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Abstract: The mathematical model of steady state mono-layer potential metric biosensor is studied and the model is based on non-

stationary diffusion equations containing a non-linear term related to Michaelis-Menten kinetics of the enzymatic reaction. This paper 

presents a numerical method based on Legendre wavelets operational matrix method. These results are compared with available limiting 

case results and that are found to be in good agreement. Moreover, the use of Legendre wavelet operational matrix is found to be simple, 

efficient, accurate and computationally attractive. 
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1. Introduction 
 
Modelling of biosensors is of a crucial importance to 
understand their behavior. It is difficult to measure the 
concentration of substrates inside the enzyme membrane 
using analytical devices. Hence mathematical models in 
biosensors have been developed and used as an important 
tool to study the analytical characteristics of actual 
biosensors. Goldman et al initiated work of Biosensor 
modelling in his historical paper [1]. He has studied that the 
extensive treatment of substrate and product distribution in 
membrane containing enzymes. The kinetics of reaction in 
an enzyme membrane immersed in a substrate solution was 
thoroughly investigated by Sundaram et al [2]. Kasche et al 
[3] presented a model and equations described steady-state 
catalysis by an enzyme immobilized in spherical gel 
particles and showed that catalysis by an unbounded 
enzyme. 
 
Some of the equations are solved for the fluxes, for the 
substrate (or) product concentrations. Gough et al [4] have 
simulated the performance of a cylindrical biosensor for 
glucose monitoring steady state.  Various approaches has 
been initiated to solve the equation arises from mathematical 
modelling of biosensors like finite difference scheme 
initiated by  Jobst et al [5]. Using the implicit finite 
difference scheme [6], the influence of the substrate 
concentration as well as maximal enzymatic rate on the 
biosensor was investigated [7]. The explicit scheme is 
usually easier to program, however the implicit scheme has a 
higher simulation speed [8-10]. The general time-dependent 
problem has been tackled previously by Carr [11] using 
Fourier analysis, and the steady state problem has been 
examined by  Brady and Carr [12].  Recently, Hariharan et 

al used second kind shifted chebyshev wavelets for the 
Michaelis-Menten model [13].  In recent years, wavelets has 
been used as an indispensable tools for finding the solutions 
of the differential equations that arises while modelling of 

biosensors enzymes. Since it possesses inherent properties 
like compact support, orthogonality and vanishing moments 
[14-17]. Wavelets are well  localized in time as well as 
frequency domain . Using this  idea Bekylin  et al [18], first 
used wavelets to find the solution of the differential 
equations that contains shock like  behavior. Later, many 
researchers [19-22] are  using the wavelets as a main tool for 
finding the solution of the differential equations. The main 
goal of this paper is to discuss how Legendre wavelets have 
been used to solve the mathematical model of biosensor of 
'Michaelis- Menten Kinetics' type equations. 
 
To our knowledge, there is no rigorous analytical solutions 
for non-linear steady state concentration for polymer 
modified electrodes for all values of alpha (saturation 
parameter) and K (reaction-diffusion parameter).  It should 
be pointed out that, complete solutions have not yet been 
obtained even for steady state behavior because of the non-
linearity inherent in 'Michaelis-Menten Kinetics'. In this 
paper, we have derived new, simple and closed analytical 
expressions of concentrations and current using Legendre 
wavelets operational method. 
 
2. Mathematical formulation of the problem 
 
During an enzyme-catalyzed reaction 

                           (2.1) 
 
the substrate (S) binds to the enzyme (E) to form enzyme-
substrate complex ES. While it is a part of this complex, the 
substrate is converted to product P. The rate of the 
appearance of the product depends on the concentration of 
the substrate. Then the rate of change of substrate 
concentrations  at time t, position  is equal 
to the sum of the rate due to reaction and diffusion, and is 
given by Pao (23). 

   (2.2) 
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where  is the substrate diffusion coefficient  is the 
gradient operation, and v is called the initial reaction 
velocity. Various models regarding the expressions for v are 
formulated. In this paper, we discuss the some mathematical 
properties of the solutions of the type models using 
Michaelis- Menten  hypothesis. Pao (23) and Baronas et al 
(24) expressed the velocity function v for the simple reaction 
process without competitive inhibition using Michaelis 
hypothesis. 

     (2.3) 

where  is the total amount of enzyme and  is the 
"Michaelis constant". In this model, the equation for "S" 
becomes 

 (2.4) 

In one-dimensional, the above equation can be written as 
     (2.5) 

Introducing  which is a Pseudo-first order rate 

constant. Thus the above equation becomes 
    (2.6) 

In this problem, we consider an initial condition is given in 
usual form as 

        (2.7) 
with the initial conditions u(0) = 1, u'(0) = 0. 
 
