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Abstract: Smoothed Particle Hydrodynamics is a powerful tool for simulating fluid dynamics. Moreover, it is easily parallelizable, as 
the interaction between two particles is independent of the others. However, with a large number of particles there would be a 
significant amount of computation involved for calculating the interaction between the particles. So its necessity of an algorithm that is 
suitable for such parallelization using GPUs. An analysis of the implementation of smoothed particle hydrodynamics (SPH) simulation 
in a parallelized manner is presented here. In normal implementation, there is very much data transfer overhead. It is because, after 
performing physical computation every time it copies all data to the main memory for displaying them. But constantly sending this data 
makes this computation extremely slow. So to overcome this problem, a parallel implementation of SPH simulation using shared 
memory is used in proposed work. Speaking simply, proposed work performs all the physical computations at GPU and updated data is 
sent to the main memory only when it needs to be displayed. This will help to minimize the CPU-GPU data transfer overhead and 
speeding-up the performance. 
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1. Introduction 

Smoothed Particle Hydrodynamics is a commanding mean 
for simulating fluid dynamics, with an enormous realm of 
applications. The traditional grid-based numerical methods 
have troubles in handling some complex phenomena. The 
reason to use SPH over other numerical methods such as 
Particle in Cell (PIC), FDM and FEM is that SPH does not 
depend on the boundary conditions. It means, SPH does not 
need a grid to calculate any spatial derivatives. Instead, it 
applies analytical differentiation of interpolation formulae. 
The equations of momentum and energy become sets of 
ordinary differential equations which are easy to understand 
mechanically as well as thermodynamically. 
  
The system focuses on particles themselves represent mass, 
SPH promises safeguarding of mass without additional 
computation. It calculates pressure from weighted 
contributions of neighboring particles reasonably than by 
solving linear systems of equations. As SPH is a gridless 
numerical method, it can be used to simulate fluid flows with 
one or more free surfaces.  

The fluid simulation varies in computer graphics, from 
extremely time consuming quality animations for film and 
visual effects to simple real-time simulation used in video 
games. Several other techniques have been developed by 
researchers since the introduction of CFD. The common 
techniques among them are Eulerian grid-based methods, 
Lattice Boltzmann methods, Lagrangian grid-less SPH 
methods and Vorticity-based methods. Navier-Stokes 
equations describe the motion of a fluid at any point within a 
range by a set of non-linear equations. The CFD focuses on 
studying fluid objects by means of computer graphic 
techniques and approaches. The fundamentals of any CFD 
equation are the Navier-Stoke equation.  

  Eq. (1) 
The equation is called „momentum equation‟ which describes 
how fluid moves due to external forces. The variables u, ρ, g, 

v represent velocity of fluid, density, acceleration due to 
gravity and kinematics viscosity respectively. The equation 
also describes the „incompressibility condition‟. The earliest 
attempt in applying computer graphics to solve the Navier-
Stoke equations was done by Foster and Dimitri (1996) who 
described the solutions to simulate liquids. 
According to Foster and Dimitri, realism is provided through 
a finite difference approximation to the incompressible 
Navier-Stoke equations and is coupled with the Lagrangian 
equations.  

According to the research, even the simplest animation 
exhibits slight realistic behavior not available in previous 
computer graphics for fluid simulation. This realistic 
behavior then expanded by Stam. Stam and Chen mapped the 
surface onto 3D using pressures in fluid flow. This method 
achieved realistic real-time fluid surface behaviors by 
applying the physical laws of fluid and avoiding extensive 
3D fluid dynamics computations. Their model allows 
multiple fluid sources to be placed interactively in a dynamic 
virtual environment. Other efforts by researchers (Chen et. al. 
1997) solved the 2D Navier Stoke equations using a 
computational fluid dynamics method. Cell Indexing 
approach for searching approximate neighbor particles 
necessary for efficient fluid simulation using SPH is used 
by Onderik & Roman for efficient neighbor search of 
particles. This approach encoded coordinates and index into 
a key instead of storing particles into a fixed 3D grid or hash 
map. But it required large amount of memory full 3D grids. 
Takahiro Harada achieved accelerated a simulation method 
for free surface flow by using graphics processing units 
(GPUs). It became a good solution in sequential manner than 
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the traditional algorithms for satisfying all the requirements 
of real-time simulations algorithms.  

The sequential implementation of SPH is having high 
overhead of CPU to GPU memory transfer. Additionally, it is 
having drawback of memory space wastage. The parallel 
implementation can overcome these drawbacks. This can be 
achieved at the cost of multiple physics frames per screen 
frame. In simple implementation, all particles data are copied 
to GPU. Then all the physics computations are performed, all 
data is copied back to the main memory, displayed and sent 
back to GPU. But constantly sending this data make this 
computation extremely slow. But if we copy the data to GPU 
only once, perform multiple physics frames per screen frame 
and when it needs to displayed then only send the particle 
data back to the main memory. 

The section 2 describe method, strategies, diagrams, section 
3 results, discussion and section 4 conclusion with 
references. 

2. Method 

This implementation performs the entire SPH computation on 
the GPU using CUDA by optimizing the neighborhood
search, in terms of space and time overhead. In SPH 
simulation, the neighborhood search, performed on each 
particle for every time step is computationally most 
expensive part for implementation. GPU computation will 
help in accelerating the expensive SPH computations. The 
simulation domain is distributed into a virtual indexing grid 
and the grid location of a particle. Virtual indexing grid is 
divided in X, Y, Z along each of the dimensions. The grid 
location of a particle is used to determine bit-interleaved Z-
index of this virtual indexing grid The Z-index can be 
computed very efficiently using a table lookup approach. 
All particles lying within any power-of-two sized aligned 
block have contiguous Z-indices while using the z-indexing 
technique. 

