
International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 

Volume 4 Issue 6, June 2015 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

User Profile Based Client Side Instant Search 

Mechanism With Use of TLB Mechanism and 

Fuzzy Search 
 

Rupali A. Ingale
1
, J. L. Chaudhari

2
 

 

1ME CSE-Final Year, BSIOTR Wagholi (Pune), Maharashtra, India 

 
2Assistant Professor, CSE Department, BSIOTR Wagholi (Pune), Maharashtra, India 

 

 

Abstract: Instant search is an emerging information-retrieval paradigm in which a system finds answers to a query instantly while a 

user types in keywords character-by-character.A fuzzy search is a process that locates Web pages that are likely to be relevant to a search 

argument even when the argument does not exactly correspond to the desired information. A fuzzy search is done by means of a fuzzy 

matching program, which returns a list of results based on likely relevance even though search argument words and spellings may not 

exactly match. Exact and highly relevant matches appear near the top of the list. The fuzzy search can be done by trie-based approaches. 

A main computational challenge in this paradigm is the high speed requirement, i.e., each query needs to be answered within 

milliseconds to achieve an instant response and a high query throughput. we propose the fetch from TLB and PageTables . We are 

maintaining log for user search log and part of relevant retrieved contents in TLB like mechanism. When user enters query to 

search engine, we will extract keywords from the query, this will need to porters stemming algorithm, stopword removal 

algorithm and K-means clustering algorithm with consideration of hop count . 
 

Keywords: Insatant search,Fuzzy search,TLB, Proximity Ranking 

 

1. Introduction 
 

The fuzzy search can be done by trie-based approaches. The 

fuzzy reasoning, described as “If X is A then Y is B” is said 

to be simple and conforms to human language. However in 

cases where the system has multi inputs and multi outputs, 

one has to build the fuzzy reasoning rules in multi 

dimensional input and output spaces in order to describe the 

behavior of the system. It is considered that the difficulty is 

caused by a mismatch between the description of the fuzzy 

reasoning and the actual records of inference rules which 

humans have. Fuzzy searching is much more powerful than 

exact searching when used for research and investigation. 

Fuzzy searching is especially useful when researching 

unfamiliar, foreign-language, or sophisticated terms, the 

proper spellings of which are not widely known. Fuzzy 

searching can also be used to locate individuals based on 

incomplete or partially inaccurate identifying information.  

 

A fuzzy matching program can operate like a spell checker 

and spelling-error corrector. For example, if a user types 

"Misissippi" into Yahoo or Google (both of which use fuzzy 

matching), a list of hits is returned along with the question, 

"Did you mean Mississippi?" Alternative spellings, and 

words that sound the same but are spelled differently, 

 

Search engine helps user to locate information from large 

storage media of content.  

 

We propose search engine to reduce the work load of server. 

User search query in web its collect all web pages from 

server i.e. linking open data. All open data are copied 

temporarily in local system because of that user does not 

depends on server to view next web page so it reduce the 

work load of server. Local data search is an emerging 

information-retrieval paradigm in which a system finds 

answers to a query instantly while a user types in keywords 

character-by-character. In that, fuzzy search method further 

improves user search experiences by finding relevant 

answers in system and filtering keyword similar to query 

keyword. A main computational challenge in this paradigm 

is high speed requirement i.e. each query needs to be 

answered within seconds to achieve an instant response and 

a high query throughput. We overcome the space and time 

limitation, fuzzy search method improves the user to fetch 

relevant record in server it temporarily stored in PC and 

further record search can be done without depending on 

server. 

 

2. Literature Survey 
 

K. Grabski and T. Scheffer[1],Proposed the problem of 

predicting the succeeding words of an initial fragment of 

natural language text. This problem setting is motivated by 

applications that include repetitive tasks such as 

writing.emails in call centers or letters in an administrative 

environment, many resulting documents are to some degree 

governed by specific underlying patterns that can be learned. 

The benefit of an assistance system to the user depends on 

both the number of helpful suggestions and the number of 

unnecessary distractions that they experience. Performance 

metrics for other text learning problems do not match the 

idiosyncrasies of this problem, we therefore have to discuss 

an appropriate evaluation scheme. Generative N-gram 

language models provide a natural approach to the 

construction of sentence completion systems , instance-

based learning can easily be applied to this problem. 

