
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 10, October 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

GPU Enhanced Smoothed Particle Hydrodynamics
Simulation

Deepa S. Kadam1, Ram B. Joshi2

1Savitribai Phule Pune University, Indira College of Engineering & Management, Pune-411044, India

2Professor, Savitribai Phule Pune University, Indira College of Engineering & Management, Pune-411044, India

Abstract: Smoothed Particle Hydrodynamics is a powerful tool for simulating fluid dynamics. Moreover, it is easily parallelizable, as
the interaction between two particles is independent of the others. However, with a large number of particles there would be a
significant amount of computation involved for calculating the interaction between the particles. So its necessity of an algorithm that is
suitable for such parallelization using GPUs. An analysis of the implementation of smoothed particle hydrodynamics (SPH) simulation
in a parallelized manner is presented here. In normal implementation, there is very much data transfer overhead. It is because, after
performing physical computation every time it copies all data to the main memory for displaying them. But constantly sending this data
makes this computation extremely slow. So to overcome this problem, a parallel implementation of SPH simulation using shared
memory is used in proposed work. Speaking simply, proposed work performs all the physical computations at GPU and updated data is
sent to the main memory only when it needs to be displayed. This will help to minimize the CPU-GPU data transfer overhead and
speeding-up the performance.

Keywords: SPH, parallelization, thread, simulation.

1. Introduction

Smoothed Particle Hydrodynamics is a commanding mean
for simulating fluid dynamics, with an enormous realm of
applications. The traditional grid-based numerical methods
have troubles in handling some complex phenomena. The
reason to use SPH over other numerical methods such as
Particle in Cell (PIC), FDM and FEM is that SPH does not
depend on the boundary conditions. It means, SPH does not
need a grid to calculate any spatial derivatives. Instead, it
applies analytical differentiation of interpolation formulae.
The equations of momentum and energy become sets of
ordinary differential equations which are easy to understand
mechanically as well as thermodynamically.

The system focuses on particles themselves represent mass,
SPH promises safeguarding of mass without additional
computation. It calculates pressure from weighted
contributions of neighboring particles reasonably than by
solving linear systems of equations. As SPH is a gridless
numerical method, it can be used to simulate fluid flows with
one or more free surfaces.

The fluid simulation varies in computer graphics, from
extremely time consuming quality animations for film and
visual effects to simple real-time simulation used in video
games. Several other techniques have been developed by
researchers since the introduction of CFD. The common
techniques among them are Eulerian grid-based methods,
Lattice Boltzmann methods, Lagrangian grid-less SPH
methods and Vorticity-based methods. Navier-Stokes
equations describe the motion of a fluid at any point within a
range by a set of non-linear equations. The CFD focuses on
studying fluid objects by means of computer graphic
techniques and approaches. The fundamentals of any CFD
equation are the Navier-Stoke equation.

 Eq. (1)
The equation is called „momentum equation‟ which describes
how fluid moves due to external forces. The variables u, ρ, g,

v represent velocity of fluid, density, acceleration due to
gravity and kinematics viscosity respectively. The equation
also describes the „incompressibility condition‟. The earliest
attempt in applying computer graphics to solve the Navier-
Stoke equations was done by Foster and Dimitri (1996) who
described the solutions to simulate liquids.
According to Foster and Dimitri, realism is provided through
a finite difference approximation to the incompressible
Navier-Stoke equations and is coupled with the Lagrangian
equations.

According to the research, even the simplest animation
exhibits slight realistic behavior not available in previous
computer graphics for fluid simulation. This realistic
behavior then expanded by Stam. Stam and Chen mapped the
surface onto 3D using pressures in fluid flow. This method
achieved realistic real-time fluid surface behaviors by
applying the physical laws of fluid and avoiding extensive
3D fluid dynamics computations. Their model allows
multiple fluid sources to be placed interactively in a dynamic
virtual environment. Other efforts by researchers (Chen et. al.
1997) solved the 2D Navier Stoke equations using a
computational fluid dynamics method. Cell Indexing
approach for searching approximate neighbor particles
necessary for efficient fluid simulation using SPH is used
by Onderik & Roman for efficient neighbor search of
particles. This approach encoded coordinates and index into
a key instead of storing particles into a fixed 3D grid or hash
map. But it required large amount of memory full 3D grids.
Takahiro Harada achieved accelerated a simulation method
for free surface flow by using graphics processing units
(GPUs). It became a good solution in sequential manner than

Paper ID: ART20162085 277

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 10, October 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

the traditional algorithms for satisfying all the requirements
of real-time simulations algorithms.