Figure 1: System Architecture for SPH Simulation 

The nearest power-of-two block size S in the indexing grid 
domain can be determined for range queries with given 
radius R and global support radius of the SPH simulation. Z-
indices of all particles are calculated at the start of each time 

step in parallel. Then these particles are sorted in CUDA 
using parallel radix-sort. In this way, for each block the index 
of its first particle and number of particles it contain are 
determined. With the support of atomicMin operation in 
CUDA, the first particle in the block can be determined. By 
incrementing the particle count using atomicInc, the number 
of particles can be found. Like this, each particle updates 
both the starting index and particle count of its block in the 
list B, which is of size |B| = (Xmax/S)3, where Xmax is assumed 
as simulation domain grid dimension. 

2.1 Density Computation 

Density computation of following equation (2) is the initial 
step to begin SPH simulation. 

   Eq. (2) 
where, is mass of particle at position   and is 
smoothing kernel with core radius . These computed 
densities from last step will be made available for force 
computation as CUDA texture. Same procedure for neighbor 
searching and density computation will be followed for force 
computation using equation (3). 

 Eq. (3) 
As the updated density values considered necessary for force 
kernels different kernels need may be there as density and 
force computation cannot be clubbed together in a single 
CUDA block. After updating the particle positions and 
copying them to the position array, radix sort array can be 
used for block computations so that for block maintenance, 
there will be no need of extra space. 

2.2 Surface Particle Extraction 

In this method, a particle i is considered to be a surface 
particle if its distance to the center of mass of its 
neighbourhood is larger than a certain threshold. By 
summing up the positions rj in i‟s neighborhood weighed by 

their mass mj, the center of mass can be calculated as- 

    Eq. (4)
If very few particles are there, above equation (4) fails to 
detect surface particles. For this reason, one more constraint 
is added that is, i will always consider being a surface 
particle if for a particle i the number of neighbours lies below 
a user defined threshold. This condition can be achieved 
since the computation of neighborhood has already to be 
calculated in physics simulation part. The particle that 
belongs to the surface it is written to an output array, 
otherwise omitted.

The basic stages in the implementation can be
understood with following fig. (2).
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Figure 2: Phases of GPU accelerated SPH Simulation

All above phases start assuming particles data has been 
copied to GPU. As the system is going to use the shared 
memory and the considered data is particle data, there is need 
of grid for shared memory access. It has been achieved with 
help of some lines of code.

3. Results and Discussion 

The primary goal of the work was to bring out parallel 
programming in SPH applications. In order to reduce data 
traffic to the main memory, it is required to place all the 
neighboring particle‟s data in GPU‟s shared memory let the 

particles in the center grid‟s particles access the shared-
memory. Additionally, it is important to keep the memory 
offset in such a way that each center grid particle could 
access the correct shared memory offset. 

Figure 3: Output window 

The data in shared memory is compared to the second 
particle data in the global memory. So the global memory 
access is reduced. In proposed work, this has been achieved 
by minimizing CUDAmalloc(), CUDAmemcopy reducing or 
removing the rendering copy process. To reduce the 
computation workload, some parameters has changed such as 
using smaller smooth-radius. Considering all these points, the 
concept of proposed work has been implemented. 
Fig (3) shows the application window after execution. It 

provides options to user to add more particles, increase or 
decrease height of particle.  
Clicking on white window spawn new particles to the grid. 
User can also increase or decrease elevation of camera as 
shown in Fig (4).  

Figure 4: Camera and Particle movement after increasing 
elevation 

The keys u, h, j, k have provided some functions like moving 
camera, increasing or decreasing the elevation. This is useful 
because for testing accuracy of particles all the constraints 
should be taken into consideration. The particles density can 
be increased using v key and decreased by using b key.  

Figure 5: Particles after increasing width 

The dumped frames of simulation can be stored for offline 
reading. The default path of storing these frames is Debug. 
The dumping of frames can be started by pressing p key. The 
use of shared memory and multiple neighbor finding 
algorithm used in this work applicably provided the speedy 
routine. Some of the tests performed on ISPC (Intel‟s SPMD 

Program Compiler). These tests vary with CUDA and ISPC 
implementation. 

Taking the particle count and considering pressure and 
density as first constraints, the graph is plotted in Fig (6). It 
shows the pressure and density of particles as the number 
increases.  
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Figure 6: Pressure and density change depending upon 
number of particles 

4. Conclusions 

The sequential implementation of SPH is having high 
overhead of CPU to GPU memory transfer. This requires 
much time for computation. The parallel implementation 
used in this work can overcome this drawback. Additionally, 
sequential implementation is having drawback of memory 
space wastage. This system gives the parallel implementation 
of SPH using shared memory at the cost of multiple physics 
frames per screen frame. In simple implementation, all 
particles data are copied to GPU. Then all the physics 
computations are performed, all data is copied back to the 
main memory, displayed and sent back to GPU. The use of 
shared memory saves much time of data transfer. Because the 
data from shared memory is sent to the main memory, only 
when it is needed. 

The main constraint of this work was to bring out parallel 
programming in the SPH simulation using CUDA and 
OpenGL. This work gives a very good quality dumped 
images those can be used for offline reading. This work can 
be applicable in simulation based applications such as in 
video games, animations, movies and in Dualsphysics. 
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