
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Implementation, Simulation and Synthesis of RSA

Cryptosystem

Rafeek Alas
1
, Dr. Kiran Bailey

2

1MTech Student, Department of Electronics, BMSCE, Bangalore, India

2Assistant Professor, Department of Electronics and Communication, BMSCE, Bangalore, Karnataka, India

Abstract: In this paper, we present a methodology to develop 64-bit RSA encryption engine on FPGA that can be used as a standard

device in the secured communication system. The RSA algorithm has three parts i.e. key generation, encryption and decryption. The

algorithm also requires random prime numbers for processing and generation of public and private key. We use right-to-left-binary

method for the exponent calculation. This reduces the number of cycles enhancing the performance of the system and reducing the

area usage of the FPGA. These blocks are coded in Verilog and are synthesized using Cadence RC Compiler tool and simulated in

ModelSim-Altera Student Edition.

Keywords: Cadence RC, FPGA, ModelSim-Altera, Private Key, Public Key, RSA, Synthesize.

1. Introduction

Means and amount of communicated information has

changed a lot since last two or three decades. Specially, the

amount of information communicated electronically has

grown and is growing exponentially fast. It is very much

important to develop new ways to guarantee security over the

communication channels. So, in order to deal with this large

amount of data, a high performance encryption system is

needed which processes the data and provides security to the

overall electronic information system.

There has been a lot of work going on in the field of

cryptography and in the recent years it has increased

exponentially. As the usage of communication system

increases so does the need for securing data over those

channels. Many algorithms are designed to meet these needs.

Cryptographic algorithms, being the core component of most

security systems, are usually based upon the fact that their

complexity is superior to present computing power.

According to the Moore’s Law computing power doubles

every 1.5 years [1], the complexity of cryptographic

computations needs to grow at least at the same rate to

provide a consistent level of security. But this does also mean

that the actual workload of data processing, meaning

encryption and decryption, increases. As a consequence, the

demanded amount of computing power of a secured

information system increases at the same speed as

cryptographic complexity and integration level of its

hardware components [2]. One of the algorithms which the

above mentioned problems is RSA which is the most widely

used public key algorithm. A vast numbers and wide varieties

of works have been done on this particular field of hardware

implementation of RSA encryption algorithm. Today, RSA is

used in IP data security (IPSEC/IKE), transport data security

(TLS/SSL), email security (PGP), terminal connection

security (SSH), conferencing service security (SILC) and so

on.

The security of RSA revolves around the difficulty of

factoring a number into two prime factors. Since RSA

encryption and finding prime numbers are both

computationally intensive tasks, we thought it would be

interesting to implement them in hardware on the FPGA to

see how these algorithms can be implemented in an

application specific integrated circuit. In addition, many

companies such as Oracle and Intel have added on-chip

hardware support for encryption such as AES to their

products. This paper may help us understand the

complexities involved in such implementations.

1.1 Cryptography

Cryptography, thus, literally means the art of secret writing.

The art of hiding information therefore is not as modern as

one might guess but is known to be some thousand years old.

Cryptography provides, amongst others, means of hiding and

recovering information called encryption schemes. In general

an encryption scheme consists of a set of encryption and

decryption operations each associated with a key, which is

supposed to be kept secret. There are two main categories of

encryption: symmetric or public key (asymmetric) encryption

mentioned as follows:

1.1.1 Symmetric Encryption

An encryption scheme is related to symmetric cryptography,

when it is computationally easy to discover the second key,

knowing one of them. In most practical cases the two keys

will be identical, which is illustrated by the word symmetric,

the shared key is referred to as secret key [3]. A disadvantage

is that all parties involved in the communication process have

to share a common secret, the secret key. This implicates

more difficulties, than might be obvious at first sight. “A

common image to explain the idea of symmetric encryption is

a safe. All participating parties own an identic copy of the

key to the safe, so every party can open the safe to either put

something inside (encryption), or to get something out

(decryption).”[2]

Paper ID: SUB153266 1350

file:///D:\IJSR%20Website\www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

1.1.2 Public Key (Asymmetric) Encryption

An encryption scheme is said to be public key encryption,

when it is impossible to compute the second key, knowing

one of them. In this context the encryption operation, using

the encryption key, can be regarded as a trapdoor one way

function, with the decryption key being the trapdoor that

allows easy message recovery. Message recovery without

knowledge of the decryption key is computationally

infeasible [3].

