
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Deployment of Virtual Resources Using Template

Management Technology on Openstack

S. L. Mani Deepu
1
, Hemavathi D

2

1M. Tech Cloud Computing, Department of Information Technology, SRM University, Kattankulattur, Chennai, Inda

2Assistant Professor (Sr.G), Department of Information Technology, SRM University, Kattankulathur, Chennai , India

Abstract: This Paper actually focuses on the development of template management technology to build virtual resources environments

on openstack. We have technologies which deploy a set of virtual resources based on system environmental templates to enable easy

building expansion or migration of cloud resources. Openstack heat and Amazon cloud Formation are template deployment

technologies and build stacks which are set of virtual resources based on templates. These existing technologies have some problems

.Heat and CloudFormation transaction management of stack create or update are insufficient Heat and CloudFormation do not have

sharing mechanism of templates .Heat Cannot extract templates from existing environments. Heat does not change reflect the actual

environment changes to stack information. The goal of this to create a template management technology with necessary improvements.

It has a mechanism of transaction management like rollback in case of abnormal failures during stack operations. It shares templates

among end users and system integrators. It extracts templates from existing environments.

Keywords: OpenStack, Template management server, Heat, Cloud Formation, Iaas

1. Introduction

Cloud computing technologies such as virtualization and

scale-out have been progressed and many other providers

have started cloud services. Iaas service provides hardware

resources of cpu via network. openstack is one of the major

opensource Iaas software and adoptions of opensource Iaas

software is increasing. With a wide spread of cloud services,

technologies which deploy a set of virtual resources based

on system environmental templates to enable easy building,

expansion, migration of cloud virtual resources have

emerged. For example, openstack Heat and Amazon

CloudFormation are template deployment technologies and

build stacks which are sets of virtual resources based on

templates. Heat and CloudFromation transaction

managements of stack create and update are insufficient.

Heat and CloudFormation do not have sharing mechanism of

templates .Heat Cannot extract templates from existing

virtual envionments. Heat does not reflect the actual

environment changes such as virtual environment changes,

such as virtual machine deletion by openstack nova API.

The openstack project is a platform for developing,

deploying and hosting cloud computing solutions using open

source software. OpenStack is an open source infrastructure

as a service (IaaS) initiative for creating and managing large

groups of virtual private servers in a cloud computing

environment. The primary objective behind openstack

project is to create a global standard and software stack for

developing cloud solutions helping cloud providers and end-

users alike. The project aims to build a unanimous cloud

operating platform, where all the participating organizations

will build cloud solutions that are not only scalable ,elastic

and secure but also globally accessible OpenStack Heat, the

orchestration service that allows you to spin up multiple

instances, logical networks, and other cloud services in an

automated fashion. some basic terminology.

 Stack: In Heat parlance, a stack is the collection of objects

that will be created by Heat. This might include instances

(VMs), networks, subnets, routers, ports, router interfaces,

security groups, security group rules, auto-scaling rules,

etc.

 Template: Heat uses the idea of a template to define a

stack. If you wanted to have a stack that created two

instances connected by a private network, then your

template would contain the definitions for two instances, a

network, a subnet, and two network ports. Since templates

are central to how Heat operates.

 Parameters: A Heat template has three major sections,

and one of the sections defines the templates parameters.

These are tidbits of information-like a specific image

ID,or particular network ID-that are passed to the Heat

template by user. This allows us to create more generic

templates that could potentially use different resources.

 Resources: Resources are the specific objects that Heat

will create and/or modify as part of its operation, and the

second of the three major sections in a Heat template.

 Output: The third and last major sections of a Heat

template is the output, which is information that is passed

to the user ,either via openstack Dashboard or via the heat

stack-list and het stack-show commands.

 HOT: Short for Heat Orchestration Template .HOT is one

of two template formats used by Heat. HOT is not

backwards-compatible with AWS CloudFormation

templates and can only be used with openstack. Templates

in HOT format are typically but not necessarily expressed

as YAML.

