Life form Composition and Biological Spectrum of Ramnagar Wildlife Sanctuary, J&K, India

Sehrish Gazal1, Anil K. Raina2
1, 2University of Jammu, Department of Environmental Sciences, Babasaheb Ambedkar Road, Jammu- 180 006, India

Abstract: The present study has been carried out to understand the life form composition and Biological spectrum of Ramnagar Wildlife Sanctuary, Jammu and Kashmir. A total of 259 tracheophytes have been listed and grouped into various life-form classes. Therophytes (34.36%), Macrophanerophytes (23.16%), Nanophanerophytes (11.58%) and Chamaephytes (10.81%) are the major life-form classes present in the area. Hemicyryptophytes (8.88), Lianas (8.11%), Cryptophytes (2.31%) and Epiphytes (0.77%) were observed to have low occurrence. The biological spectrum of the area was prepared and compared to Raunkiaer’s Normal biological spectrum as well the spectra of the adjacent regions. Phytoclimate of the area was determined as Therophanerophytic, as per the Raunkiaer’s terminology, with the preponderance of therophytes and phanerophytes. The study reflects the impact of various biotic factors on overall vegetation structure and composition of the area.

Keywords: Biological spectrum, Life form, Raunkiaer, Phytoclimate, Ramnagar wildlife sanctuary.

1. Introduction

The vegetation may be classified according to growth-form [1]–[3] or life-form which refers to the sum total of adaptations to a specific climate manifesting a specific form and structure [4] and is reflected in the physiognomy or general appearance of the vegetation. Expression of the percentage distribution or relative proportion of different life-forms in the flora of the region is known as “the spectrum of life-forms” [5] or “biological spectrum”. Raunkiaer [3] defined life-forms as “the sum of the adaptation of a plant to climate” and classified the plant species into various life-forms based upon the principle of position and degree of protection of the buds during adverse conditions. This system for the description and classification of plant life forms is the most accepted from a number of different systems devised by many ecologists [6]–[8].

According to Raunkiaer’s system [3], plant species can be grouped into five main classes, arranged according to increased protection of the renewing buds: phanerophytes, chamaephytes, hemicyryptophytes, cryptophytes and therophytes. Raunkiaer [3] proposed the “biological spectrum” to express both the life-form distribution in a flora and the phytoclimate under which the prevailing life-forms evolve. The biological spectrum is the percent representation of the number of species belonging to each life-form in a given flora. Raunkiaer [3] constructed a “normal spectrum” which could act as a norm model against which different life form spectra could be compared. Raunkiaer’s normal spectrum indicates a phanerophytic community for the world and deviation from it determines the phytoclimate of the habitats. The occurrence of similar biological spectra in different regions indicates similar climatic conditions. Differences in the life-form distribution between the normal spectrum and a biological spectrum would point out which life-form characterizes the phytoclimate or the vegetation understudy [9].

Biological spectrum can be used to calculate numerical results quickly [10] to indicate the stratification and layering pattern of a community [11], to indicate the prevailing environment [12], its aridity or humidity [13] to monitor the impact of ambient stress factors on climate [4] and to determine the nature of bioclimate or phytoclimate. Biological spectra are useful in comparing geographically widely separated plant communities and are also regarded as indicators of biotic interaction, climate and habitat deterioration [14].

Life-form studies are important to find phytoclimate of the area as structure and rate of change of composition are sensitive indicators of whole environment. The biological system is thus useful as an index of the health status of a forest. When worked out at periodic intervals, biological spectrum may set the guidelines for eco-restoration and optimization of a community. In view of this, the present work was under taken in the Ramnagar Wildlife Sanctuary, located in lower Shiwalik range, to study the assemblage of different life-forms and to prepare the biological spectrum to infer the existing phytoclimate of the area.

2. Materials and Methods

The Wildlife Sanctuary is situated between 32°44’ to 32°47’ North latitude and 74°50’ to 74°53’ East longitude with altitude varying from 270 m to above 520 m asl. The total area of the Sanctuary is about 706 hectare with an undulating topography which is crisscrossed by a number of seasonal streams (locally called as khads). The Sanctuary is traversed by Jammu-Srinagar National highway which enters in south and leaves in north-east, dividing it into two unequal segments. A trail road also passes through the sanctuary and is being used by morning walkers. The area experiences great extremities of temperature with June recorded as hottest and January as coldest month with average maximum and minimum temperature of 45.3°C and 2.9°C, respectively. Average rainfall of area is 115 cm, of which 80% occurs during monsoon. The life-form classification and construction of the biological spectra of the area was carried out after detailed floristic investigation of the area during 2011 to 2013. Only seed plants and ferns (Angiosperms, Gymnosperms and Pteridophytes) were taken into account. For the purpose of identification, plants were photographed on the spot with due care taken to avoid any untoward loss or perturbation to the habitat. Various local and other floras viz. Flora of Jammu [15] and herbarium of department of Botany.
University of Jammu were used besides consulting taxonomic experts of the region. The form and nature of perennating buds of plant species were recorded and worked out according to the life-forms system of Raunkiaer [3]. The percentage distribution of these species in different life-forms was calculated for construction of biological spectrum of the area. The values, thus determined, were compared with the normal spectrum given by Raunkiaer [3]. The percentage life-form was calculated as follows:

\[
\% \text{ Lifeform} = \frac{\text{Number of species in any life form}}{\text{Total number of species of all life forms}} \times 100
\]

