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1. Introduction 
 

Modular equations of 
0r

k  (the elliptic singular moduli), have 

considered and have been discussed in the last 200 years by 

many great Mathematicians. They play very important role in 

several problems. The construction of   approximation 

formulas, the evaluation of the famous Rogers-Ramanujan 

and similar continued fractions, the solution of the quintic 

and sextic equation, the evaluation of the elliptic integrals in 

modular bases other than the classical (i.e. the cubic, the 

quartic and the fifth), the evaluation of the derivatives of 

Jacobi theta functions and many other problems of 

mathematics (see [1],[2],[4],[5],[6],[11],[15], [16] ). 

 

The only known solvable modular equations of 
0r

k , where 

that of 2nd and 3rd degrees. The partial solution of 5-th 

degree modular equation presented here is a new and 

important result.  

 

As application of this result we give an evaluation, in a 

closed form, of a quintic iteration formula for 1/ , 

constructed by the Borwein's brothers and Bailey (see 

[11],[5] pg.175 and [1] pg.269). We begin with the definition 

of the complete elliptic integral of the first kind which is (see 

[3],[4],[5]): 
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It is known that the inverse elliptic nome (singular modulus 

or elliptic singular moduli), ,rk k  
21 ,r rk k   is the 

real solution of the equation: 

( )

( )

r

r

K k
r

K k


                                 : (2) 

with 0 1rk  . 

In what follows we assume that r 

 . If r  is a positive 

rational then rk  is algebraic number. The function rk  can 

evaluated in certain cases exactly (see [2],[5],[9],[17]). 

Continuing, we define for 1q   the Ramanujan’s eta 

function 

1

( ) (1 )n

n

f q q




    : (3) 

For 1q  , the Rogers-Ramanujan continued fraction 

(RRCF) is defined as 
1/5 2 3

( )
1 1 1 1

q q q q
R q 

   
                   : (4) 

and the following relation of Ramanujan holds (see 

[1],[2],[8]): 
6

5

5 5 6

1 ( )
11 ( )

( ) ( )

f q
R q

R q qf q
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              : (5) 

 

We can write the eta function f  using elliptic functions. It 

holds with 
rq e  , 0r  : 

8/3
8 1/3 2/3 8/3 4

4

2
( ) ( ) ( ) ( )r r rf q q k k K k



        : (6) 

 

Also holds (see [3] pg. 488) 
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f q
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                        : (7) 

 

Theorem 1.1 (see [3] pg. 488) 

 
2 5 2 5( ) 11 ( )R q R q      
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         

                 : (8) 

with 
2

25r rw k k , 
2

25( ) r rw k k   . 

 
6 3 2 4 2 3 3( 16 10 ) 15 20r r r r rk k k w k w k w        

2 4 2 5 615 (10 16 ) 0r r rk w k k w w             : (9) 

 

Once we know rk , its relation with w  and hence with 25rk  

is given from equation (9). Hence the problem of finding 
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25rk  reduces to solve the 6-th degree polynomial equation 

(9), which under the change of variables 25r rw k k , 

8 2

ru k , 
8 2

25rv k  reduces to the “depressed equation” 

(see [4] chapter 10): 

 
6 6 2 2 2 2 4 45 ( ) 4 (1 ) 0u v u v u v uv u v         : (10) 

 

The depressed equation is also related with the problem of 

the solution of the general quintic equation 

 
5 4 3 2 0ax bx cx dx ex f                : (11) 

 

which can reduced with a Tchirnhausen transform into 

Bring’s form 
5 0x ax b                              : (12) 

 

The solution of the depressed equation is a relation of the 

form 

 25 ( )r rk k                             : (13) 

 

But such construction of the root of the depressed equation 

can not found in radicals (see [11]). Speaking clearly the 

equations (9) and (10) are not solvable in radicals. Hence we 

seek a way to reduce them. A way can found using the extra 

value of / 25rk .  

In this paper we give a solution of the form  

25 / 25( , )r r rk k k                         : (14) 

 

which can written more general 

0 00
/ 2525

( , ),  n n r rr
k k k n             : (15) 

 

with ( )n x , known algebraic functions which we evaluate 

them.  

 

2. State of the Main Theorem 
 

Our main result is 

 

Main Theorem 

For 1,2,3,...n   we have 

025n r
k   

0 0

0 0

0 0

24
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 :(16) 

Where the function P  is in radicals known function and is 

given from 

 
1/6

6( ) [ ] [ ]P x P x U Q U x       
           : (17) 
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(1) ( ) ( )P x P x       : (18) 

The function Q  is that of (30) and U , U 
 are given from 

(33) and (34) below. The symbol “ ” means iteration. 

 

3. The Reduction of the Evaluation of the 5-th 

Degree Modular Equation  
 

We give below some Lemmas that will help in the 

construction of proof and evaluation of function P  of Main 

Theorem.  

 

Lemma 3.1 (see also [6]) 

Let 
rq e   and r  real positive. We define 

2
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then 
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: (20) 

where 5( )M r  is root of:  

5 2(5 1) (1 ) 256( )r rX X k k X   . 

 

Proof. 

Suppose that 
2N n  , where n  is positive integer and   

is positive real then holds that 
2[ ] ( ) [ ]nK n M K                        : (21) 

 

where [ ]: ( )K K k  . 

The following equation for 5( )M r  is known (see [17] 

pg.75) : 
5 2

5 5 5(5 ( ) 1) (1 ( )) 256( ) ( )r rM r M r k k M r       : (22) 

 

Thus if we use (5),(6),(20), we get: 
6
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Solving with respect to ( )R q , we get the result. 