The sequential implementation of SPH is having high
overhead of CPU to GPU memory transfer. Additionally, it is
having drawback of memory space wastage. The parallel
implementation can overcome these drawbacks. This can be
achieved at the cost of multiple physics frames per screen
frame. In simple implementation, all particles data are copied
to GPU. Then all the physics computations are performed, all
data is copied back to the main memory, displayed and sent
back to GPU. But constantly sending this data make this
computation extremely slow. But if we copy the data to GPU
only once, perform multiple physics frames per screen frame
and when it needs to displayed then only send the particle
data back to the main memory.

The section 2 describe method, strategies, diagrams, section
3 results, discussion and section 4 conclusion with
references.

2. Method

This implementation performs the entire SPH computation on
the GPU using CUDA by optimizing the neighborhood
search, in terms of space and time overhead. In SPH
simulation, the neighborhood search, performed on each
particle for every time step is computationally most
expensive part for implementation. GPU computation will
help in accelerating the expensive SPH computations. The
simulation domain is distributed into a virtual indexing grid
and the grid location of a particle. Virtual indexing grid is
divided in X, Y, Z along each of the dimensions. The grid
location of a particle is used to determine bit-interleaved Z-
index of this virtual indexing grid The Z-index can be
computed very efficiently using a table lookup approach.
All particles lying within any power-of-two sized aligned
block have contiguous Z-indices while using the z-indexing
technique.

Figure 1: System Architecture for SPH Simulation

The nearest power-of-two block size S in the indexing grid
domain can be determined for range queries with given
radius R and global support radius of the SPH simulation. Z-
indices of all particles are calculated at the start of each time

step in parallel. Then these particles are sorted in CUDA
using parallel radix-sort. In this way, for each block the index
of its first particle and number of particles it contain are
determined. With the support of atomicMin operation in
CUDA, the first particle in the block can be determined. By
incrementing the particle count using atomicInc, the number
of particles can be found. Like this, each particle updates
both the starting index and particle count of its block in the
list B, which is of size |B| = (Xmax/S)3, where Xmax is assumed
as simulation domain grid dimension.

2.1 Density Computation

Density computation of following equation (2) is the initial
step to begin SPH simulation.

 Eq. (2)
where, is mass of particle at position and is
smoothing kernel with core radius . These computed
densities from last step will be made available for force
computation as CUDA texture. Same procedure for neighbor
searching and density computation will be followed for force
computation using equation (3).

 Eq. (3)
As the updated density values considered necessary for force
kernels different kernels need may be there as density and
force computation cannot be clubbed together in a single
CUDA block. After updating the particle positions and
copying them to the position array, radix sort array can be
used for block computations so that for block maintenance,
there will be no need of extra space.

2.2 Surface Particle Extraction

In this method, a particle i is considered to be a surface
particle if its distance to the center of mass of its
neighbourhood is larger than a certain threshold. By
summing up the positions rj in i‟s neighborhood weighed by

their mass mj, the center of mass can be calculated as-

 Eq. (4)
If very few particles are there, above equation (4) fails to
detect surface particles. For this reason, one more constraint
is added that is, i will always consider being a surface
particle if for a particle i the number of neighbours lies below
a user defined threshold. This condition can be achieved
since the computation of neighborhood has already to be
calculated in physics simulation part. The particle that
belongs to the surface it is written to an output array,
otherwise omitted.

The basic stages in the implementation can be
understood with following fig. (2).

Paper ID: ART20162085 278

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 10, October 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 2: Phases of GPU accelerated SPH Simulation

All above phases start assuming particles data has been
copied to GPU. As the system is going to use the shared
memory and the considered data is particle data, there is need
of grid for shared memory access. It has been achieved with
help of some lines of code.

3. Results and Discussion

The primary goal of the work was to bring out parallel
programming in SPH applications. In order to reduce data
traffic to the main memory, it is required to place all the
neighboring particle‟s data in GPU‟s shared memory let the

particles in the center grid‟s particles access the shared-
memory. Additionally, it is important to keep the memory
offset in such a way that each center grid particle could
access the correct shared memory offset.

Figure 3: Output window

The data in shared memory is compared to the second
particle data in the global memory. So the global memory
access is reduced. In proposed work, this has been achieved
by minimizing CUDAmalloc(), CUDAmemcopy reducing or
removing the rendering copy process. To reduce the
computation workload, some parameters has changed such as
using smaller smooth-radius. Considering all these points, the
concept of proposed work has been implemented.
Fig (3) shows the application window after execution. It

provides options to user to add more particles, increase or
decrease height of particle.
Clicking on white window spawn new particles to the grid.
User can also increase or decrease elevation of camera as
shown in Fig (4).

Figure 4: Camera and Particle movement after increasing
elevation

The keys u, h, j, k have provided some functions like moving
camera, increasing or decreasing the elevation. This is useful
because for testing accuracy of particles all the constraints
should be taken into consideration. The particles density can
be increased using v key and decreased by using b key.