3. Results and Discussion

The forest of the Ramnagar Wildlife Sanctuary represents typical subtropical vegetation, dominated mainly by broad-leaved trees inter-spread with few scattered patches of shrubs. The forest has been classified as Northern dry-mixed deciduous forest (Type 5B/C2) as described by Champion and Seth [16]. *Acacia modesta* has been observed to be the most prominent tree species. Other dominant tree species include *Grewia optiva*, *Mallotus philippensis*, *Cassia fistula*, *Dalbergia sissoo*, *Flacourtia indica*, *Lannea coromendalica*, *Crataeva adansonii*, *Aegle marmelos*, *Phyllanthus emblica*, *Acacia catechu*, *Leucaena leucocephala* and *Mitragyna parviflora*. Justicea adhatoda and *Lantana camara* have been found to be the most conspicuous shrub species covering large area of ground in certain places. Other important shrub species include *Carissa opaca*, *Woodfordia fruticosa*, *Murraya koengii*, *Capparis sepiaria*, *Oxalis corniculata*, *Stellaria media*, *Dalbergia sissoo*, *Carissa opaca*, *Woodfordia fruticosa*, *Gymnosporia royleana*, *Murraya koengii*, *Capparis sepiaria*, *Fluggea virosa*, *Ricinus communis* and *Justicia adhatoda*. The herbaceous layer, structurally and numerically most prominent during monsoon season, is represented by *Anagalis arvensis*, *Argemone mexicana*, *Ziziphus parviflora*, *Sonchus asper*, *Euphorbia hirta*, *Martynia annua*, *Cleome viscosae*, *Medicago denticulate*, *Chenopodium album*, *Papalia lappacea*, *Cynodon dactylon*, *Gymnosporia royleana*, *Helicteres isora* and *Justicia adhatoda*. The forest of the Ramnagar Wildlife Sanctuary represents typical subtropical vegetation, dominated mainly by broad-leaved trees inter-spread with few scattered patches of shrubs. The forest has been classified as Northern dry-mixed deciduous forest (Type 5B/C2) as described by Champion and Seth [16]. The forest of the Ramnagar Wildlife Sanctuary represents typical subtropical vegetation, dominated mainly by broad-leaved trees inter-spread with few scattered patches of shrubs. The forest has been classified as Northern dry-mixed deciduous forest (Type 5B/C2) as described by Champion and Seth [16]. The forest of the Ramnagar Wildlife Sanctuary represents typical subtropical vegetation, dominated mainly by broad-leaved trees inter-spread with few scattered patches of shrubs. The forest has been classified as Northern dry-mixed deciduous forest (Type 5B/C2) as described by Champion and Seth [16].

A total of 259 tracheophytes (belonging to 72 families) collected from the study area have been classified into various life-forms as per the classification proposed by Raunkiaer [3]. Number of species and percentage of different life-form have been depicted in Table [1].

Table 1: Total number of species and percentage of different life form classes

<table>
<thead>
<tr>
<th>Life form classes</th>
<th>Abbreviation</th>
<th>Number</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macro-phanerophytes</td>
<td>Mp</td>
<td>60</td>
<td>23.16</td>
</tr>
<tr>
<td>Nano-phanerophytes</td>
<td>Np</td>
<td>30</td>
<td>11.58</td>
</tr>
<tr>
<td>Chamaephytes</td>
<td>Ch</td>
<td>28</td>
<td>10.81</td>
</tr>
<tr>
<td>Hemi-cryptophytes</td>
<td>H</td>
<td>23</td>
<td>8.88</td>
</tr>
<tr>
<td>Therophytes</td>
<td>Th</td>
<td>89</td>
<td>34.36</td>
</tr>
<tr>
<td>Cryptophytes</td>
<td>Cr</td>
<td>6</td>
<td>2.31</td>
</tr>
</tbody>
</table>

Perusal of the table revealed therophytes (89 spp., 34.36%) to be the most dominating life-form followed by Macrophanerophytes (60 spp., 23.16%), Nanophanerophytes (30 spp., 11.58%), Chamaephytes (28 spp., 10.81%), Hemicryptophytes (23 spp., 8.88%), Lianas (21 spp., 8.11%), Cryptophytes (6 spp., 2.31%) and Epiphytes (2 spp., 0.77%). The biological spectrum of the present study showed variation from the normal biological spectrum of Raunkiaer [3] (Fig. 1).