A major advantage of a scheme belonging to this category is

the fact, that one cannot compute the decryption key knowing

only the encryption key. This allows distribution of a party’s

encryption key over insecure channels, which simplifies the

process of key distribution. Therefore the encryption key is

referred to as public key while the decryption key is called

private key.

One of the disadvantages of public key encryption is its bad

performance in terms of throughput. In order to keep the

decryption key secure, even though the encryption key is

available in public, the encryption scheme needs to be more

complex than a symmetric one. This denotes that the

operations being performed become more complex and time

consuming. “To get an idea of Public Key Encryption, one

can imagine a simple mailbox. Anyone can put a letter into

the mailbox (public encryption key), but only the owner of

the mailbox’s key can get the letters out of it (private

decryption key).”[2]

2. RSA Public Key Encryption

The problems with private key encryption would be resolved

if the decoding mechanism could not be (easily) obtained

from the encoding mechanism. But how do you get

something like that?. The answer is to make, breaking the

codes depend on being able to solve a hard problem, like the

factorization of a large number.

The RSA cryptosystem is by far the most used public key

encryption system. Its name is an abbreviation of the names

of R.Rivest, A. Shamir and L. Adleman, who published it in

1978 [5].

This is the most commonly used public-key cryptographic

algorithm, and it is considered secure when sufficiently long

keys are used. The security of RSA depends on the difficulty

of factoring large integers [6].

This section provides a short introduction to the underlying

mathematical principles, a detailed look at RSA encryption

and decryption operations.

2.1 Mathematics behind RSA

2.1.1 Prime Numbers

An integer p larger than 1 is called a prime number if its only

divisors are 1 and p, e.g. p = 2, 3, 5, 7, 11, 13... . There exists

an infinite set of prime numbers and there are several well-

known algorithms of generating prime numbers. Two

integers a and b are called relatively prime, if their greatest

common divisor is 1, e.g. 3 and 4 are relatively prime. Prime

numbers play an important role in public key encryption as

will be seen later on.

2.1.2 Modular Arithmetic’s

Although most people would say they do not know modular

arithmetic or modular reduction they use it in everyday life

[2]. Modular reduction means that the set of integer numbers

available is limited, the limit is set by the so called modulus,

denoted by n. Modular arithmetic with the modulus being 5

means, that the set of available numbers consists of { 0, 1, 2,

3, 4 }. Any number bigger than or equal to the modulus has

to be reduced by the modulus by subtraction until it equals a

number within the set of available numbers; this operation is

called modular reduction. “Modular addition is defined by an

ordinary addition followed by a modular reduction operation

in order to keep the result within the set of available

numbers. Let n = 5, a = 3 and b = 2 then a + b ≡ 0 (mod n)

since a + b = 5 and 5 ≡ 0 (mod n). People often use modular

reduction when talking about time as 21:00 is referred to as

9:00, which is nothing else than 21 ≡ 9 (mod 12) ”[2].

