z}, \mathrm{Bz}}(\mathrm{t})}\right)\right\}$.
Thus we have
$\mathrm{F}_{\mathrm{z}, \mathrm{Bz}}(\mathrm{Kt}) \geq \mathrm{F}_{\mathrm{z}, \mathrm{Bz}}(\mathrm{t})$. Therefore by Lemma (2) we have $\mathrm{Bz}=\mathrm{z}$ so $\mathrm{Bz}=\mathrm{STz}=\mathrm{Lz}=\mathrm{Mz}=\mathrm{z}$
By putting $\mathrm{x}=\mathrm{z}$ and $\mathrm{y}=\mathrm{Tz}$ with $\alpha=1$ in 3.1.4
$\mathrm{F}_{\mathrm{Az}, \mathrm{BTz}}(\mathrm{Kt}) \geq \min \left\{\mathrm{F}_{\mathrm{PQZ}, \mathrm{LTz}}(\mathrm{t}), \mathrm{F}_{\mathrm{STT}, \mathrm{LTz}}(\mathrm{t}), \mathrm{F}_{\mathrm{BTz}, \mathrm{PQZ}}(\mathrm{t})\right.$,

As $\mathrm{BT}=\mathrm{TB}, \mathrm{LT}=\mathrm{TL}, \mathrm{ST}=\mathrm{TS}, \mathrm{MT}=\mathrm{TM}$
$\mathrm{BTz}=\mathrm{TBz}=\mathrm{Tz}, \mathrm{LTz}=\mathrm{TLz}=\mathrm{Tz}, \mathrm{STTz}=\mathrm{TSTz}=\mathrm{Tz}, \mathrm{MTz}=\mathrm{TMz}=\mathrm{Tz}$,
Taking $\lim \quad n \rightarrow \infty$ we get
$\mathrm{F}_{\mathrm{z}, \mathrm{Tz}}(\mathrm{Kt}) \geq \min \left\{\mathrm{F}_{\mathrm{z}, \mathrm{Tz}}(\mathrm{t}), \mathrm{F}_{\mathrm{Tz}, \mathrm{Tz}}(\mathrm{t}), \mathrm{F}_{\mathrm{Tz}, \mathrm{Z}}(\mathrm{t}),\left(\frac{\mathrm{F}_{\mathrm{z}, \mathrm{Tz}}(\mathrm{t}) \cdot \mathrm{F}_{\mathrm{Z}, \mathrm{z}}(\mathrm{t})}{\mathrm{F}_{\mathrm{z}, \mathrm{Tz}}(\mathrm{t})}\right),\left(\frac{\mathrm{F}_{\mathrm{Tz}, \mathrm{z}}(\mathrm{t}) \cdot \mathrm{F}_{\mathrm{z}, \mathrm{Tz}}(\mathrm{t})}{\mathrm{F}_{\mathrm{z}, \mathrm{Z}}(\mathrm{t})}\right)\right\}$.
Thus we have

$$
\mathrm{F}_{\mathrm{z}, \mathrm{Tz}}(\mathrm{Kt}) \geq \mathrm{F}_{\mathrm{z}, \mathrm{Tz}}(\mathrm{t})
$$

Therefore by Lemma 2 we have $T z=z$, Since $S T z=z$, therefore $S z=z$
By putting $\mathrm{x}=\mathrm{Qz}$ and $\mathrm{y}=\mathrm{z}$ with $\alpha=1$ in 3.1.4
$\mathrm{F}_{\mathrm{AQz}, \mathrm{Bz}}(\mathrm{Kt}) \geq \min \left\{\mathrm{F}_{\mathrm{PQQz}, \mathrm{Lz}}(\mathrm{t}), \mathrm{F}_{\mathrm{ST}, \mathrm{Lz}}(\mathrm{t}), \mathrm{F}_{\mathrm{Bz}, \mathrm{PQQz}}(\mathrm{t})\right.$,