From the analysis of the relative proportion of various life-forms present in the study area, the phyto-climate of the study area has been classified as Therophylophanerophytic. The dominance of therophytes (89 spp., 34.36%) is the characteristic of tropics and often related to soil conditions and climate [17]. Moreover, the predominance of therophytes is also attributed to introduction of annual weeds and biotic influences [18] and indicates a disturbed environmental condition [19]. Biotic influences can be a major factor for increased therophytic percentage owing to the fact that the sanctuary is located in vicinity of Jammu city. Peak developmental activities and expanding urban sprawl has been a major cause of increased biotic interferences in the area. Since the Sanctuary is intersected by national highway the effect of biotic influences is further magnified.

Higher percentage of Macrophanerophytes (60 spp., 23.16%) reveals the predominance of trees as the area falls in Shivaliks which provides congenial edaphic and climatic conditions for growth of over-story [14]. The climate of the study area is warm in general and dry during summers and warm and moist during rainy season, thus confirming the preponderance of Therophytes (plants of warm and dry climate) and Phanerophytes (plants of warm and moist climate). The comparison of life forms of study area with the
Normal biological spectrum [3] and with adjoining areas like Jammu [14], Trikuta Hills [20], Kathua [21], Mahamaya [22] and Renuka wildlife sanctuary [17] having similar climatic conditions in North western Himalayas is represented in Table [2]. Perusal of the table reveals a similar type of phytoclimate in most of the areas except for Trikuta Hills where a Thero-chamaephytic phytoclimate has been reported which may be because of the varied amount of disturbances and latitudinal and longitudinal difference. Occurrence of similar biological spectrum in different regions indicates similar climatic conditions [23].

Table 2: Comparison of life forms of study area with different areas of North-west Himalayas

<table>
<thead>
<tr>
<th>Region</th>
<th>Mp</th>
<th>Np</th>
<th>Ch</th>
<th>H</th>
<th>Th</th>
<th>E</th>
<th>Cr</th>
<th>L</th>
<th>Phytoclimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBS</td>
<td>287</td>
<td>1470</td>
<td>1236</td>
<td>1577</td>
<td>3289</td>
<td>0.63</td>
<td>2.55</td>
<td>5.11</td>
<td>Thero-phanerophytic</td>
</tr>
<tr>
<td>Trikuta district</td>
<td>9.44</td>
<td>1.45</td>
<td>22.94</td>
<td>13.87</td>
<td>31.02</td>
<td>0.19</td>
<td>4.62</td>
<td>1.55</td>
<td>Thero-chamaephytic</td>
</tr>
<tr>
<td>Kathua district</td>
<td>16.63</td>
<td>12.79</td>
<td>12.36</td>
<td>15.77</td>
<td>32.89</td>
<td>0.63</td>
<td>2.55</td>
<td>5.11</td>
<td>Thero-phanerophytic</td>
</tr>
<tr>
<td>Mahamaya</td>
<td>19.5</td>
<td>10.99</td>
<td>13.82</td>
<td>7.44</td>
<td>38.29</td>
<td>0.70</td>
<td>1.06</td>
<td>7.08</td>
<td>Thero-phanerophytic</td>
</tr>
<tr>
<td>RenukaWLS</td>
<td>29.4</td>
<td>19.16</td>
<td>7.61</td>
<td>5.51</td>
<td>31.24</td>
<td>0.78</td>
<td>2.10</td>
<td>0.79</td>
<td>Thero-phanerophytic</td>
</tr>
<tr>
<td>Jammu</td>
<td>19.49</td>
<td>9.37</td>
<td>11.9</td>
<td>8.35</td>
<td>38.23</td>
<td>5.06</td>
<td>1.78</td>
<td>3.8</td>
<td>Thero-phanerophytic</td>
</tr>
<tr>
<td>Present study</td>
<td>23.16</td>
<td>11.58</td>
<td>10.81</td>
<td>8.88</td>
<td>34.36</td>
<td>0.77</td>
<td>2.31</td>
<td>8.11</td>
<td>Thero-phanerophytic</td>
</tr>
</tbody>
</table>

NBS= Normal Biological Spectrum, WLS= Wildlife Sanctuary, Mp= Macrophanerophyte, Np= Nanophanerophyte, Ch= Chamaephytes, Cr= Criptophyte, H= Hemicymophyte, Th= Therophyte, E= Epiphytes, L= Liananas.

4. Conclusion

Present study revealed the vegetation to be predominantly sub-tropical in nature having a higher percentage of therophytes followed by phanerophytes as compared to normal biological spectrum. On the basis of this study the phytoclimate of the area, as per Raunkiær’s terminology has been described as theroph-anerophytic. This indicates influence of anthropogenic activities in the area which favours the chances of growth of short lived annuals. The study is also significant because information related to life-forms gives an account of prevailing phytoclimatic conditions which can further be used to infer microclimatic conditions in an area. The study further gains significance as the life-forms suggest increased biotic interference in the wildlife sanctuary which in real terms is meant for protection and conservation of natural environment.

References