 CFN: Short for AWS CloudFormation, this is the second

template format that is supported by Heat.CFN-formatted

templates are typically expressed in JSON.

Architecturally, Heat has few major components:

 The heat-api component implements an openstack-native

RESTful API.This components processes API requests by

sending them to the Heat engine via AMQP.

Paper ID: SUB153556 2247

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 The heat-api-cfn component provides an API compatible

with AWS CloudFormation and also forwards API

requests to the Heat engine over AMQP.

 The heat-engine component provides the main

orchestration functionally

All of these components would typically be installed on an

openstack “controller” node that also housed the API servers

for Nova, Glance, Neutron, etc. Heat uses a back-end

database for maintaining state information.

Figure 1: A Basic Implementation of the Concept

2. Outline of openstack

Openstack, CloudStack and Eucalyptus are major

opensource Iaas software, and among them openstack

community is active because many providers contribute

developments and adopted services rapidly increasing.

openstack is composed of the function blocks which manage

logical/virtual resources deployed on physical resourcs, the

function block which provides single sign on authentication

among other function blocks and the function block which

orchestrates a set of virtual resources. Neutron controls

virtual networks.OVS(Open Virtual Switch) and other

software switches can be used as a virtual switch. Nova

controls virtual machines KVM(Kernel virtual machine) and

others can be used as hypervisors of VMs.Cinder manages

the block storages and can attach a logical volume to a VM

like a local disk.Swift manages object storages Glance

manages Image files. Keystone is a base which performs

single sign on authentication of these function blocks. Heat

is an orchestration deployment function to create or update

virtual resources instances using Nova, Cinder or other

blocks based on a text template.celiometer is a metering

service of virtual resource usage. The functions of openstack

are used through REST(Representation State Transfer)

APIs.There is also web GUI called Horizon to use the

functions of openstack.

Problems in Existing Template Technologies

Openstack Heat and CloudFormation are technologies which

deploy a set of virtual resource instances based on templates

which contain information of virtual resource environment

and are described by JSON,YAML or other text format

.Both call a set of virtul instances which are deployed based

on template “stack” and provide API’s to operate stacks.

However, these API’s provide primitive CRUD (Create,

Read, Update, Delete) operations of stack and there are

some insufficient points for business use.

OpenStack Architecture

Figure 2: OpenStack Architecture (Single Node)

OpenStack version used here for the Design of the project is

Juno Update on top of Ubuntu 14.04(Trusty Tahr).[3].

OpenStack is a collection of open source software projects

that enterprises/service providers can use to setup and run

their cloud compute and storage infrastructure. Rackspace

and NASA are the key initial contributors to the stack.

Rackspace contributed their "Cloud Files" platform (code) to

power the Object Storage part of the OpenStack, while

NASA contributed their "Nebula"platform (code) to power

the Compute part. OpenStack consortium has managed to

have more than 150 members including Canonical, Dell, and

Citrix etc. Heat is the main project in the openstack

orchestration program. It implements an orchestration

engine to launch multiple composite cloud applications

based on template in the form of text files that can be treated

like code. A native template format is evolving, but Heat

also endeavours to provide compatibility with the AWS

CloudFormation templae format, so that many existing

CloudFormation templates can be launched on openstack.

Heat also provides an autoscaling service that integrates with

ceilometer, so you can include a scaling group as a resource

in a template.

Figure 3: Data Flow in OpenStack

There are main service families in OpenStack Juno:

 Nova - Compute Service

 Swift - Storage Service

 Glance - Imaging Service

 Keystone - Identity Service

 Neutron - Networking service

 Cinder - Volume Service

Paper ID: SUB153556 2248

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 Horizon - Web UI Service

 Heat – Orchestration.

We will see Heat that is intended for this paper.

Orchestration multiple composite cloud applications by

using either the native HOT template format or the AWS

Cloud Formation template format,through both an

Openstack-native REST API and a Cloud Formation-

compatible Query API.