 

 Let now ,  0rq e r   and ( )rv R q , it have been 

proved by Ramanujan that (see [1],[2],[8],[10]): 

 
2 3 4

5

/ 25 2 3 4

1 2 4 3

1 3 4 2

r r r r
r r

r r r r

v v v v
v v

v v v v

   


   
                 : (24) 

 

Also from (23) it is 
6
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Then from Lemma 3.1 

( ) ( )r rv R q S A    
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Note that a function S  is defined from the 3rd equality of 

(26). From the above we get the following modular equation 

for rA  
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and from (26) replacing rv  in terms of rA   

 

/ 25 ( ) ( ( ))r r rA F v F S A    

( )( ) ( )r rF S A Q A                 :(28) 

 

which after simplification with program Mathematica 

becomes 

 

Lemma 3.2 

If ,rq e   0r   and 
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and 
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                        : (31) 

Note that inserting (31) to (30) and simplifying, we get an 

algebraic function, but for simplicity and more concentrated 

results we leave it as it is. Consider now the following 

equation which appear in Lemma 3.3 below 

 
2

3 3

2
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This equation is solvable in radicals with respect to Y  and 

X  also. One can find the solution  
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Lemma 3.3 (see [8]) 

If 
rG  denotes the Weber class invariant 

2
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Note. For the Weber class invariant one can see [14],[2].  

 

We state now our first theorem 

 

Theorem 3.1 

For the Weber class invariant holds 
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6
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Proof. 

Set  
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G
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then from Lemmas 3.2 and 3.3 and from relations 

(29),(30),(32),(33) and (34), we have 
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which completes the proof. 

 

 Continuing we have 
1/12 1/122 ( )r r rG k k                             : (37) 

hence 
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From the identity 

1/ r rk k  

we get 
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and setting 1/r r , we lead to 

 

Theorem 3.2 

If r 

 , then 
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 : (40) 

 Hence knowing 
0r

k  and 
0 / 25rk , we can evaluate in closed 

radical form the 
025rk . If we repeat the process we can find 

any higher or lower order of 
025n r

k  in closed radicals form, 

when n  and easily get (16). 

 

Observe that a similar formula to (16) for the evaluation of 

0 / 25nr
k , 1,2,3,...n  , can extracted from (39). 

Example 1. 

For 5r  , we have  
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  
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21 1
125 2 2

1 (9 4 5) [1]k P              : (41) 

 

where ( ) [ ]P x P x  is that of (17) and [1]P  is an algebraic 

radical number which has too complicated form to present it 

here. Its minimal polynomial is 
2 3 4 5 61 5 10 15 22 15x x x x x       

7 8 1010 5 0x x x     

  

 The same holds also for the next 

  

Example 2. 

For 0 25r   it is 
0

1
/ 25 1 2rk k   and 

 

0 25rk k   

 
1

2 51841 23184 5 12 37325880 16692641 5


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Hence 

 

24

1 1
625 2 2

5 1
1 (51824 23184 5)

2
k P

 
     

 

: (42) 

 

By this way from 2nd and 3rd degree modular equations (see 

[1] chapter 19), we can evaluate every 
rk  which r  is of the 

form 
04 9 25k l nr r   , when 

0r
k  and 

0 / 25rk  are known and 

, ,k l n . 

 

4. The fifth degree singular moduli and 

approximations to 1/ . 
 

In [5] pg.175 J.M. Borwein and P.B. Borwein consider the 

following sharp convergent approximation algorithm to   

(see also [11]) 

Consider 
0 0 0: ( )a a r , where 

0 ( )a r  is the elliptic alpha 

function and 
0

28
0 1 ru k   set also 

1
0

4
25nn r

u k  , which 

now are given from (16) and are in closed form radicals. 

Using the Main Theorem we are able to construct 

approximations not depending on numerical estimates of 

singular moduli 
rk , but from finitely exact radicals values. 

Let  
5

1: 2n n nx u u  , 
5

1: 2n n ny u u   

2 2

1: 5 2n n n na u u x   , 
2 2

1: 5 2n n n nb u u y   , : n
n

n

a

b
   

Finally  
1 1 8 2 2

1 1: 4 (1 )[5( ) 5 ( )]n n n n n n n na u u x y u  

        

1 1 8 2 24 (1 )[ 5 ( )]n n n n n n nb u u x y u       

Then  
1 8 8

1 0 1: 5 5 ( )n

n n n n n n nr u u    

         : (43) 

and 

051

00 16 5
n rn

n r e


 
                   : (44) 

for 
2

05 1nr  . 

Hence for every initial condition given to 
0 0r  , with 

0r
k  

and 
0 / 25rk  known, we lead to a closed form iteration formula 

approximating 1/ . Actually the thirteen iterations of the 

above algorithm give the first one billion digits of  . Note 

also that algorithms presented in [11],[13] are for a specific 

initial value and do not cover infinite values of 
0r . Here if we 

know only 
0r

k  and 
0 / 25rk  we can find all 

nu  and construct the 

iteration for 1/ . 

  

Our ideas can generalized also for the 10th degree modular 

equation of 
rk . The 10th degree modular equation of Rogers 

Ramanujan continued fraction is solvable in radicals and also 

can put in the form 
/100 ( )r rv v  (see [12]). By this way 

one can solve with initial conditions 
0r

k  and 
0 /100rk , the 

general 10th degree elliptic modular equation and evaluate 

100rk , if finds an analogue of Lemma 3.3. But it is not so 
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economical, since the modular equation of 10th degree can 

be splitten to that of 2nd and 5th degree.  
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