
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 6, June 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Study of Process Models and Certification of

Components

Kiran Bala
1
, Vijay

2

1, 2Department of Computer Science & Engineering, Meri College of Engineering & Technology, Sampla, Bhadurgarh, Haryana-(India)

Abstract: Component-Based Software Engineering is the process of building software systems from reusable parts which offers the

potential to radically advance the way in which software is developed. Component Based Software Development (CBSD) is focused on

assembling existing components to build a software system, with a potential benefit of delivering quality systems by using quality

components. It departs from the conventional software development process in that it is integration centric as opposed to development

centric. The quality of a component-based system using high quality components does not therefore necessarily guarantee a system of

high quality, but depends on the quality of its components, and a framework and integration process used. It leads to increased reuse

leading to higher quality and reduced time to market. “Higher quality” means that the components must have a quality stamp in terms

of what level of reliability can be expected from them. Thus, the certification stands out as an essential area to evaluate the component

reliability level. This paper presents a survey of software component certification research.

Keywords: Challenges, CBS, Component types, COSE, CSLC, High Quality, Prototyping.

1. Introduction

Component-based software development has emerged as a

viable and economic alternative to the traditional software

development process. The ability to build complete system

solutions by interconnecting components through public

interfaces independently created and deployed components

is the driving force behind Component- Based Software

Engineering (CBSE). However, organizations reusing

existing software components can only achieve the

improvements related to software reuse if the selected

software components have a certain quality degree. A major

problem when building software systems from components

is the unknown quality of the components and the unknown

side-effects of their integration. In our view, component

evaluation has to be performed at different stages in the

component life cycle, by different actors, for different

reasons. During component development, the component

vendor assures the quality of the components developed

before made publicly available for reuse. Component

certification means that an independent actor performs an

evaluation according to standardized procedures, so that an

issued certificate is seen as a quality stamp which increases

the trust in the component. Reuse is a “generic”

denomination encompassing a variety of techniques aimed at

getting the most from design and implementation work. The

top objective is to avoid reinvention, redesign and

reimplementation when building a new product, capitalizing

on previously done work that can be immediately deployed

in new contexts. Therefore, better products can be delivered

in shorter times, maintenance costs are reduced because an

improvement to one piece of design work will enhance all

the projects in which it is used, and quality should improve

because reused components have been well tested [2].

2. Objective of the Study

Certification of components is the challenge of Component-

Based Software Engineering. This study especially aims to

reveal certification of Components and components based

systems. As components are available from different sources

their reliability and Quality Assurance is required. Various

testing techniques are there to test the components but there

must be some standards and model by which we can assure

about the quality of components and systems made from

these components. I in this study tried to explain the

certification of components and component-based systems

that holds the components from various parties.

3. Various Process Models

A software system, either small or large scale, is an

uncertain concept at the beginning and therefore needs to be

analyzed, designed and implemented. This completes the

development but it is not over in terms of operation of

software. Maintenance is required after all steps to keep

software alive. All of these steps are called software process

model.

a) Traditional Process Models

Since each product shows different characteristics at

development stage, various project life cycles can be applied

to computerized systems development. Some of them will

spend years in the logical phase, current hardware may just

not be fast enough for the product, or current users may not

be capable of this new system and computerized

background. Some of them can also be quickly designed and

implemented and then many years are spent for

modifications to meet the users’ changing needs in the

maintenance phase.

A number of different life-cycle models will be described

and three of them are most widely used:

 Waterfall with iteration,

 Rapid prototyping and

 The spiral model, which received considerable attention

recently.

b) Rapid Prototyping Model

Since users operate the system and perform fixed processes,

they cannot imagine the whole system most of the time and

they need to be conveyed into a working system. Therefore,

Paper ID: SUB155696 1987

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 6, June 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

it is a problem not to define the requirements entirely in

terms of development processing. As well as being used to

investigate the requirements, prototyping might also be used

to discover the most suitable form of user interfaces.

