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Abstract: In this paper, we present a methodology to develop 64-bit RSA encryption engine on FPGA that can be used as a standard 

device in the secured communication system. The RSA algorithm has three parts i.e. key generation, encryption and decryption. The 

algorithm also requires random prime numbers for processing and generation of public and private key. We use right-to-left-binary 

method for the exponent calculation. This reduces the number of cycles enhancing the performance of the system and reducing the 

area usage of the FPGA. These blocks are coded in Verilog and are synthesized using Cadence RC Compiler tool and simulated in 

ModelSim-Altera Student Edition. 
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1. Introduction 
 

Means and amount of communicated information has 

changed a lot since last two or three decades. Specially, the 

amount of information communicated electronically has 

grown and is growing exponentially fast. It is very much 

important to develop new ways to guarantee security over the 

communication channels. So, in order to deal with this large 

amount of data, a high performance encryption system is 

needed which processes the data and provides security to the 

overall electronic information system. 

 

There has been a lot of work going on in the field of 

cryptography and in the recent years it has increased 

exponentially. As the usage of communication system 

increases so does the need for securing data over those 

channels. Many algorithms are designed to meet these needs. 

 

Cryptographic algorithms, being the core component of most 

security systems, are usually based upon the fact that their 

complexity is superior to present computing power. 

According to the Moore’s Law computing power doubles 

every 1.5 years [1], the complexity of cryptographic 

computations needs to grow at least at the same rate to 

provide a consistent level of security. But this does also mean 

that the actual workload of data processing, meaning 

encryption and decryption, increases. As a consequence, the 

demanded amount of computing power of a secured 

information system increases at the same speed as 

cryptographic complexity and integration level of its 

hardware components [2]. One of the algorithms which the 

above mentioned problems is RSA which is the most widely 

used public key algorithm. A vast numbers and wide varieties 

of works have been done on this particular field of hardware 

implementation of RSA encryption algorithm. Today, RSA is 

used in IP data security (IPSEC/IKE), transport data security 

(TLS/SSL), email security (PGP), terminal connection 

security (SSH), conferencing service security (SILC) and so 

on.  

 

The security of RSA revolves around the difficulty of 

factoring a number into two prime factors. Since RSA 

encryption and finding prime numbers are both 

computationally intensive tasks, we thought it would be 

interesting to implement them in hardware on the FPGA to 

see how these algorithms can be implemented in an 

application specific integrated circuit. In addition, many 

companies such as Oracle and Intel have added on-chip 

hardware support for encryption such as AES to their 

products. This paper may help us understand the 

complexities involved in such implementations. 

 

1.1 Cryptography 

 

Cryptography, thus, literally means the art of secret writing. 

The art of hiding information therefore is not as modern as 

one might guess but is known to be some thousand years old. 

Cryptography provides, amongst others, means of hiding and 

recovering information called encryption schemes. In general 

an encryption scheme consists of a set of encryption and 

decryption operations each associated with a key, which is 

supposed to be kept secret. There are two main categories of 

encryption: symmetric or public key (asymmetric) encryption 

mentioned as follows: 

 

1.1.1 Symmetric Encryption 

An encryption scheme is related to symmetric cryptography, 

when it is computationally easy to discover the second key, 

knowing one of them. In most practical cases the two keys 

will be identical, which is illustrated by the word symmetric, 

the shared key is referred to as secret key [3]. A disadvantage 

is that all parties involved in the communication process have 

to share a common secret, the secret key. This implicates 

more difficulties, than might be obvious at first sight. “A 

common image to explain the idea of symmetric encryption is 

a safe. All participating parties own an identic copy of the 

key to the safe, so every party can open the safe to either put 

something inside (encryption), or to get something out 

(decryption).”[2] 
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1.1.2 Public Key (Asymmetric) Encryption 

An encryption scheme is said to be public key encryption, 

when it is impossible to compute the second key, knowing 

one of them. In this context the encryption operation, using 

the encryption key, can be regarded as a trapdoor one way 

function, with the decryption key being the trapdoor that 

allows easy message recovery. Message recovery without 

knowledge of the decryption key is computationally 

infeasible [3]. 

 

A major advantage of a scheme belonging to this category is 

the fact, that one cannot compute the decryption key knowing 

only the encryption key. This allows distribution of a party’s 

encryption key over insecure channels, which simplifies the 

process of key distribution. Therefore the encryption key is 

referred to as public key while the decryption key is called 

private key. 