Functions and Features:

 Instance life cycle management

 Management of compute resources

 Networking and Authorization

 REST-based API

 Asynchronous eventually consistent communication

 Hypervisor agnostic: support for Xen, XenServer/XCP,

KVM, UML, VMware vSphere and Hyper-V.

Modules

a) Transaction management of stack create, update and

delete.

b) Sharing of templates.

c) Extracting the templates from existing environment.

d) Actual environment changes reflecting to stack

information.

3. Transaction Management of Stack Create,

Update and Delete

Heat and CloudFormation transaction managements of stack

create, update and delete are insufficient and may end up

with a half-finished stack processing. It is not acceptable for

some business users because some resources failures may

lead critical problems. For example, if a VM creation is

successful but a logical router security setting is failed, the

VM may have a risk of abuse. Therefore, when we create a

stack, it is necessary to delete and roll back all resources in

case of any failures of resource creation. And when we

delete a stack, it is necessary to retry and delete all resources

in case of any failures of resource deletion.

When we update a stack, orchestration functions check a

difference between previous template and new template,

then create, delete or update resources to fill up the

difference. Specifically, a resource which is in previous

template and is not in new template is deleted, a resource

which is not in previous template and is in new template is

created, a resource which is changed from previous template

to new template is created after deletion or updated.

In OpenStack, some resources can be updated but some

cannot be. (e.g. network connection change can be updated

but VM RAM size change needs to delete VM once, then

create new one). In stack update case, individual resource

creation, deletion and update may be operated, so that there

may be a case we cannot roll back all operations. For

example, a volume is deleted successfully then a VM

creation is failed, we cannot roll back because the volume is

already deleted.

Therefore, in stack update case, the TM server tries to roll

back or roll forward for each OpenStack API transaction

(not all API transactions) when each OpenStack API

processing is failed. The function of stack transaction

management can be generalized for deployment

management with multiple resources.

Resource deployment needs Create, Update and Delete

transaction managements and also needs a valid order of

each resource operation. Our proposal of stack transactions

in case of failure and orders of each resource operation can

be used also CloudStack, Eucalyptus and other Cloud

platforms multiple resources provisioning because a virtual

resource dependence (e.g. VM needs at least one volume) is

almost same in IaaS platforms.To follow these policies, the

stack operation function of TM server manages orders of

OpenStack API calls and those transactions.

Most of OpenStack APIs are asynchronous, the TM server

retries a API or calls a purge API, or reverse API to decide

state of OpenStack resource when a API transaction is

failed. Note that a reverse API means the reverse process of

each API (e.g. volume deletion API is a reverse API for

volume creation). In this way, we can prevent a half-way

state of stack during stack operations., we can guarantee the

precondition of resource creation in stack create case (e.g. a

VM needs at least one volume).

Template sharing

CloudFormation and Heat do not have a mechanism of

template sharing. Our TM server provides a function to

share templates and facilitate templates re-use. For example,

when a small business owner would like to build a shopping

site, a System Integrator provides a verified Web 3-tier

structure template, then the small business owner selects the

template and build the environment with one or two clicks.

If we share templates unconditionally, there is a risk of

malicious template spreading. Thus, it is necessary to limit a

range of template sharing within contractual relationships.

Here, we explain logics of template sharing.

There are two methods to register a template: template

extraction and template upload. The function described in

Template extraction from existing tenant extracts a valid

template in an extraction case. In the other side, the template

sharing function validates a template in a template upload

case because a template described by a user may have

format or logical errors. – Each template creator can set a

scope of disclosure for each template. There are 3 options

for disclosure; only the creator-self, all users who have

contract with the creator and users selected by the creator.