Modular multiplication, exponentiation and inversion are the

most used and important operations. Modular multiplication

works exactly the same way as addition: it is an ordinary

multiplication followed by a modular reduction operation. a

× b ≡ 1 (mod 5) since a ×b = 6 and 6 ≡ 1 (mod 5). Modular

exponentiation works slightly different; it can be computed as

a series of multiplications followed by a modular reduction

operation. a
b
 (mod n) = a ×a ×a …..(mod n). “In practice the

modular reduction operation will be performed after each

multiplication to keep the intermediate results as small as

possible in order to save memory and to avoid unnecessary

big inputs to the next multiplication” [2]. a
b
 (mod n) ≡ (((a ×

a) (mod n)) × a (mod n) ….). The multiplicative inverse of a

(mod n) is a number within the set of available integers

satisfying a ×b ≡ 1 (mod n). If b exists, it is unique and

denoted by b = a
-1

 (mod n). b exists, if a and n are relatively

prime. In the example, a is invertible and the multiplicative

inverse of a modulo n is b, as 3 × 2 = 6 ≡ 1 (mod 5). The

well-known Extended Euclidean Algorithm can be used to

compute the greatest common divisor of a and n. If it is 1, the

algorithm computes the multiplicative inverse of a at the

same time.

2.2 RSA Encryption/Decryption Algorithm

In order to set up an RSA encryption scheme, several

numbers have to be either randomly chosen or computed.

Every party that wants to participate in RSA secured

communication has to set up an own scheme based on

following:

Following are the steps involved in the RSA algorithm:

2.2.1 Key generation

Key generation is the most important aspect of RSA

Algorithm.

The steps are as follows:

1. “Select two random prime numbers p and q

2. Calculate n = p x q

3. Calculate ø(n) = (p – 1) x (q – 1)

Paper ID: SUB153266 1351

file:///D:\IJSR%20Website\www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

4. Select integer e such that gcd (ø(n),e) = 1;1<e<ø(n); where

e & ø(n) are relatively prime

5. Calculate d = e-1 mod ø(n).

2.2.2 Encryption

Following is the RSA public key encryption - key generation

algorithm. “In order to encrypt a message m for Alice, Bob”

should follow these steps [2].

 Obtain Alice’s authentic public key (n,e).

 Represent the message as an integer m in the interval [0, n-

1].

 Compute c = m
e
 (mod n).

 Send the cipher-text c to A.

2.2.3 Decryption

If Alice wants to read the received message, she should

decrypt the cipher- text according to these steps [2].Use the

private key d to recover m = c
d
 (mod n).

2.3 Example

 I pick p = 17,q = 11. n = 17 * 11 = 187.

 I pick e = 3; d = 107, (ed = 321 = 2 ×16 ×10 + 1).

 I post 187; 3.

 You encode the letter J as 10, and put M = 10; then C ≡M
e

≡10
3
 ≡ 1000 ≡ 65 (mod 187) and so you send me 65.

 I compute C
d
 (mod n), and find C

d
 ≡ 65107 ≡ 10 (mod 187).

3. Modular Exponentiation Operation

Modular Exponentiation operation is simplified using square

and multiply algorithm. It is done by using right-to-left-

binary method. The purpose of using the binary method is to

calculate M
e
 by using the binary expression of exponent e. In

binary method the exponentiation operation is broken in to a

series of squaring and multiplication. This method is also

very useful for speeding up the exponentiation calculation.

The LSB binary exponentiation algorithm (also called as

right-to left binary exponentiation algorithm), starting from

the least significant bit position it calculates the exponent e

and proceeding towards left, which can be write as follows

[8].

Input: M, e, n

Output: C = M
e
 mod n

Let e contain k bits

If ek-1=1 then C=M else C=1

For i=0 to k-1

C=C×C

If ei=1 then C=C×M

This algorithm works on the principle of scanning bits from

the right For every iteration, i.e., for every exponent bit, the

current result is squared, If and only if the currently scanned

exponent bit has the value 1, a multiplication of the current

result by M is executed following the squaring .

4. RSA Algorithm Implementation

RSA algorithm is divided into blocks and each block is then

implemented.