As $\mathrm{AQ}=\mathrm{QA}, \mathrm{PQ}=\mathrm{QP}$ we have
$A Q z=Q A z=Q z, P Q Q z=Q P Q z=Q z$
Taking $\lim n \rightarrow \infty$ we get
$\mathrm{F}_{\mathrm{Qz}, \mathrm{z}}(\mathrm{Kt}) \geq \min \left\{\mathrm{F}_{\mathrm{Qz}, \mathrm{Z}}(\mathrm{t}), \mathrm{F}_{\mathrm{Z}, \mathrm{Z}}(\mathrm{t}), \mathrm{F}_{\mathrm{Z}, \mathrm{Qz}}(\mathrm{t}),\left(\frac{\mathrm{F}_{\mathrm{Qz}, \mathrm{Z}}(\mathrm{t}) \cdot \mathrm{F}_{Q z, Q z}(t)}{\mathrm{F}_{\mathrm{Qz}, \mathrm{Z}}(\mathrm{t})}\right),\left(\frac{\mathrm{F}_{\mathrm{Z}, \mathrm{Qz}}(\mathrm{t}) \cdot \mathrm{F}_{\mathrm{Qz}, \mathrm{z}}(\mathrm{t})}{\mathrm{F}_{\mathrm{Qz}, \mathrm{Z}}(\mathrm{t})}\right)\right\}$.
Thus we have
$\mathrm{F}_{\mathrm{Qz}, \mathrm{Bz}}(\mathrm{Kt}) \geq \mathrm{F}_{\mathrm{Qz}, \mathrm{z}}(\mathrm{t})$. Therefore by Lemma (2) we have $\mathrm{Qz}=\mathrm{z}$. Since $\mathrm{PQz}=\mathrm{z}$ therefore $\mathrm{Pz}=\mathrm{z}$. By combining the above results we have $\mathrm{Az}=\mathrm{Bz}=\mathrm{Lz}=\mathrm{Mz}=\mathrm{Sz}=\mathrm{Tz}=\mathrm{Pz}=\mathrm{Qz}=\mathrm{z}$. That is z is a common fixed point of $\mathrm{A}, \mathrm{B}, \mathrm{L}, \mathrm{M}, \mathrm{S}, \mathrm{T}, \mathrm{P}$ and Q .

Uniqueness: Let $z^{\prime}\left(z \neq z^{\prime}\right)$ be another common fixed point of $\mathrm{A}, \mathrm{B}, \mathrm{L}, \mathrm{M}, \mathrm{S}, \mathrm{T}, \mathrm{P}$ and Q , then $\mathrm{Az} \mathrm{A}^{\prime}=\mathrm{Bz}{ }^{\prime}=\mathrm{Lz} z^{\prime}=\mathrm{Mz}^{\prime}=\mathrm{Sz}^{\prime}=$ $\mathrm{Tz}^{\prime}=\mathrm{Pz}^{\prime}=\mathrm{Qz}{ }^{\prime}=\mathrm{z}^{\prime}$.
By putting $\mathrm{x}=\mathrm{z}$ and $\mathrm{y}=\mathrm{z}$ ' with $\alpha=1$ in 3.1.4 we have
$\mathrm{F}_{\mathrm{Az}, \mathrm{Bz}}{ }^{\prime}(\mathrm{Kt}) \geq \min \left\{\mathrm{F}_{\mathrm{PQZ}, \mathrm{Lz} z^{\prime}}(\mathrm{t}), \mathrm{F}_{\mathrm{ST} z^{\prime}, \mathrm{Lz}}(\mathrm{t}), \mathrm{F}_{\mathrm{Bz} z^{\prime} \mathrm{PQZ}}(\mathrm{t})\right.$,