 

One of the disadvantages of public key encryption is its bad 

performance in terms of throughput. In order to keep the 

decryption key secure, even though the encryption key is 

available in public, the encryption scheme needs to be more 

complex than a symmetric one. This denotes that the 

operations being performed become more complex and time 

consuming. “To get an idea of Public Key Encryption, one 

can imagine a simple mailbox. Anyone can put a letter into 

the mailbox (public encryption key), but only the owner of 

the mailbox’s key can get the letters out of it (private 

decryption key).”[2] 

 

2. RSA Public Key Encryption 
 

The problems with private key encryption would be resolved 

if the decoding mechanism could not be (easily) obtained 

from the encoding mechanism. But how do you get 

something like that?. The answer is to make, breaking the 

codes depend on being able to solve a hard problem, like the 

factorization of a large number. 

 

The RSA cryptosystem is by far the most used public key 

encryption system. Its name is an abbreviation of the names 

of R.Rivest, A. Shamir and L. Adleman, who published it in 

1978 [5]. 

 

This is the most commonly used public-key cryptographic 

algorithm, and it is considered secure when sufficiently long 

keys are used. The security of RSA depends on the difficulty 

of factoring large integers [6]. 

 

This section provides a short introduction to the underlying 

mathematical principles, a detailed look at RSA encryption 

and decryption operations. 

 

2.1 Mathematics behind RSA 

 

2.1.1 Prime Numbers 

An integer p larger than 1 is called a prime number if its only 

divisors are 1 and p, e.g. p = 2, 3, 5, 7, 11, 13... . There exists 

an infinite set of prime numbers and there are several well-

known algorithms of generating prime numbers. Two 

integers a and b are called relatively prime, if their greatest 

common divisor is 1, e.g. 3 and 4 are relatively prime. Prime 

numbers play an important role in public key encryption as 

will be seen later on. 

 

2.1.2 Modular Arithmetic’s 

Although most people would say they do not know modular 

arithmetic or modular reduction they use it in everyday life 

[2]. Modular reduction means that the set of integer numbers 

available is limited, the limit is set by the so called modulus, 

denoted by n. Modular arithmetic with the modulus being 5 

means, that the set of available numbers consists of { 0, 1, 2, 

3, 4 }. Any number bigger than or equal to the modulus has 

to be reduced by the modulus by subtraction until it equals a 

number within the set of available numbers; this operation is 

called modular reduction. “Modular addition is defined by an 

ordinary addition followed by a modular reduction operation 

in order to keep the result within the set of available 

numbers. Let n = 5, a = 3 and b = 2 then a + b ≡ 0 (mod n) 

since a + b = 5 and 5 ≡ 0 (mod n). People often use modular 

reduction when talking about time as 21:00 is referred to as 

9:00, which is nothing else than 21 ≡ 9 (mod 12) ”[2]. 

 

Modular multiplication, exponentiation and inversion are the 

most used and important operations. Modular multiplication 

works exactly the same way as addition: it is an ordinary 

multiplication followed by a modular reduction operation. a 

× b ≡ 1 (mod 5) since a ×b = 6 and 6 ≡ 1 (mod 5). Modular 

exponentiation works slightly different; it can be computed as 

a series of multiplications followed by a modular reduction 

operation. a
b
 (mod n) = a ×a ×a …..(mod n). “In practice the 

modular reduction operation will be performed after each 

multiplication to keep the intermediate results as small as 

possible in order to save memory and to avoid unnecessary 

big inputs to the next multiplication” [2]. a
b
 (mod n) ≡ (((a × 

a) (mod n) ) × a (mod n) ….). The multiplicative inverse of a 

(mod n) is a number within the set of available integers 

satisfying a ×b ≡ 1 (mod n). If b exists, it is unique and 

denoted by b = a
-1

 (mod n). b exists, if a and n are relatively 

prime. In the example, a is invertible and the multiplicative 

inverse of a modulo n is b, as 3 × 2 = 6 ≡ 1 (mod 5). The 

well-known Extended Euclidean Algorithm can be used to 

compute the greatest common divisor of a and n. If it is 1, the 

algorithm computes the multiplicative inverse of a at the 

same time. 

 

2.2 RSA Encryption/Decryption Algorithm 

 

In order to set up an RSA encryption scheme, several 

numbers have to be either randomly chosen or computed. 

Every party that wants to participate in RSA secured 

communication has to set up an own scheme based on 

following: 

 

Following are the steps involved in the RSA algorithm: 

 

2.2.1 Key generation 

Key generation is the most important aspect of RSA 

Algorithm. 