 

A.Nandi and H. V. Jagadish proposed system on predicting 

queries. Many systems do prediction by treating a query 

with multiple keywords as a single prefix string. Therefore, 

Paper ID: SUB155494 1862



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 

Volume 4 Issue 6, June 2015 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

if a related suggestion has the query keywords but not 

consecutively, then this suggestion cannot be found 

 

H. Bast and I. Weber proposed many indexing and query 

techniques to support instant search, Imagine a user of a 

search engine typing a query. Then with every letter being 

typed, we would like an instant display of completions of the 

last query word which would lead to good hits. At the same 

time, the best hits for any of these completions should be 

displayed. Known indexing data structures that apply to this 

problem either incur large processing times for a substantial 

class of queries, or they use a lot of space. We present a new 

indexing data structure that uses no more space than a state-

of-the-art compressed inverted index, but that yields an 

order of magnitude faster query processing times. Even on 

the large TREC Terabyte collection, which comprises over 

25 million documents, we achieve, on a single machine and 

with the index on disk, average response times of one tenth 

of a second. We have built a full-fledged, interactive search 

engine that realizes the proposed autocompletion feature 

combined with support for proximity search, semi-structured 

(XML) text, subword and phrase completion, and semantic 

tags. 

 

S. Chaudhuri, V. Ganti, and R. Motwani, Proposed 

Detecting and eliminating fuzzy duplicates is a critical data 

cleaning task that is required by many applications. Fuzzy 

duplicates are multiple seemingly distinct tuples, which 

represent the same real-world entity. We propose two novel 

criteria that enable characterization of fuzzy duplicates more 

accurately than is possible with existing techniques. Using 

these criteria, we propose a novel framework for the fuzzy 

duplicate elimination problem. We show that solutions 

within the new framework result in better accuracy than 

earlier approaches. We present an efficient algorithm for 

solving instantiations within the framework. We evaluate it 

on real datasets to demonstrate the accuracy and scalability 

of our algorithm. 

 

G. Li, J. Wang, C. Li, and J. Feng Proposed the approach is 

especially suitable for instant and fuzzy search since each 

query is a prefix and trie can support incremental 

computation efficiently. 

 

Type-ahead search can on-the-fly find answers as a user 

types in a keyword query. A main challenge in this search 

paradigm is the high-efficiency requirement that queries 

must be answered within milliseconds. In this paper we 

study how to answer top-k queries in this paradigm, i.e., as a 

user types in a query letter by letter, we want to efficiently 

find the k best answers. Instead of inventing completely new 

algorithms from scratch, we study challenges when adopting 

existing top-k algorithms in the literature that heavily rely on 

two basic list-access methods: random access and sorted 

access. We present two algorithms to support random access 

efficiently. We develop novel techniques to support efficient 

sorted access using list pruning and materialization. We 

extend our techniques to support fuzzy type-ahead search 

which allows minor errors between query keywords and 

answers. We report our experimental results on several real 

large data sets to show that the proposed techniques can 

answer top-k queries efficiently in type-ahead search. 

 

3. Proposed System 
 

We are maintaining log for user searchlog and part of 

relevant retrieved contents in TLB like mechanism.When 

user enters query to search engine, we will extract keywords 

from the query, this will need following algorithms .  

 

3.1 Porters Stemming Algorithm 

 

Porters stemming algorithm used to remove suffixes from 

the keyword . For example, we need to find occurances of 

keyword play in a result. We will get different words like 

plays, played, playing etc. We cant find extact occurance of 

play without removing suffixes like ed, ing, s, sses, ation, 

ational etc.Thre are some exceptional cases like Red this 

keyword is ended with ed but we dont want to remove ed 

from the Red. For stemming with such kind of examples 

porter have defined algorithm which has 6 steps 

implementation.Porter have definded some rules to remove 

suffixes for example (V-Vowel , C-Consonent) ,  

PLAYED RED 

CCVCVC CVC 

Count m= |VC pairs| ie. for played m=2 and for red 

m=1.Rule definded by porter is if (m>1 && 

str.endsWith(“ed”)) remove “ed” from str  else dont remove 

“ed”. 

 

3.2 Stopword Removal Algorithm 

 

We need to download stopwords dataset from internet which 

is easlily available on many websites.Compare the words 

with stopword database and remove stopword occurances 

for further computations. 

 

3.3 K-Means clustering algorithm with consideration of 

hop count 

 

K-means clustering algorithm clusters the user keyword log 

based on its number of occurances.High frequency cluster is 

maintained at TLB side. When user enters query it will 

firstly look in TLB, if he dont gets relevant results then it 

calls for the pages/ results from fuzzy search mechanism . 

 

3.4 Fuzzy Search Mechanism 

 

We formalize the problem of interactive, fuzzy search on a 

relational table, and our method can be adapted to textual 

documents, XML documents, and relational databases. 

Consider a relational table T with m attributes and n records. 