3. The Properties of Legendre wavelets 
 
3.1 Wavelets and Legendre wavelets 

 
Wavelets constitute a family of functions constructed from 
dilation and translation of single function called the mother 
wavelet. When the dilation parameter a and the translation 
parameter b vary continuously, then we have the following 
family of continuous wavelets [7] 

  (3.1) 
If we restrict the parameters a and b to discrete values as 

 n, and k positive 
integers, we have the following family of discrete wavelets: 

 
where  form a wavelet basis for L^2(R). In particular 
when a=2 and b=1 then  forms an orthonomal basis 
[7]. 
Legendre wavelets have four arguments: k,n can are positive 
integer, m is the order for Legendre   polynomials, and t is 
the normalized time. They are defined on [0,1] by 

 
 m=0,1,2,......M-1 and  n= 0,1,2,.....2^k-1. The coefficient 

  is for orthonormality, the dilation parameter is 

  and the translation parameter      
Here,  are well known Legendre  polynomials of order 
m, which are  defined on the interval [-1,1] and can be 
determined with the aid of the following recurrence formula: 

 

, m = 1,2,3...The set 

of , ( )n m t  forms   an orthonomal system for  2 0,1L
 

 
4. Function Approximations 
 
A function f(t) defined over [0,1) may be expanded in terms 
of Legendre wavelets as 
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If the infinite series is truncated, then it can be written as 

  (4.1) 
where C and 𝜓(t) are  matrices are  defined by 

     
(4.2) 

 (4.3) 
 

5. Operational Matrix of Derivative and 

Product Operational Matrix 
 
In this section, we introduce a new Legendre wavelets 
operational matrix of derivative. 
Let   be the Legendre wavelets defined as in equation 
(4.3). The derivative of the vector  can be expressed as 

   (5.1) 
where D is the operational matrix of derivative 
defined as follows 

 
 matrix and its (r,s) element is 

defined as follows 

 
Proof can be found in [26] 
 

Corollary 5.1 

The operational matrix for the nth derivative can be obtained 
from 

          (5.2) 
where   is the nth power of matrix D. 
 
6. Second-Order Two-Point Boundary Value 

Problems 
 
6.1 Linear Second-Order Two Point Boundary Value 

Problems 

 
Consider the linear second-order differential equation 

 (6.1) 
subject to the initial conditions 

      (6.2) 
or the boundary conditions 
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     (6.3) 
or the general mixed boundary conditions 

  (6.4) 
If we approximate  n terms of the 
Legendre wavelets basis, then one can write 

 

 

 
     (6.5) 

Where  defined similarly as in above. Relations 
enable one to approximate y'(x) and y''(x) 

    (6.6) 
Now, substitution of relations (6.6) into equation, 
(6.1)  enable us to define the residual, R(x) of this equation 
as 

 
and application of the Tau method  yields the following 

 linear equations in the unknown expansion 
coefficients, , namely 

 (6.7) 
  

 
Moreover the initial   condition (6.2) the boundary 
conditions (6.3)and the mixed boundary conditions  (6.4) 
lead respectively, to the following equations 

=α,                                      (6.8) 
  =α,                                      (6.9) 

Thus equation (6.1) with the two equations (6.2) or (6.3) 
or(6.4) generate  a set of linear equations which 
can be solved for the unknown of the vector C, and hence an 
approximate wavelet solutions of y(x) can be obtained. 
 

7. Method of Solution 
 
Consider the following nonlinear initial value problem 
obtain in the equation (2.11) 

                  (7.1) 
With the initial conditions u(0) =1, u’(0) = 0. We solve the 
above equation using the algorithm described in section (6) 
for the case of M = 2, K=0. First, if we make use of 
equations (5.1) and (5.2), then the two operational matrices 
D and D2 

 are given by 

  

Considering the equation (7.1) we have 
       (7.2) 

Where If we collocate 

    which is the first root of  Further  the 

use of initial conditions lead to two equations 
=1           (7.3) 

=0     (7.4) 
solving this system of nonlinear equation we get 

= ( 0.530, 0.025, 0.0061) 
Consequently 

= [0.530, 0.025, 0.0061]  = 
0.1961x2-1 
Our results can be compared with Rahamathunissa and 
Rajendran (25) results. For larger M, we can get the exact 
results. 
 

7.1 Limiting Cases 

 
Unsaturated (First order) Catalytic Kinetics [28] 
 
In this case, the substrate concentration S(𝜒) is less than the 
Michales Constant KM. When α u<<1, the equation (2.11) 
reduces to 

   (7.5) 
the initial conditions are  u(0) = 1, u'(0) = 0 

u''(x)-Ku(x) = 0   (7.6) 
u(0) = 1, u'(0) = 0 
 
The above equations (7.6), (7.7) are solved using the same 
procedure mentioned in previous section. We obtain the 
value as u(x) = 0.4834x2+0.0192x+0.9964 
 
Saturated {(Zero Order)} Catalytic Kinetics [27] 
 
In this case, the substrate concentration in the film S(chi) is 
greater than the Michaelis constant KM. This is explained in 
Rajendran [25]. Hence alpha u >> 1 reduces the equation 
(2.11) to 

               (7.8) 
the initial conditions are  u(0) = a, u'(0) = 0 
 
The above equation can be rewritten as 
  . Hence  Using the same 
procedure in section (7) we may arrive the constant value as  

= . Finally we have 

  All the numerical experiments presented in 
the above sections are computed in double precision with 
some MATLAB codes on a personal computer System. 
 
8. Conclusion 
 
In this paper, we used Legendre Wavelet method to obtain 
the numerical solutions of Reaction Diffusion Equations 
containing non-linear term related to Michaelis-Menten 
Kinetics of the enzymatic reaction. Numerical results show 
that LWM can match the analytical solution very efficiently 
with quite a few calculations. Also proposed methods found 
to be very simple, in finding the solution of nonlinear 
differential equations. It provides more realistic series 
solution that converges very rapidly in real physical 
problems. 
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