The steps are as follows: 

1. “Select two random prime numbers p and q 

2. Calculate n = p x q 

3. Calculate ø(n) = (p – 1) x (q – 1) 
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4. Select integer e such that gcd (ø(n),e) = 1;1<e<ø(n); where 

e & ø(n) are relatively prime 

5. Calculate d = e-1 mod ø(n). 

 

2.2.2 Encryption 

Following is the RSA public key encryption - key generation 

algorithm. “In order to encrypt a message m for Alice, Bob” 

should follow these steps [2]. 

 Obtain Alice’s authentic public key (n,e). 

 Represent the message as an integer m in the interval [0, n- 

1]. 

  Compute c = m
e
 (mod n).  

 Send the cipher-text c to A. 

 

2.2.3 Decryption 

If Alice wants to read the received message, she should 

decrypt the cipher- text according to these steps [2].Use the 

private key d to recover m = c
d
 (mod n).  

 

2.3 Example 

 I pick p = 17,q = 11. n = 17 * 11 = 187.  

 I pick e = 3; d = 107, (ed = 321 = 2 ×16 ×10 + 1). 

 I post 187; 3. 

 You encode the letter J as 10, and put M = 10; then C ≡M
e
 

≡10
3
 ≡ 1000 ≡ 65 (mod 187) and so you send me 65. 

  I compute C
d
 (mod n), and find C

d
 ≡ 65107 ≡ 10 (mod 187). 

 

3. Modular Exponentiation Operation 
 

Modular Exponentiation operation is simplified using square 

and multiply algorithm. It is done by using right-to-left-

binary method. The purpose of using the binary method is to 

calculate M
e
 by using the binary expression of exponent e. In 

binary method the exponentiation operation is broken in to a 

series of squaring and multiplication. This method is also 

very useful for speeding up the exponentiation calculation. 

The LSB binary exponentiation algorithm (also called as 

right-to left binary exponentiation algorithm), starting from 

the least significant bit position it calculates the exponent e 

and proceeding towards left, which can be write as follows 

[8]. 

Input: M, e, n 

Output: C = M
e
 mod n 

Let e contain k bits 

If ek-1=1 then C=M else C=1 

For i=0 to k-1 

C=C×C 

If ei=1 then C=C×M 

 

This algorithm works on the principle of scanning bits from 

the right For every iteration, i.e., for every exponent bit, the 

current result is squared, If and only if the currently scanned 

exponent bit has the value 1, a multiplication of the current 

result by M is executed following the squaring . 

 

4. RSA Algorithm Implementation 
 

RSA algorithm is divided into blocks and each block is then 

implemented. 

The Blocks are  

1. Prime Number Generation Block(module). 

2. Key Generation (Public key and Private key) 

3.Encryption 

4.Decryption 

 

4.1. Prime Number Generation(Algorithm) 

 Output 1; //first prime number 

 Output2;//Second Prime number 

 For i=3 to MAX, in steps of 2,do //i = 3,5,7 etc 

 found= 0; 

 for j=2 to i-2 do 

 if ((i%j) ==0) then //if i is divisible by j 

 found = 1; 

 break; //break out of enclosing for loop 

end if; 

end for; 

if(!found) then 

output I; //output i as next prime number 

 end if; 

end for; 

 

4.2.1 Key Generation (GCD and Extended Euclidian) 

For the generation of keys, two prime numbers are extracted 

from the Prime FIFO. Applying respective operations on 

these two primes gives n and Φ(n). After Φ(n), a number e is 

selected which obeys the condition GCD (Φ(n),e) = 1, means 

that e is relatively prime to Φ(n). This will prove that modulo 

inverse of e exists. e × d mod( Φ(n) ) = 1 

 

Extended Euclidian algorithm is used and implemented for 

this purpose. When the GCD is 1, the module returns the 

values of e and the modular multiplicative inverse d. 

Otherwise, e gets an increment of 2 and GCD is calculated 

again, this is repeated until the value of e satisfies the 

condition and a positive inverse is found. e will be used as 

the encryption key and d as the decryption key. The Block 

diagram in Fig 3.2 and Pseudo code for Extended Euclidian 

algorithm is in Fig 3.3  

 
Figure 3.2: Key Generation (e – public key. d –private key) 

 

4.2.2. Pseudo Code of Extended Euclidian 

Extended_ecuclidian_main(p,q) 

 e :=1 

(gcd,d) := (0,0) 

While (gcd :=1 || d < 0) 

Begin 

 e := e + 2 

 (gcd,d) :=Extended_euclidian_loop((p-1)(q-1),e) 

 end 
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 return (e,d) 

 extended_euclidian_loop(a,b) 

 (y,y_prev) := (1,0) 

While (b!= 0) 

 Begin 

(y,y_prev) := (y_prev – a/b*y,y) 

(a,b) := (b,a mod b) 

end 

return (a,y_prev) (gcd(p-1)(q-1),e) is a , inverse is y_prev  

 

4.3 Encryption/Decryption 

 

Encryption is the process of converting plain text in such a 

way that eavesdroppers or hackers cannot read it, it is called 

as cipher text. Decryption is the inverse process by which 

cipher text is converted back into the form that is readable 

namely plain text. After generation of the keys, RSA 

encryption and decryption is done using the mathematical 

operation C =M
e
 (mod n) and M = C

d
 (mod n) respectively. 