Let A = {a1, a2,...,am} denote the attribute set, R = {r1, 

r2,...,rn} denote the record set, and W = {w1, w2,...,wp} 

denote the distinct-word set in T. Given two words wi and 

wj , “wi wj” denotes that wi is a prefix string of wj .A query 

consists of a set of prefixes Q = {p1, p2,...,pl}. For each 

prefix pi, we want to find the set of prefixes from the data 

set that are similar to pi. 2 In this work we use edit distance 

to measure the similarity between two strings. The edit 

distance between two strings s1 and s2, denoted by ed(s1, 

s2), is the minimum number of edit operations (i.e., 

insertion, deletion, and substitution) of single characters 

needed to transform the first one to the second. For example, 

ed(smith, smyth) = 1. Definition 1 (Interactive Fuzzy 

Search). Given a set of records R, let W be the set of words 

Paper ID: SUB155494 1863



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 

Volume 4 Issue 6, June 2015 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

in R. Consider a query Q = {p1, p2,...,p} and an edit-

distance threshold δ. For each pi, let Pi be {p i|∃w ∈ W, p i 

w and ed(p i, pi) ≤ δ}. Let the set of candidate records RQ be 

{r|r ∈ R, ∀1 ≤ i ≤ , ∃p i ∈ Pi and wi appears in r, p i wi}. The 

problem is to compute the best records in RQ ranked by 

their relevancy to Q. These records are computed 

incrementally as the user modifies the query, e.g., by typing 

in more letters.  

 

3.4 Indexing 

 

We use a trie to index the words in the relational table. Each 

word w in the table corresponds to a unique path from the 

root of the trie to a leaf node. Each node on the path has a 

label of a character in w. For simplicity, a node is mentioned 

interchangeably with its corresponding string in the 

remainder of the paper. Each leaf node has an inverted list of 

IDs of records that contain the corresponding word, with 

additional information such as the attribute in which the 

keyword appears and its position. For instance, Figure 3 

shows a partial index structure for publication records. The 

word “vldb” has a trie node ID of 15, and its inverted list 

includes record IDs 6, 7, and 8. For simplicity, the figure 

only shows the record ids, without showing the additional 

information about attributes and positions. 

 

 
Figure 1: Proposed System 

 

4. Conclusion 
 

We studied how to improve ranking of an instant-fuzzy 

search system by considering proximity information when 

we need to compute top-k answers. We studied how to adapt 

existing solutions to solve this problem, including 

computing all answers, doing early termination, and 

indexing term pairs. We proposed a technique to index 

important phrases to avoid the large space overhead of 

indexing all word grams. We presented an incremental-

computation algorithm for finding the indexed phrases in a 

query efficiently, and studied how to compute and rank the 

segmentations consisting of the indexed phrases. We 

compared our techniques to the instantfuzzy adaptations of 

basic approaches. We conducted a very thorough analysis by 

considering space, time, and relevancy tradeoffs of these 

approaches. In particular, our experiments on real data 

showed the efficiency of the proposed technique for 2-

keyword and 3-keyword queries that are common in search 

applications. We concluded that computing all the answers 

for the other queries would give the best performance and 

satisfy the high-efficiency requirement of instant search. 

 

References 

 
[1] Cetindil∗, J. Esmaelnezhad,Taewoo Kim and Chen Li 

and Irvine "Efficient Instant-Fuzzy Search with 

Proximity Ranking",Available: http://www.imdb.com, as 

of July 2013. 

[2] Cetindil, J. Esmaelnezhad, C. Li, and D. Newman, 

“Analysis of instant search query logs,” in WebDB, 2012, 

pp. 7–12. 

[3] R. B. Miller, “Response time in man-computer 

conversational transactions,” in Proceedings of the 

December 9-11, 1968, fall joint computer conference, 

part I, ser. AFIPS ’68 (Fall, part I). New York, NY, 

USA: ACM, 1968, pp. 267–

277.[Online].Available:http://doi.acm.org/10.1145/14765

89.1476628. 

[4] C. Silverstein, M. R. Henzinger, H. Marais, and M. 

Moricz, “Analysis of a very large web search engine 

query log,” SIGIR Forum, vol. 33, no. 1, pp. 6–12, 1999. 

[5] G. Li, J. Wang, C. Li, and J. Feng, “Supporting efficient 

top-k queries in type-ahead search,” in SIGIR, 2012, pp. 

355–364. 

[6] R. Schenkel, A. Broschart, S. won Hwang, M. Theobald, 

and G. Weikum, “Efficient text proximity search,” in 

SPIRE, 2007, pp. 287–299. 

[7] H. Yan, S. Shi, F. Zhang, T. Suel, and J.-R. Wen, 

“Efficient term proximity search with term-pair indexes,” 

in CIKM, 2010, pp. 1229– 1238. 

[8] M. Zhu, S. Shi, N. Yu, and J.-R. Wen, “Can phrase 

indexing help to process non-phrase queries?” in CIKM, 

2008, pp. 679–688. 

[9] A. Jain and M. Pennacchiotti, “Open entity extraction 

from web search query logs,” in COLING, 2010, pp. 

510–518. 

Paper ID: SUB155494 1864