Service providers or System Integrators can share templates

to subordinate users by setting a scope of disclosure. If

System Integrators have multiple tier contractual

relationships, there are 2nd tier subordinate users. In this

case, 1st tier subordinate System Integrator downloads a

template of upper tier System Integrator and registers it as its

template. This is to restrict scope of disclosure within direct

contractual relationships. Because each System Integrator

prefers to sell its own brand, the template sharing function

conceals templates upper than two tiers. Figure 3 shows an

image of template sharing relations.

Paper ID: SUB153556 2249

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Template Extraction from Existing Environment:

Heat main targets are operations of stacks and Heat cannot

extract a template from non-stack environment. And there is

a restriction that each virtual resource belongs to only one

stack. Based on them, we propose logics to extract a

template from an existing tenant. – We extract whole virtual

resources on an existing tenant to a template. If there is

unnecessary resource in an extracted template, a user edits

the template after downloading. This is because there is no

stack that we cannot restrict corresponding resources for

extraction. – Target resources to extract are volumes, virtual

Layer 2 networks, VMs, logical routers and logical load

balancers. Floating IPs are IP address resources that relate

logical routers which connect the Internet. The Internet

connected resources are shared by multiple stacks in general

and VMs or logical load balancers which are assigned

floating IPs may be shared by multiple stacks. Because a

virtual resource only belongs to one stack, we do not include

a floating IP to a template in extraction phase. Users can

assign floating IPs after stack creation based on the extracted

template. In the same way, shared virtual Layer 2 networks

or logical routers (e.g. VPN connected routers) are out of

scope for extraction because those are used by multiple

stacks. – When users extract a template, they also can select

whether to acquire images from volumes of tenant or not.

When users create a stack, these images are used to replicate

volumes. – During template extraction time, we block virtual

resources operations in the tenant to prevent a change of

target resources for extraction. – Extracted templates are

held in the template sharing function described in Template

sharing. Extracted templates can be used for stack create,

update or download to edit. In this way, we can extract a

template from an existing tenant and replicate an

environment easily. The function of template extraction

extracts a template from an existing environment. Our

implementation extracts JSON or HOT template and the

extracted template can be deployed both by Amazon

CloudFormation and OpenStack Heat because a template is

abstract text information and does not depend on IaaS

platform. To generalize and adapt extracted template format

to other IaaS platforms, we can use this function for Cloud

migration to another platform or Cloud federation on Plural

platforms.

4. Reflection of Environment Change to Stack

Information

In case of stack update, orchestration functions check a

difference between previous template and new template,

then create, delete or update virtual resources to fill up the

difference. However, Heat can only recognize an

environment change by Heat API and does not know actual

environment status.

a) Stack creates, update, delete by Heat Stack API

b) Individual resource creates, update, delete by other

OpenStack API (Nova, Cinder and so on)

c) Resource deletion by user’s manual operation. (e.g. VM

shutdown via console)

d) Resource deletion by unintentional physical or virtual

server down.

We do not have to care it because templates of Stack API are

matched to actual environments after API process.

Regarding to b), when users call OpenStack API (not Heat

API), the TM server hooks the requests as OpenStack API

proxy and reflects the environment change to stack

information. If proxy model is difficult, the TM server may

poll OpenStack DB to confirm environment changes. But

each OpenStack API does not have a parameter of stack ID

so that individual resource creation is not reflected to stack

information. If a user would like to add a resource to a stack,

a user needs to call Heat stack update API including the

resource. Regarding to c), main case is a VM shutdown by

user’s manual operation. VM is operated by Libvirt on

KVM. Therefore, the TM server can reflect the VM down

status to stack information by receiving notifications of

Libvirt or other monitoring agents. Regarding to d), the TM

server reflects resources down to stack information by

receiving a notification of each resource monitoring agent

like c) case. Based on reflected stack information on a)-d),

the TM server can update or delete stacks as users expect.