$F_{z, z^{\prime}}(\mathrm{Kt}) \geq \min \left\{\mathrm{F}_{z, z^{\prime}}(\mathrm{t}), \mathrm{F}_{z^{\prime}, z^{\prime}}(\mathrm{t}), \mathrm{F}_{z_{z}^{\prime}, \mathrm{z}}(\mathrm{t}),\left(\frac{\mathrm{F}_{z, z^{\prime}}(\mathrm{t}) \cdot \mathrm{F}_{z, z}(\mathrm{t})}{\mathrm{F}_{z, z^{\prime}}(\mathrm{t})}\right),\left(\frac{\mathrm{F}_{z^{\prime}, z}(\mathrm{t}) \cdot \mathrm{F}_{\mathrm{z}, z^{\prime}}(\mathrm{t})}{\mathrm{F}_{z, z^{\prime}}(\mathrm{t})}\right)\right\}$.
$F_{z, z^{\prime}}(\mathrm{Kt}) \geq \mathrm{F}_{\mathrm{z}, \mathrm{z}^{\prime}}(\mathrm{t})$. by Lemma (2) $\mathrm{z}=\mathrm{z}$. Therefore z is a common fixed point of A, B, L, M, S, T, P and Q. This completes the proof.

Corollary 3.1.6 : Let A,S, T, L, M, P and Q are self mappings on a complete Menger space ($\mathrm{X}, \mathrm{F}, \mathrm{t}$) satisfying:
(1) $A(X) \subset S T(X) \cap L(X) \cap M(X), A(X) C P Q(X)$.
(2) $\quad P Q=Q P, S T=T S, A Q=Q A, A T=T A, L T=$ $T L, M T=T M$.
(3) $(A, P Q),(L, S T),(A, S T),(L . M)$ are weak compatible.
(4) There exists $k \in(0,1)$ such that
$\mathrm{F}_{\mathrm{Ax}, \mathrm{Ay}} \quad(\mathrm{Kt}) \quad \geq \quad \min \left\{\mathrm{F}_{\mathrm{PQx}, \mathrm{Ly}}(\mathrm{t})\right.$
$\mathrm{F}_{\text {STy }, \mathrm{Ly}}(\alpha \mathrm{t}), \mathrm{F}_{\mathrm{Ay}, \mathrm{PQx}}((2-\alpha) \mathrm{t})$,
$\left.\left(\frac{\mathrm{F}_{\mathrm{PQX}, \mathrm{Ly}}(\mathrm{t}) \cdot \mathrm{F}_{\mathrm{Ax}, \mathrm{PQ}}(\mathrm{t})}{\mathrm{F}_{\mathrm{PQX}, \mathrm{STy}}(\mathrm{t})}\right),\left(\frac{\mathrm{F}_{\mathrm{STy}, \mathrm{Ax}}(\mathrm{t}) \cdot \mathrm{F}_{\mathrm{Ax}, \mathrm{My}}(t)}{\mathrm{F}_{\mathrm{Ax}, \mathrm{Ly}}(\mathrm{t})}\right)\right\}$
For all $x, y \in X, \alpha \in(0,2)$ and $t>0$.
(5). If one of $A(X), S T(X), P Q(X)$ is a complete sub space of X , then :
(a) A and PQ have a coincidence point.
(b) A and ST , L , M have a coincidence point.

Then self -maps A,S,T,L,M,P and Q have a unique common fixed point in X .

References

[1] Chang S. S., Cho. Y. J., and Kang S. M.. Nonlinear Operator Theory in Probabilistic Metric spaces. Nova Science Publishers, Huntington, USA, 2001.
[2] Jungck G.. Compatible mappings and common fixed points. Int. J. math. Math. Sci., 9:771:773, 1986
[3] Jungck G. and Rhoades B.E.. Fixed points for set valued functions without continuity. Indian J. Pure Appl. Math., 29:227:238,1998
[4] Menger K.. Statistical metric. Proc. Nat. Acad. (USA) 28:535:537, 1942
[5] Schweizer B. and Sklar A.. Statistical metric spaces. Pacific J. Math., 10:313:334, 1960
[6] Schweizer B. and Sklar A. Probabilistic metric spaces. Elsevier, North-Holland, New York, 1983
[7] Sehgal V. M. and Bharucha A. T.-Reid. Fixed point of contraction mappings on probabilistic metric spaces. Math. Syst. Theory, 6:97:102, 1972.
[8] Singh B. and Jain S.. A fixed point theorem in Menger space through weak compatibility. J. Math. Anal. Appl., 301:439:448,2005
[9] Singh B. and Jain S.. Fixed point theorems in Menger space through semi compatibility,. Varahmihir Journal I 117-128,2006