Figure 1: Rapid Prototyping Model

Some advantages and disadvantages of Rapid Prototyping

Model [1] are described below

Advantages of Rapid Prototyping Model

1) Early demonstrations of system functionality help

identify any misunderstandings between developer and

client;

2) Client requirements that have been missed are identified;

3) Difficulties in the user interface can be identified;

4) The feasibility and usefulness of the system can be

tested, even though, by its very nature, the prototype is

incomplete.

Disadvantages of Rapid Prototyping Model

1) The client may perceive the prototype as part of the final

system, or may not understand the effort that will be

required to produce a working production system, and also

may expect delivery soon.

2) The prototype may divert attention from functional to

solely interface issues.

3) Prototyping requires significant user involvement.

4) Managing the prototyping life cycle requires careful

decision-making.

A solution is offered that combining the two approaches,

waterfall and prototyping.

4. Incremental Model

In the incremental model, operational products are delivered

at each stage. Software is not written; it is built [4]. The

complete product is divided into builds, and the developer

delivers the product build by build. A typical product

consists of 10 to 50 builds. At each stage, the client has an

operational quality product that does a portion of what is

required; from delivery of the first build, the client is able to

do useful work.

Figure 2: Incremental Model

With the incremental model [4], portions of the total product

might be available within weeks, whereas the client

generally waits months or years to receive a product built

using the waterfall or rapid prototyping models. Another

advantage of the incremental model is that it reduces the

traumatic effect of imposing a completely new product on

the client organization. From the client’s financial

viewpoint, phased delivery does not require a large capital

Component Baesed Software Engineering Process

Models

The component-based software life cycle (CSLC) is the life

cycle process for a software component with an emphasis on

business rules, business process modeling, design,

construction, continuous testing, deployment, evolution, and

subsequent reuse and maintenance. In general, analysis and

design phases for component-based process models take

more time than traditional ones take.

5. Stojanovic Process Model

A component-oriented development process model, is

shown in Figure 3

Figure 3: Stojanovic Process Model

Paper ID: SUB155696 1988

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 6, June 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

It has been introduced by Stojanovic [5], focusing on the

component concept from business requirements to

implementation. This process model is called by its owner’s

name. The phases of requirements, analysis, design and

implementation in a traditional development process has

been substituted by service requirements, component

identification, component specification, component

assembly and deployment. After the components of the

system are fully specified, a decision can be made to build

components, wrap existing assets, buy COTS (Commercial

Off-the- Shelf) components or invoke web services over the

Internet.

6. Component Oriented Software Engineering

Process Model

Figure 4 illustrates steps of COSE Process Model [3] in

general, which is summarized here to reveal COSE Process

Model and its details; COSE Process Model building

activity starts top-down to introduce the building blocks of

the system. As the activity continues towards lower

granularity blocks, interfaces between the blocks are also

defined. At an arrived level where the module is expected to

correspond to a component, a temporary bottom-up

approach can be taken; if desired capability can only be

achieved by a set of components, their integration into a

super-component should be carried out.

Figure 4: Component Oriented Software Engineering

(COSE) Process Model

7. Component

The whole comprises its parts, and the parts compose the

whole. To compose, from the Latin com- “together” and

ponere “to put.” The parts, which are composed, are

etymologically components. The phrase component-based

system has about as much inherent meaning as “part-based

whole” [6].

1. According to Brown and Wallnau “A component is a

non-trivial, nearly independent, and replaceable part of a

system that fulfills a clear function in the context of a

well-defined architecture. A component conforms to and

provides the physical realization of a set of interfaces.”

2. According to Councill and Heinmann “A software

Component is a software element that confirms to a

component model and can be independently deployed

and composed without modification according to a

composition standard.”

Types of Components

In addition to COTS components & Open source

components, the CBSE process [1] yields:

1. Qualified components

2. Adapted components

3. Assembled components

4. Updated components

Qualified components—assessed by software engineers to

ensure that not only functionality, but also performance,

reliability, usability, and other quality factors conform to the

requirements of the system or product to be built. [1]

Adapted components—adapted to modify (also called

mask or wrap) unwanted or undesirable characteristics [1].