The Blocks are

1. Prime Number Generation Block(module).

2. Key Generation (Public key and Private key)

3.Encryption

4.Decryption

4.1. Prime Number Generation(Algorithm)

 Output 1; //first prime number

 Output2;//Second Prime number

 For i=3 to MAX, in steps of 2,do //i = 3,5,7 etc

 found= 0;

 for j=2 to i-2 do

 if ((i%j) ==0) then //if i is divisible by j

 found = 1;

 break; //break out of enclosing for loop

end if;

end for;

if(!found) then

output I; //output i as next prime number

 end if;

end for;

4.2.1 Key Generation (GCD and Extended Euclidian)

For the generation of keys, two prime numbers are extracted

from the Prime FIFO. Applying respective operations on

these two primes gives n and Φ(n). After Φ(n), a number e is

selected which obeys the condition GCD (Φ(n),e) = 1, means

that e is relatively prime to Φ(n). This will prove that modulo

inverse of e exists. e × d mod(Φ(n)) = 1

Extended Euclidian algorithm is used and implemented for

this purpose. When the GCD is 1, the module returns the

values of e and the modular multiplicative inverse d.

Otherwise, e gets an increment of 2 and GCD is calculated

again, this is repeated until the value of e satisfies the

condition and a positive inverse is found. e will be used as

the encryption key and d as the decryption key. The Block

diagram in Fig 3.2 and Pseudo code for Extended Euclidian

algorithm is in Fig 3.3

Figure 3.2: Key Generation (e – public key. d –private key)

4.2.2. Pseudo Code of Extended Euclidian

Extended_ecuclidian_main(p,q)

 e :=1

(gcd,d) := (0,0)

While (gcd :=1 || d < 0)

Begin

 e := e + 2

 (gcd,d) :=Extended_euclidian_loop((p-1)(q-1),e)

 end

Paper ID: SUB153266 1352

file:///D:\IJSR%20Website\www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 return (e,d)

 extended_euclidian_loop(a,b)

 (y,y_prev) := (1,0)

While (b!= 0)

 Begin

(y,y_prev) := (y_prev – a/b*y,y)

(a,b) := (b,a mod b)

end

return (a,y_prev) (gcd(p-1)(q-1),e) is a , inverse is y_prev

4.3 Encryption/Decryption

Encryption is the process of converting plain text in such a

way that eavesdroppers or hackers cannot read it, it is called

as cipher text. Decryption is the inverse process by which

cipher text is converted back into the form that is readable

namely plain text. After generation of the keys, RSA

encryption and decryption is done using the mathematical

operation C =M
e
 (mod n) and M = C

d
 (mod n) respectively.

Hence encryption/decryption is just a modular exponentiation

operation. It involves few modular operations like modular

addition, modular subtraction and modular multiplication.

Figure 3.4: Encryption and Decryption

5. Hardware Implementation

For hardware design and implementation, the RSA

Cryptosystem is divided into 4 modules.

i. Initial module

ii. Modular exponentiation

iii. Core algorithm

iv. Top module

5.1 Initial Module

This module consists of a Prime number generation module

for generating prime numbers for the algorithm, Then these

numbers are used for public key and private key generation.

The exponentiation part of this algorithm is done by using the

right to left binary algorithm implemented for

encryption/decryption.

5.2 Modular Exponentiation

The most important and time consuming part of RSA

algorithm is calculating the modular exponentiation of a

number. For this purpose we implement the Square and

Multiply algorithm by using the right-to-left-binary approach.

It speeds up the exponent calculation and limits the number

of cycles needed. The exponent function is also required in

miller and Rabin tester so this module can be called there for

processing and calculating, saving both space and time.

5.3 Core Algorithm

Here we implement the basic functions and steps of RSA

algorithm. This is further divided into two steps:

1. Key generation

2. Cryptography

When a new used comes to the system this module takes two

numbers as input. n and Φ(n) are calculated by inserting them

into the multiplier, Φ(n) is then used to find the encryption

and decryption keys. For this purpose the Euclidean

Algorithm is used which calculates the GCD of Φ(n) and an

odd number. If the GCD is found to be 1 this proves that the

modular inverse of the odd number exists and the number is

co-prime. This number is then saved in a register and will be

used as the encryption key. The Extended Euclidean

Algorithm is then used to find the decryption key which is the

modular inverse of the encryption key. Hence the key

generation process is completed for this user and he is

allotted with a public and private key that user will use to

encrypt and decrypt the data. Once the keys are created they

can be used for encrypting and decrypting the message. The

Modular Exponentiation is used for this purpose.