Figure 5: Particles after increasing width

The dumped frames of simulation can be stored for offline
reading. The default path of storing these frames is Debug.
The dumping of frames can be started by pressing p key. The
use of shared memory and multiple neighbor finding
algorithm used in this work applicably provided the speedy
routine. Some of the tests performed on ISPC (Intel‟s SPMD

Program Compiler). These tests vary with CUDA and ISPC
implementation.

Taking the particle count and considering pressure and
density as first constraints, the graph is plotted in Fig (6). It
shows the pressure and density of particles as the number
increases.

Paper ID: ART20162085 279

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 10, October 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 6: Pressure and density change depending upon
number of particles

4. Conclusions

The sequential implementation of SPH is having high
overhead of CPU to GPU memory transfer. This requires
much time for computation. The parallel implementation
used in this work can overcome this drawback. Additionally,
sequential implementation is having drawback of memory
space wastage. This system gives the parallel implementation
of SPH using shared memory at the cost of multiple physics
frames per screen frame. In simple implementation, all
particles data are copied to GPU. Then all the physics
computations are performed, all data is copied back to the
main memory, displayed and sent back to GPU. The use of
shared memory saves much time of data transfer. Because the
data from shared memory is sent to the main memory, only
when it is needed.

The main constraint of this work was to bring out parallel
programming in the SPH simulation using CUDA and
OpenGL. This work gives a very good quality dumped
images those can be used for offline reading. This work can
be applicable in simulation based applications such as in
video games, animations, movies and in Dualsphysics.

References

[1] Prashant Goswami, Philipp Schlegel, Barbara
Solenthaler and Renato Pajarola: “Interactive SPH

simulation and Rendering on the GPU”, Eurographics/
ACM SIGGRAPH Symposium on Computer Animation
(2010), pp. 110M. Otaduy and Z. Popovic (Editors).

[2] Harada T., Koshizuka S., Kawaguchi Y.: “Smoothed

particle hydrodynamics on GPUs”, In Proceedings

Computer Graphics International (2007), pp. 6370.R.
Caves, Multinational Enterprise and Economic
Analysis, Cambridge University Press, Cambridge,
1982. (book style)

[3] Amenta N., Kil Y. J.: “Defining point-set surfaces”,

ACM Transactions on Graphics 23, 3 (2004), 264270.
[4] Adams B., Pauly M., Keiser R., Guibas L. J.:

“Adaptively sampled particle fluids”. ACM

Transactions on Graphics 26, 3 (July 2007), 4854.

[5] Dyken C., Ziegler G., Theobalt C., Seidel H.-P.: “GPU

marching cubes on shader model 3.0 and
4.0”, Research Report MPI-I-2007-4-006, Max-Planck-
Institut fr Informatik, August 2007.

[6] Guennebaud G., Gross M.: “Algebraic point set

surfaces”, ACM Transactions on Graphics 26, 3 (2007),
23.

[7] Harada T., Koshizuka S., Kawaguchi Y.: “Sliced data

structure for particle-based simulations on
GPUs”, In Proceedings 5th international conference on
Computer graphics and interactive techniques in
Australia and Southeast Asia (2007), pp. 5562.

[8] Iwasaki K., Dobashi Y., Yoshimoto F., Nishita T.:
“GPU-based rendering of point-sampled water
surfaces”, The Visual Computer 24, 2 (2008), 7784.

[9] Muller M., Charypar D., Gross M.: “Particle based fluid

simulation for interactive applications”, In

Proceedings Eurographics/ACM Symposium on
Computer Animation (2003), pp. 154159.

[10] Monaghan J.: “Smoothed particle hydrodynamics”,

Annu. Rev. Astron. Astrophys. 30 (1992), 543574.
[11] Zhang Y., Solenthaler B., Pajarola R.: “Adaptive

sampling and rendering of fluids on the GPU”, In
Proceedings Eurographics/IEEE VGTC Symposium on
Point-Based Graphics (2008), pp. 137146.

[12] Dr.Sauro Maneti, “A Smoothed Particle
Hydrodynamics: Basics and Applications”, Gioved 12,

Novembre,2009. J. Geralds, "Sega Ends Production of
Dreamcast," vnunet.com, para. 2, Jan. 31, 2001.
[Online]. Available:
http://nl1.vnunet.com/news/1116995. [Accessed: Sept.
12, 2004]. (General Internet site)

Author Profile

Deepa Kadam received the B.E. degree in Computer
Science and Engineering from Dr. Babasaheb
Ambedkar Marathwada University, Aurangabad in
2013. She is research scholar at ICEM. Her current
domain is parallel computing.

Prof. Ram B. Joshi is Head of Computer Engineering Department
at ICEM, Pune. His research area include network security.

Paper ID: ART20162085 280

http://nl1.vnunet.com/news/1116995