Assembled components—integrated into an architectural

style and interconnected with an appropriate infrastructure

that allows the components to be coordinated and managed

effectively [1].

Updated components—replacing existing software as new

versions of components become available [1].

8. Certification

“To attest as certain; give reliable information of; confirm,

to testify to or vouch for in writing, to guarantee; endorse

reliably; to certify a document with an official seal.”

- [MWU 96]

Need of Certification

In the present business scenario every developer and

company wants to produce components in fast and cost

effective manner by using ready-made components if

available. This process requires buy or make decision to

follow. If we buy it from third party then its quality must be

as required as well as it is better if it is certified from some

vendor or agency for compliance with the standard and

Quality model [7]. There are various models to evaluate the

quality from existing software quality models [7], namely

McCall’s, Boehm, ISO 9126, FURPS, Dromey, ISO/IEC TR

15504-2 1998(E), Triangle and Quality Cube.

9. Challenges in Maintaining Certification

Introducing a component can affect the safety reasoning of

the system [8]. This becomes more apparent in the case of

an existing system undergoing upgrades (as in the case of

the Hawk). Introducing a new component can affect the

safety reasoning of the system in the following ways:

1) New dependencies and services: The operation of new

modules (provided by the component) that did not exist in

the previous version of the system may require different

behavior (functionality) from the system modules that

were not changed. This can include functionality that is

different but within the capabilities of the existing

modules. Although the new modules are not affected the

way they interact with the components is altered. Hence

the safety properties of this new interaction need to be

examined and captured in safety case. Furthermore, the

Paper ID: SUB155696 1989

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 6, June 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

component may provide slightly different behavior than

the bespoke modules that it replaces (e.g. slightly different

properties or memory management). The new services the

components offers will also need to be analyzed.

2) Change of context: During the evolution of the safety

case, the safety argument is based on a number of

(documented) contextual information such as operational

information, development information and assumptions. A

change may challenge the contextual information

associated with the argument. For example, the

development of a COTS component may be compliant

with a different standard than the one documented in the

safety case.

3) New or updated evidence: An argument about the safe

operation of a system (or parts of the system) is

substantiated by evidence. A safety case can include

different types of evidence, such as qualitative evidence,

expert opinion and direct evidence produced during

testing. A new component will bring in the safety case a

new set of evidence, whereas a modified component

would need to have its associated evidence updated to

cover the change.

10. Conclusion

This paper has presented a survey related to the certification

of components and component based system in the software

component certification research. This paper defines the

components and component types.Also this paper describes

the certification and need of certification followed by

challenges in maintaining certification. Through this survey,

it can be noticed that software components certification is

still immature and further research is needed in order to

develop processes,

methods, techniques, and tools aiming to obtain welldefined

standards for certification.

References

[1] Pressman Roger S, Software Engineering, Tata McGraw

Hill, 2006

[2] Herzum Peter, Sims Oliver, Business Component

Factory, Wiley, 1999

[3] Dogru Ali H., Tanik Murat M., A Process Model for

Component- Oriented Software Engineering, IEEE

Software, March/April 2003

[4] Schach Stephen R., Classical and Object Oriented

Software Engineering, 4th Edition, McGraw Hill, 1999

[5] Stojanovic Zoran, An Integrated Component-Oriented

Framework for Effective and Flexible Enterprise

Distributed Systems Development,

http://www.betade.tudelft.nl/publications/Stojanovic_CA

ISE2002.pdf

[6] Khalid Eldrandaly, The International Arab Journal of

Information Technology, Vol. 5, No. 3, July 2008, Pg

304-311.

[7] Rawashdeh A and Matalkah B, Journal of computer

Science 2, 2006, ISSN 1549-3636 2006 Science

Publications, Pg 373-381

[8] Cai Xia, LYU Michael R., wong Kam-Fai, KO Roy,

Component-Based Software Engineering: Technologies,

Development Frameworks, and Quality Assurance

Schemes

Paper ID: SUB155696 1990