5.4 Top Module

The top module controls the functions of the other modules

and interconnects them so as the RSA Algorithms flow is

maintained. This module implements a controller with

multiple checks so as to get the desired results.

Synthesis of RSA Cryptosystem

6.1 Synthesis is carried out in Cadence RC compiler

1. Diagram Unmapped Prime Number Generation

2. Diagram for Mapped Synthesis Prime Number Generation.

Paper ID: SUB153266 1353

file:///D:\IJSR%20Website\www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

6. Simulation Results

Prime number generation module Extended Euclidean and

modular exponentiation have been successfully written and

tested on Xilinx ISE 13.2 and Modelsim. The simulation

shows the desired results of these algorithms. The following

section shows the simulation results of these algorithms.

1. Prime Number generation till 255 in figure prime numbers

are shown form 127 to 251.

2. Prime Number 3 is assigned randomly

3. Prime number 11 is assigned randomly

4. Public Computation e = 3

5. Private Key computation d =7

6. RSA Encryption: - Message_text = 7 cipher_text = 13

Paper ID: SUB153266 1354

file:///D:\IJSR%20Website\www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

7.RSA Decryption :- for cipher_text = 13 Message_text = 7

7. Conclusion

Here we implemented a 64-bit RSA circuit in Verilog. It is a

full-featured and efficient RSA circuit this includes Prime

generation, key generation, data encryption and data

decryption. We have implemented random prime number

generator using Prime number generation module, GCD and

modular inverse algorithm using extended Euclidean

algorithm and Encryption and Decryption using Modular

multiplication and modular exponentiation algorithms (R-L

binary algorithms). Each sub-component and top module of

RSA was simulated in Xilinx, Modelsim and proved

functionally correct. This can easily scale up to large bits

such as 512 or 1024 or even longer.

8. Acknowledgment

This research is supported by the BMS College of

Engineering, Bangalore. The authors wish to thank BMS

college of Engineering for supporting this work by

encouraging and supplying the necessary tools.

References

[1] Moore, Gordon E. (1965): Cramming more components

onto integrated circuits Electronics, Volume 38, Number

8

[2] Benedikt Gierlichs: Hardware-Software Co-Design: A

Case Study on an accelerated Implementation of RSA

[3] Menezes, van Oorshot, Vanstone (1997) Handbook of

applied cryptography, CRC Press

[4] M.K. Hani, T.S. Lin, N. Shaikh-Husin: FPGA

Implementation of RSA Public-Key Cryptographic

Coprocessor Proceedings of TENCON, vol. 3, pp. 6-11,

Kuala Lumpur, Malaysia, 2000

[5] R.L. Rivest, A. Shamir, and L. Adleman (1978): A

Method for Obtaining Digital Signatures and Public-Key

Cryptosystems Communications of the ACM 21,2, pp.

120-126

[6] Ankit Anand, Pushkar Praveen: Implementation of RSA

Algorithm on FPGA Centre for Development of

Advanced Computing, (CDAC) Noida, India

Author Profile

Rafeek Alas received B.E degree from S D M College

of Engineering and Technology, Dharwad, Karnataka,

India in 2011. he is currently pursuing her MTech

degree in the field of Electronics, department of

Electronics and Communication in BMS College of

Engineering, Bangalore, India. Her fields of interest in

research are VLSI design and VLSI circuits..

Dr. Kiran Bailey received her B.E degree from

Dayananda College of Engineering of Bangalore

University, Bangalore in the year 1997. She got her

M.Tech degree from B.M.S. College of Engineering of

Visvesvaraya Technological University, Bangalore in 2001. She

joined BMSCE in 1998 and has since been teaching Electronics

related subjects. Her areas of interest are solid state devices, VLSI

design, Low power VLSI circuits. Presently she is an Associate

professor in the dept. of E&C, BMSCE, Bangalore.

Paper ID: SUB153266 1355

file:///D:\IJSR%20Website\www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