Table 1 shows a comparison of reflection of actual

environment change to stack information in Havana Heat

case and our TM server case. Havana Heat updates

environment changes to stack information only in Stack API

use. Our TM updates environment changes to it except for

resource create by individual OpenStack API call. The

function of environment change reflection function is

generalized to a difference resolve function of actual

environment and management layer. The difference has a

problem not only in a stack update case but also in an

individual resource provisioning case. For example,

OpenStack Neutron manages a resource state in OpenStack

DB and does not care an actual completion of resource

provisioning after it has written the requests to DB. Thus,

there is a possibility that a VM is active but access control

setting of a logical router to the VM is not available.

Because a Cloud provider business is charging fees for

provisioned resources, it is fatal to charge a resource not

created yet. The function can be used for resolving these

differences to collect actual environment information by

monitoring modules such as Libvirt and Pacemaker or by

hooking requests as a proxy.

5. Design Coding

Templates:

“Resources”:{

 “vm-1” : {

 “Type”: “os:: Nova::server”;

 “properties”:{

 “networks”: {{

 “port” : {“Ref” : “vm-1-port”}

 }]

“availability_zone” : {“Ref” : “vm-1-az”},

“description”: { “Ref”: “vm-1-description”},

 “name” :{“Ref”: “vm-1-name”},

 “flavor” : {“Ref”:”vm-1-flavour”},

 “image” : {“Ref”:”vm-1-image”},

“block_device_mapping” : [{

 “volume _id”: {Ref”: “volume-a”},

 “delete_on_termination” : “0”

},{

 “volume_id”: {“Ref” : “volume-b”},

Paper ID: SUB153556 2250

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 “delete_on_termination”:”0”

 }]

 }

 }

}

“Resources”:{

 “vm-1” : {

 “Type”: “os:: Nova::server”;

 “properties”:{

 “networks”: {{

 “port” : {“Ref” : “vm-2-port”}

 }]

“availability_zone” : {“Ref” : “vm-2-az”},

“description”: { “Ref”: “vm-2-description”},

 “name” :{“Ref”: “vm-2-name”},

 “flavor” : {“Ref”:”vm-2-flavour”},

 “image” : {“Ref”:”vm-2-image”},

“block_device_mapping” : [{

 “volume _id”: {Ref”: “volume-a”},

 “delete_on_termination” : “0”

},{

 “volume_id”: {“Ref” : “volume-b”},

 “delete_on_termination”:”0”

 }]

 }

 }

}

6. Conclusion

The above implemented template management technology

for end users to build virtual environments on openstack.

Template management server prevented half finished stack

because it rolled back all operations in case of abnormal

failure of stack update. Template sharing to end users who

have contracts to system integrators or providers can

replicate virtual resource environments on new tenants

easily. our server extract a template from non-stack

environment except shared resources. Users could update

stack as expected because our server reflected actual

environment change such as VM shutdown or other

openstack API operation to stack information.

7. Future Work

Improving the TM server for openstack new versions.Juno is

the new version of openstack and provides new functions to

catch up Amazon Web Services nd also improving the

software softare quality of TM server and verify the

feasibility of existing OSS(operations support system)

interconnections to provide production carrier Iaas services

based on openstack.

References

[1] Deployment of template management technology for

easy deployment of virtual resources on openstack.yoji

yamato,mashahito muroi,kentaro

[2] Amazon Elastic compute cloud website

http://aws.amazon.com/ec2/

[3] Opensttack web site.http://www.openstack.org/

[4] Cloudstack website http://www.cloudstackapache.org/

[5] Amazon Cloud Formation website.http

://aws.amazon/cloudformation/

[6] .Nurmi D,Wokshi R, Grzegorczyk C,obertelli G,Soman

S,YOuseff L,Zagorodnov D(2009) The Eucalyptus

Opensource Cloud Computing system.IN proceedings of

cluster computing and the Grid, 2009.

[7] RightScale Server Templates

website,http://wwww.rightcale.com/blog/Cloud-

management-best-practices/rightscale-servertemplates-

explained.

Paper ID: SUB153556 2251

http://aws.amazon.com/ec2/
http://www.cloudstackapache.org/