Hence encryption/decryption is just a modular exponentiation 

operation. It involves few modular operations like modular 

addition, modular subtraction and modular multiplication. 

 
Figure 3.4: Encryption and Decryption 

 

5. Hardware Implementation 
 

For hardware design and implementation, the RSA 

Cryptosystem is divided into 4 modules. 

i. Initial module 

ii. Modular exponentiation 

iii. Core algorithm 

iv. Top module 

 

5.1 Initial Module 

 

This module consists of a Prime number generation module 

for generating prime numbers for the algorithm, Then these 

numbers are used for public key and private key generation. 

The exponentiation part of this algorithm is done by using the 

right to left binary algorithm implemented for 

encryption/decryption.  

 

5.2 Modular Exponentiation 

 

The most important and time consuming part of RSA 

algorithm is calculating the modular exponentiation of a 

number. For this purpose we implement the Square and 

Multiply algorithm by using the right-to-left-binary approach. 

It speeds up the exponent calculation and limits the number 

of cycles needed. The exponent function is also required in 

miller and Rabin tester so this module can be called there for 

processing and calculating, saving both space and time. 

 

5.3 Core Algorithm 

 

Here we implement the basic functions and steps of RSA 

algorithm. This is further divided into two steps: 

1. Key generation 

2. Cryptography 

 

When a new used comes to the system this module takes two 

numbers as input. n and Φ(n) are calculated by inserting them 

into the multiplier, Φ(n) is then used to find the encryption 

and decryption keys. For this purpose the Euclidean 

Algorithm is used which calculates the GCD of Φ(n) and an 

odd number. If the GCD is found to be 1 this proves that the 

modular inverse of the odd number exists and the number is 

co-prime. This number is then saved in a register and will be 

used as the encryption key. The Extended Euclidean 

Algorithm is then used to find the decryption key which is the 

modular inverse of the encryption key. Hence the key 

generation process is completed for this user and he is 

allotted with a public and private key that user will use to 

encrypt and decrypt the data. Once the keys are created they 

can be used for encrypting and decrypting the message. The 

Modular Exponentiation is used for this purpose.  

 

5.4 Top Module 

 

The top module controls the functions of the other modules 

and interconnects them so as the RSA Algorithms flow is 

maintained. This module implements a controller with 

multiple checks so as to get the desired results. 

Synthesis of RSA Cryptosystem 
 

6.1 Synthesis is carried out in Cadence RC compiler 

 

1. Diagram Unmapped Prime Number Generation  

 
 

2. Diagram for Mapped Synthesis Prime Number Generation.  
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6. Simulation Results 
 

Prime number generation module Extended Euclidean and 

modular exponentiation have been successfully written and 

tested on Xilinx ISE 13.2 and Modelsim. The simulation 

shows the desired results of these algorithms. The following 

section shows the simulation results of these algorithms. 

 

1. Prime Number generation till 255 in figure prime numbers 

are shown form 127 to 251. 

 
2. Prime Number 3 is assigned randomly 

 
3. Prime number 11 is assigned randomly 

 
4. Public Computation e = 3 

 
 

5. Private Key computation d =7 

 
 

6. RSA Encryption: - Message_text = 7 cipher_text = 13 
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7.RSA Decryption :- for cipher_text = 13 Message_text = 7 

 
 

7. Conclusion 
 

Here we implemented a 64-bit RSA circuit in Verilog. It is a 

full-featured and efficient RSA circuit this includes Prime 

generation, key generation, data encryption and data 

decryption. We have implemented random prime number 

generator using Prime number generation module, GCD and 

modular inverse algorithm using extended Euclidean 

algorithm and Encryption and Decryption using Modular 

multiplication and modular exponentiation algorithms (R-L 

binary algorithms). Each sub-component and top module of 

RSA was simulated in Xilinx, Modelsim and proved 

functionally correct. This can easily scale up to large bits 

such as 512 or 1024 or even longer. 
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